1
|
Wang M, Han Z, Garcia Y, Cheng P. Six-Coordinated Co II Single-Molecule Magnets: Synthetic Strategy, Structure and Magnetic Properties. Chemphyschem 2024; 25:e202400396. [PMID: 38889310 DOI: 10.1002/cphc.202400396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
The pursuit of molecule-based magnetic memory materials contributes significantly to high-density information storage research in the frame of the ongoing information technologies revolution. Remarkable progress has been achieved in both transition metal (TM) and lanthanide based single-molecule magnets (SMMs). Notably, six-coordinated CoII SMMs hold particular research significance owing to the economic and abundant nature of 3d TM ions compared to lanthanide ions, the substantial spin-orbit coupling of CoII ions, the potential for precise control over coordination geometry, and the air-stability of coordination-saturated structures. In this review, we will summarize the progress made in six-coordinated CoII SMMs, organized by their coordination geometry and molecular structure similarity. Valuable insights, principles, and new mechanism gleaned from this research and remaining issues that need to be addressed will also be discussed to guide future optimization.
Collapse
Affiliation(s)
- Mengmeng Wang
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
- Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zongsu Han
- Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, United States
| | - Yann Garcia
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Peng Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
2
|
Landart A, Quesada-Moreno MM, Palacios MA, Li Y, Ozerov M, Krzystek J, Colacio E. Control of the geometry and anisotropy driven by the combination of steric and anion coordination effects in Co II complexes with N 6-tripodal ligands: the impact of the size of the ligand on the magnetization relaxation time. Dalton Trans 2024; 53:12876-12892. [PMID: 38716508 DOI: 10.1039/d4dt00622d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Four mononuclear CoII complexes of formula [Co(L)(SCN)2(CH3OH)0.5(H2O)0.5]·1.5H2O·0.75CH3OH (1), [Co(L1)Cl2]·H2O·2CH3CN (2), [Co(L1)(SCN)2]·1.5H2O·CH3OH (3) and [Co(L1)]ClO4·2CH3OH (4) were prepared from the N6-tripodal Schiff base ligands (S)P[N(Me)NC(H)2-Q]3 (L) and (S)P[N(Me)NC(H)1-ISOQ]3 (L1), where Q and ISOQ represent quinolyl and isoquinolyl moieties, respectively. In 1, the L ligand does not coordinate to the CoII ion in a tripodal manner but using a new N,N,S tridentate mode, which is due to the fact that the N6-tripodal coordination promotes a strong steric hindrance between the quinolyl moieties. However, L1 can coordinate to the CoII ions either in a tripodal manner using CoII salts with poorly coordinating anions to give 4 or in a bisbidentate fashion using CoII salt-containing medium to strongly coordinating anions to afford 2 and 3. In the case of L1, there is no steric hindrance between ISOQ moieties after coordination to the CoII ion. The CoII ion exhibits a distorted octahedral geometry for compounds 1-3, with the anions in cis positions for the former and in trans positions for the two latter compounds. Compound 4 shows an intermediate geometry between an octahedral and trigonal prism but closer to the latter one. DC magnetic properties, HFEPR and FIRMS measurements and ab initio calculations demonstrate that distorted octahedral complexes 1-3 exhibit easy-plane magnetic anisotropy (D > 0), whereas compound 4 shows large easy-axis magnetic anisotropy (D < 0). Comparative analysis of the magneto-structural data underlines the important role that is played not only by the coordination geometry but also the electronic effects in determining the anisotropy of the CoII ions. Compounds 2-3 show a field-induced slow relaxation of magnetization. Despite its large easy-axis magnetic anisotropy, compound 4 does not show significant slow relaxation (SMR) above 2 K under zero applied magnetic fields, but its magnetic dilution with ZnII triggers SMR at zero field. Finally, it is worth remarking that compounds 2-4 show smaller relaxation times than the analogous complexes with the tripodal ligand bearing in its arms pyridine instead of isoquinoline moieties, which is most likely due to the increase of the molecular size in the former one.
Collapse
Affiliation(s)
- Aritz Landart
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| | - María Mar Quesada-Moreno
- Departamento de Química Física y Analítica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - María A Palacios
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| | - Yanling Li
- Sorbonne Université Institut Parisien de Chimie Moléculaire, CNRS UMR 8232 4 place Jussieu 75252, Paris cedex 5, France
| | - Mykhaylo Ozerov
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| | - J Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| | - Enrique Colacio
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| |
Collapse
|
3
|
Ji L, Wang J, Li Z, Zhu X, Hu P. Chiral Star-Shaped [Co III3Ln III] Clusters with Enantiopure Schiff Bases: Synthesis, Structure, and Magnetism. Molecules 2024; 29:3304. [PMID: 39064883 PMCID: PMC11279290 DOI: 10.3390/molecules29143304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Two enantiomeric pairs of new 3d-4f heterometallic clusters have been synthesized from two enantiomer Schiff base derivatives: (R/S)-2-[(2-hydroxy-1-phenylethylimino)methyl] phenol (R-/S-H2L). The formulae of the series clusters are Co3Ln(R-L)6 (Ln = Dy (1R), Gd (2R)), Co3Ln (S-L)6 (Ln = Dy (1S), Gd (2S)), whose crystal structures and magnetic properties have been characterized. Structural analysis indicated that the above clusters crystallize in the chiral P213 group space. The central lanthanide ion has a coordination geometry of D3 surrounded by three [CoIII(L)2]- anions using six aliphatic oxygen atoms of L2- featuring a star-shaped [CoIII3LnIII] configuration. Magnetic measurements showed the presence of slow magnetic relaxation with an effective energy barrier of 22.33 K in the DyIII derivatives under a zero-dc field. Furthermore, the circular dichroism (CD) spectra of 1R and 1S confirmed their enantiomeric nature.
Collapse
Affiliation(s)
- Liudi Ji
- School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China; (L.J.); (J.W.); (Z.L.)
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, China
| | - Juntao Wang
- School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China; (L.J.); (J.W.); (Z.L.)
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, China
| | - Zeyu Li
- School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China; (L.J.); (J.W.); (Z.L.)
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, China
| | - Xiaoming Zhu
- School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China; (L.J.); (J.W.); (Z.L.)
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, China
| | - Peng Hu
- School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China; (L.J.); (J.W.); (Z.L.)
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
4
|
Song H, Jin C, Wang X, Xie J, Ma Y, Tang J, Li L. Tuning spin dynamics of binuclear Dy complexes using different nitroxide biradical derivatives. Dalton Trans 2024; 53:10007-10017. [PMID: 38814577 DOI: 10.1039/d3dt04360f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
By employing nitronyl/imino nitroxide biradicals, three Ln-Zn complexes, namely, [Ln2Zn2(hfac)10(ImPhPyobis)2] (LnIII = Gd 1, Dy 2; hfac = hexafluoroacetylacetonate; ImPhPyobis = 5-(4-oxypyridinium-1-yl)-1,3-bis(1'-oxyl-4',4',5',5'-tetramethyl-4,5-hydro-1H-imidazol-2-yl)benzene) and [Dy2Zn2(hfac)10(NITPhPyobis)2] 3 (NITPhPyobis = 5-(4-oxypyridinium-1-yl)-1,3-bis(1'-oxyl-3'-oxido-4',4',5',5'-tetramethyl-4,5-hydro-1H-imidazol-2-yl)benzene), have been successfully prepared. The three complexes possess {Ln2O2} cores bridged by the oxygen atoms of the 4-oxypyridinium rings of the biradical ligands and one of the imino/nitronyl nitroxide groups of the biradical is coordinated to a ZnII ion, then producing a centrosymmetric tetranuclear six-spin structure. The studies of spin dynamics indicate that complexes 2 and 3 exhibit distinct magnetic relaxation behaviors at zero dc field: complex 2 presents single relaxation with an effective energy barrier (Ueff) of 69.8 K, while complex 3 exhibits double relaxation processes with Ueff values for the fast and slow relaxation being 15.8 K and 50.9 K, respectively. The observed different magnetic relaxation behaviors for the two Dy complexes could be mainly ascribed to the influence of the distinct nitroxide biradical derivatives.
Collapse
Affiliation(s)
- Hongwei Song
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Chaoyi Jin
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Xiaotong Wang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Junfang Xie
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yue Ma
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Licun Li
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
5
|
Dey A, Ali J, Moorthy S, Gonzalez JF, Pointillart F, Singh SK, Chandrasekhar V. Field induced single ion magnet behavior in Co II complexes in a distorted square pyramidal geometry. Dalton Trans 2023; 52:14807-14821. [PMID: 37791680 DOI: 10.1039/d3dt01769a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
We report three CoII-based complexes with the general formula [CoII(L)(X)2] by changing the halide/pseudo-halide ions [X = NCSe (1SeCN); Cl (2Cl) and Br (3Br)]. The obtained τ5 and CShM values confirm a distorted square pyramidal geometry around the CoII ion in all these complexes. In these three complexes, the central CoII ion is situated above the basal plane of the square pyramidal geometry. The extent of distortion from the ideal SPY-5 geometry differs upon changing the coordinating halide/pseudo-halide ion in these complexes. This essentially results in the alteration of the anisotropic parameter D and hence impacts the magnetic properties in these complexes. This phenomenon has been corroborated with the aid of theoretical investigations. All these complexes display field-induced SIM behaviour with magnetic relaxation occurring through a combination of processes depending on the applied dc magnetic field values and dilution.
Collapse
Affiliation(s)
- Atanu Dey
- Department of Chemistry, Gandhi Institute of Technology and Management (GITAM), NH 207, Nagadenehalli, Doddaballapur Taluk, Bengaluru 561203, India.
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500 046, India.
| | - Junaid Ali
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500 046, India.
| | - Shruti Moorthy
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India.
| | - Jessica Flores Gonzalez
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, 35000 Rennes, France.
| | - Fabrice Pointillart
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, 35000 Rennes, France.
| | - Saurabh Kumar Singh
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India.
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500 046, India.
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
6
|
Wang M, Han Z, Gou X, Shi W, Zhang YQ, Cheng P. Alkyl Chains Modulated Magnetization Dynamics of Mononuclear Trigonal Prismatic Co II Complexes. Chemistry 2023; 29:e202301693. [PMID: 37498805 DOI: 10.1002/chem.202301693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
Four benzeneboron-capped mononuclear CoII complexes with different alkyl substitutions on the fourth position of phenylboronic acid were obtained. The CoII ions are all wrapped by the pocket-like ligands and located in trigonal prismatic coordination geometries. Alternating-current magnetic susceptibility measurements reveal that they show different magnetization dynamics, such as distinct relaxation rates at the same temperature, the faster QTM rates for the ethyl and propyl substituted complexes, as well as different relaxation processes. Magneto-structural correlation study reveals that the various deviations of coordination geometry of CoII ion, diverse crystal packings and possible different vibration modes of substituents caused by modifying alkyl chains are the key factors affecting the magnetization dynamics. This work demonstrates that the alkyl chains even locating far away from the metal center can have a large impact on the magnetic behavior of the CoII complex with a very rigid coordination geometry, offering a new perspective towards transition metal based single-molecule magnets.
Collapse
Affiliation(s)
- Mengmeng Wang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic MatterCollege of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zongsu Han
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic MatterCollege of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiaoshuang Gou
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic MatterCollege of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wei Shi
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic MatterCollege of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yi-Quan Zhang
- School of Physical Science and Technology, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Peng Cheng
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic MatterCollege of Chemistry, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
7
|
Audsley G, Carpenter H, Essien NB, Lai-Morrice J, Al-Hilaly Y, Serpell LC, Akien GR, Tizzard GJ, Coles SJ, Ulldemolins CP, Kostakis GE. Chiral Co 3Y Propeller-Shaped Chemosensory Platforms Based on 19F-NMR. Inorg Chem 2023; 62:2680-2693. [PMID: 36716401 PMCID: PMC9930122 DOI: 10.1021/acs.inorgchem.2c03737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Two propeller-shaped chiral CoIII3YIII complexes built from fluorinated ligands are synthesized and characterized by single-crystal X-ray diffraction (SXRD), IR, UV-vis, circular dichroism (CD), elemental analysis, thermogravimetric analysis (TGA), electron spray ionization mass spectroscopy (ESI-MS), and NMR (1H, 13C, and 19F). This work explores the sensing and discrimination abilities of these complexes, thus providing an innovative sensing method using a 19F NMR chemosensory system and opening new directions in 3d/4f chemistry. Control experiments and theoretical studies shed light on the sensing mechanism, while the scope and limitations of this method are discussed and presented.
Collapse
Affiliation(s)
- Gabrielle Audsley
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, UK
| | - Harry Carpenter
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, UK
| | - Nsikak B. Essien
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, UK
| | - James Lai-Morrice
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, UK
| | - Youssra Al-Hilaly
- Sussex
Neuroscience, School of Life Sciences, University
of Sussex, Brighton BN1 9QG, UK,Chemistry
Department, College of Science, Mustansiriyah
University, Baghdad 10001, Iraq
| | - Louise C. Serpell
- Sussex
Neuroscience, School of Life Sciences, University
of Sussex, Brighton BN1 9QG, UK
| | - Geoffrey R. Akien
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, UK
| | - Graham J. Tizzard
- UK
National Crystallography Service, Chemistry, University of Southampton, Southampton SO1 71BJ, UK
| | - Simon J. Coles
- UK
National Crystallography Service, Chemistry, University of Southampton, Southampton SO1 71BJ, UK
| | | | - George E. Kostakis
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, UK,
| |
Collapse
|
8
|
Landart-Gereka A, Quesada-Moreno MM, Palacios MA, Díaz-Ortega IF, Nojiri H, Ozerov M, Krzystek J, Colacio E. Pushing up the easy-axis magnetic anisotropy and relaxation times in trigonal prismatic Co II mononuclear SMMs by molecular structure design. Chem Commun (Camb) 2023; 59:952-955. [PMID: 36597978 DOI: 10.1039/d2cc06012d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The replacement of pyridine by 1-methyl-imidazol in the arms of a N6-tripodal ligand allows preparing two new CoII complexes with quasi-ideal triangular prismatic geometry, which behave as SIMs (Single Ion Magnets) at zero dc field with enhanced axial magnetic anisotropy, magnetic relaxation times and magnetic hysteresis.
Collapse
Affiliation(s)
- Aritz Landart-Gereka
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| | - María Mar Quesada-Moreno
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| | - María A Palacios
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| | - Ismael F Díaz-Ortega
- Institute for Materials Research, Tohoku University, Katahira, Sendai, 980-8577, Japan.,Departamento de Química y Física-CIESOL, Universidad de Almería, Ctra. Sacramento s/n, 04120, Almería, Spain
| | - Hiroyuki Nojiri
- Institute for Materials Research, Tohoku University, Katahira, Sendai, 980-8577, Japan
| | - Mykhaylo Ozerov
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| | - J Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| | - Enrique Colacio
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| |
Collapse
|
9
|
Cabrosi D, Cruz C, Paredes-García V, Alborés P. A dinuclear Co( iii)/Co( ii) complex based on the H 2pmide ligand showing field-induced SMM behaviour. Dalton Trans 2023; 52:175-184. [DOI: 10.1039/d2dt03492a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report a combined computational and experimental study of the field-induced SMM behaviour of a Co(ii)/Co(iii) dinuclear complex with a pair-like H-bond intermolecular interaction.
Collapse
Affiliation(s)
- Daiana Cabrosi
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE (CONICET), Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Carlos Cruz
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Avenida República 275, Santiago de Chile, Chile
- Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Santiago, Chile
| | - Verónica Paredes-García
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Avenida República 275, Santiago de Chile, Chile
- Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Santiago, Chile
| | - Pablo Alborés
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE (CONICET), Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| |
Collapse
|
10
|
Rojek T, Ślepokura K, Kinzhybalo V, Duczmal M, Wojciechowska A, Matczak-Jon E. Synthesis, structural, spectroscopic and magnetic studies of tetranuclear Ni(II) and Co(II) clusters based on cyclobutyl and cyclopentyl-substituted analogues of zoledronic acid. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Shao D, Xu F, Yin L, Li H, Sun Y, Ouyang Z, Wang Z, Zhang Y, Wang X. Fine‐Tuning
of Structural Distortion and Magnetic Anisotropy by Organosulfonates in Octahedral Cobalt(
II
) Complexes. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dong Shao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering Huanggang Normal University Huanggang 438000 P. R. China
| | - Fang‐Xue Xu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Lei Yin
- Wuhan National High Magnetic Field Centre Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Hong‐Qing Li
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Yu‐Chen Sun
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Zhong‐Wen Ouyang
- Wuhan National High Magnetic Field Centre Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Zhen‐Xing Wang
- Wuhan National High Magnetic Field Centre Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Yi‐Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology Nanjing Normal University Nanjing 210097 P. R. China
| | - Xin‐Yi Wang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
12
|
Li RX, Sun HY, Liang HC, Yi C, Yao NT, Meng YS, Xiong J, Liu T, Zhu YY. Slow magnetic relaxation in mononuclear octa-coordinate Fe(II) and Co(II) complexes from a Bpybox ligand. Dalton Trans 2022; 51:8865-8873. [PMID: 35635033 DOI: 10.1039/d2dt00865c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two 3d transition metal mononuclear complexes, [(FeL2)(ClO4)2]2·CH3CN (1) and (CoL2)(ClO4)2·2CH3CN (2), have been prepared from a rigid tetradentate bpybox (L = 6,6'-bis(2,5-dihydrooxazol-4-yl)-2,2'-bipyridine) ligand. Single crystal X-ray diffraction analyses together with the help of calculations show that both compounds are octa-coordinate. Direct current magnetic studies reveal their significant magnetic anisotropy. Impressively, field-induced relaxation of magnetism is observed in the two complexes and the apparent anisotropy barriers are 14.1 K for 1 and 21.6 K for 2, respectively. Theoretical calculations reveal that two Fe(II) centers in 1 have small negative D values of -4.897 and -4.825 cm-1 and relatively small E values of 0.646 and 0.830 cm-1, indicating a uniaxial magnetic anisotropy. In contrast, the D and E values in the Co(II) center of 2 are 46.42 cm-1 and 11.51 cm-1, featuring a rhombic anisotropy. This work demonstrates that field-induced slow magnetic relaxation in 3d transition metal complexes with high coordination numbers can be manipulated through rigid ligand design.
Collapse
Affiliation(s)
- Rui-Xia Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Hui-Ying Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Hai-Chao Liang
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009, China.
| | - Cheng Yi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Nian-Tao Yao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Jin Xiong
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Yuan-Yuan Zhu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China. .,School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009, China.
| |
Collapse
|
13
|
Liu M, Yang Y, Jing R, Zheng S, Yuan A, Wang Z, Luo SC, Liu X, Cui HH, Ouyang ZW, Chen L. Slow magnetic relaxation in dinuclear Co(III)-Co(II) complexes containing a five-coordinated Co(II) centre with easy-axis anisotropy. Dalton Trans 2022; 51:8382-8389. [PMID: 35587605 DOI: 10.1039/d2dt00857b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two air-stable Co(III)-Co(II) mixed-valence complexes of molecular formulas [CoIICoIII(L)(DMAP)3(CH3COO)]·H2O·CH3OH (1) and [CoIICoIII(L)(4-Pyrrol)3 (CH3COO)]·0.5CH2Cl2 (2) (H4L = 1,3-bis-(5-methyl pyrazole-3-carboxamide) propane; DMAP = 4-dimethylaminopyridine; and 4-Pyrrol = 4-pyrrolidinopyridine) were synthesized and characterized by single-crystal X-ray crystallography, high-field electron paramagnetic resonance (HFEPR) spectroscopy, and magnetic measurements. Both complexes possess one five-coordinated paramagnetic Co(II) ion and one six-coordinated Co(III) ion with octahedral geometry. Direct-current magnetic susceptibility and magnetization measurements show the easy-axis magnetic anisotropy that is also confirmed by low-temperature HFEPR measurements and theoretical calculations. Frequency- and temperature-dependent alternating-current magnetic susceptibility measurements reveal their field-assisted slow magnetic relaxation, which is a characteristic behavior of single-molecule magnets (SMMs), caused by the individual Co(II) ion. The effective energy barrier of complex 1 (49.2 cm-1) is significantly higher than those of the other dinuclear Co(III)-Co(II) SMMs. This work hence presents the first instance of the dinuclear Co(III)-Co(II) single-molecule magnets with a five-coordinated environment around the Co(II) ion.
Collapse
Affiliation(s)
- Mengyao Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China.
| | - Yimou Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China.
| | - Rong Jing
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China.
| | - Shaojun Zheng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China.
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China.
| | - Zhenxing Wang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | - Shu-Chang Luo
- School of Chemical Engineering, Guizhou University of Engineering Science, Bijie 551700, P. R. China.
| | - Xiangyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China.
| | - Hui-Hui Cui
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Zhong-Wen Ouyang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | - Lei Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China.
| |
Collapse
|
14
|
Ahmed N, Uddin Ansari K. Experimental and theoretical insights into Co-Ln magnetic exchange and the rare slow-magnetic relaxation behavior of [CoII2Pr] 2+ in a series of linear [CoII2Ln] 2+ complexes. Dalton Trans 2022; 51:4122-4134. [PMID: 35188157 DOI: 10.1039/d1dt03573h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We herein report a series of near-linear trinuclear complexes [Co2Ln(HL)4(NO3)](NO3)2 (where HL = (2-methoxy-6-[(E)-2'-hydroxymethyl-phenyliminomethyl]-phenolate) with Ln(III) = La (1), Ce (2), Pr (3)). For the comparative study, we have also included the recently reported analogous complexes of Gd(III), Tb(III), and Dy(III) (complexes 4-6) with the same H2L ligand. The experimental nature of the dc magnetic susceptibilities profile and an empirical approach revealed that the magnetic exchange interaction between Co(II) and Ln(III) having <4f7 (complexes 2 and 3) is antiferromagnetic while the dominant interaction between Co(II) and Ln(III) having ≥4f7 (complexes 4-6) is ferromagnetic. Dynamic magnetic relaxation studies on complexes 1-3 revealed the field induced single-molecule magnetic (SMM) behavior of 1 and 3 with effective energy barriers of 10.65 K and 15.03 K respectively, for magnetic relaxation. To the best of our knowledge, 3d-Pr(III) based zero or field induced SMMs have not been reported to date. CASSCF/SO-RASSI/SINGLE_ANISO based ab initio calculations on the X-ray structures of complexes 1-6, followed by POLY_ANISO simulations, estimated the magnetic exchange coupling constants JCo-Ln and JCo-Co and also rationalized our experimental findings for the dynamic magnetic properties.
Collapse
Affiliation(s)
- Naushad Ahmed
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, Maharashtra, India.
| | - Kamal Uddin Ansari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, Maharashtra, India.
| |
Collapse
|
15
|
Landart Gereka A, Quesada-Moreno MM, Díaz-Ortega IF, Nojiri H, Ozerov M, Krzystek J, Palacios MA, Colacio E. Large easy-axis magnetic anisotropy in a series of trigonal prismatic mononuclear cobalt (II) complexes with zero-field hidden single-molecule magnet behaviour: The important role of the distortion of the coordination sphere and intermolecular interactions on the slow relaxation. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00275b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The complexes [Co(L)]X·S (X = CoCl42- , S = CH3CN (1); X = ZnCl42- , S = CH3OH (2)), [Co(L)]X2·S (X = ClO4-, S = 2CH3OH (3) and X =...
Collapse
|
16
|
A high-frequency EPR study of magnetic anisotropy and intermolecular interactions of Co(II) ions. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Kharwar AK, Mondal A, Sarkar A, Rajaraman G, Konar S. Modulation of Magnetic Anisotropy and Exchange Interaction in Phenoxide-Bridged Dinuclear Co(II) Complexes. Inorg Chem 2021; 60:11948-11956. [PMID: 34314144 DOI: 10.1021/acs.inorgchem.1c00956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a new class of four dimeric Co(II) complexes [Co2(bbpen)(X)2] (H2bbpen = N,N'-bis(2-hydroxybenzyl)-N,N'-bis(2-methylpyridyl)ethylenediamine) [X- = SCN (1), Cl (2), Br (3), and I (4)] with different coordination geometry of two Co(II) centers (trigonal-prismatic and pseudo-tetrahedral) and their magnetic study. Interestingly, the two Co(II) centers show two different types of magnetic anisotropy. State of the art ab initio CASSCF analysis reveals that the six-coordinate or the trigonal-prismatic Co(II) center possesses a consistently large negative axial zero-field splitting (negative D) parameter (∼-60 cm-1), while the four-coordinate or the pseudo-tetrahedral Co(II) center exhibits a range of D values from +13 to -23 cm-1. Ab initio calculations employing the lines model were used to estimate the magnetic exchange as both the Co(II) centers possess significant magnetic anisotropy. All the complexes display rare ferromagnetic interaction, and the strength of this interaction decreases as the ligand field on the pseudo-tetrahedral Co(II) center decreases from SCN- > Cl- > Br- > I-.
Collapse
Affiliation(s)
- Ajit Kumar Kharwar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Bypass Road, Bhauri, Bhopal 462066, India
| | - Arpan Mondal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Bypass Road, Bhauri, Bhopal 462066, India
| | - Arup Sarkar
- Department of Chemistry, Indian Institute of Technology, Bombay, Powai, Mumbai 400076, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology, Bombay, Powai, Mumbai 400076, India
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Bypass Road, Bhauri, Bhopal 462066, India
| |
Collapse
|
18
|
Tiaouinine S, Flores Gonzalez J, Lefeuvre B, Guizouarn T, Cordier M, Dorcet V, Kaboub L, Cador O, Pointillart F. Spin Crossover and Field‐Induced Single‐Molecule Magnet Behaviour in Co(II) Complexes Based on Terpyridine with Tetrathiafulvalene Analogues. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Siham Tiaouinine
- Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226 35000 Rennes France
- Laboratory of Organic Materials and Heterochemistry University of Tebessa Rue de Constantine 12002 Tébessa Algeria
| | - Jessica Flores Gonzalez
- Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226 35000 Rennes France
| | - Bertrand Lefeuvre
- Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226 35000 Rennes France
| | - Thierry Guizouarn
- Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226 35000 Rennes France
| | - Marie Cordier
- Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226 35000 Rennes France
| | - Vincent Dorcet
- Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226 35000 Rennes France
| | - Lakehmici Kaboub
- Laboratory of Organic Materials and Heterochemistry University of Tebessa Rue de Constantine 12002 Tébessa Algeria
- Laboratory of Chemistry Molecular Engineering and Nanostructures University of Ferhat Abbas-Sétif 1 19000 Sétif Algeria
| | - Olivier Cador
- Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226 35000 Rennes France
| | - Fabrice Pointillart
- Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226 35000 Rennes France
| |
Collapse
|
19
|
Legendre CM, Damgaard‐Møller E, Overgaard J, Stalke D. The Quest for Optimal 3 d Orbital Splitting in Tetrahedral Cobalt Single‐Molecule Magnets Featuring Colossal Anisotropy and Hysteresis. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Christina M. Legendre
- Institut für Anorganische Chemie Georg-August-Universität Göttingen Tammannstraβe 4 37077 Göttingen Germany
| | - Emil Damgaard‐Møller
- Department of Chemistry Aarhus University Langelandsgade 140 Aarhus C 8000 Denmark
| | - Jacob Overgaard
- Department of Chemistry Aarhus University Langelandsgade 140 Aarhus C 8000 Denmark
| | - Dietmar Stalke
- Institut für Anorganische Chemie Georg-August-Universität Göttingen Tammannstraβe 4 37077 Göttingen Germany
| |
Collapse
|
20
|
Świtlicka A, Machura B, Cano J, Lloret F, Julve M. A Study of the Lack of Slow Magnetic Relaxation in Mononuclear Trigonal Bipyramidal Cobalt(II) Complexes. ChemistrySelect 2021. [DOI: 10.1002/slct.202100061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Anna Świtlicka
- Department Of Crystallography, Institute of Chemistry University of Silesia 9th Szkolna St., 40–006 Katowice Poland
| | - Barbara Machura
- Department Of Crystallography, Institute of Chemistry University of Silesia 9th Szkolna St., 40–006 Katowice Poland
| | - Joan Cano
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol) Facultat de Quimica de la Universitat de València C/ Catedrático Jose Beltrán 2 46980 Paterna, València Spain
| | - Francesc Lloret
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol) Facultat de Quimica de la Universitat de València C/ Catedrático Jose Beltrán 2 46980 Paterna, València Spain
| | - Miguel Julve
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol) Facultat de Quimica de la Universitat de València C/ Catedrático Jose Beltrán 2 46980 Paterna, València Spain
| |
Collapse
|
21
|
Yang M, Ouyang ZJ, Zhong YJ, Cai JW, Li XH, Dong W. Field-induced slow magnetic relaxation from linear trinuclear Co III-Co II-Co III to grid [2 × 2] tetranuclear mixed-valence cobalt complexes. Dalton Trans 2020; 49:17017-17025. [PMID: 33191419 DOI: 10.1039/d0dt02863k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By employing the ligand azotetrazolyl-2,7-dihydroxynaphthalene (H3ATD), two linear trinuclear mixed-valence cobalt complexes [CoIICoIII2(HATD)4(H2O)4]·4DMA·3H2O (1, DMA = N,N-dimethylacetamide) and [CoIICoIII2(HATD)4(DMF)2(H2O)2]·2DMF·2H2O (2, DMF = N,N-dimethylformamide) were synthesized. Two [2 × 2] grid-like tetranuclear ion-pair complexes [CoII2CoIII2(HATD)4(bpp)2(H2O)2][CoIII(HATD)2]2·8DMF·6H2O (3, bpp = 2,6-di(pyrazol-1-yl)pyridine) and [CoII2CoIII2(HATD)4(bpp)2(H2O)2][CoIII(HATD)2]2·8DMSO·4MeOH (4, DMSO = dimethyl sulphoxide) were obtained by the reaction of complex 1/2 with tridentate-chelating bpp in DMF and DMSO, respectively. The single-crystal X-ray diffraction analysis indicated that complexes 1 and 2 have a similar core, in which the DMA in 1 acts as a guest molecule, and the DMF in 2 acts as a coordinated molecule and guest molecule. Complexes 3 and 4 are isostructural. All the Co(ii) ions in 1-4 are present in a distorted octahedral geometry. The ac susceptibility measurements show that all complexes display frequency-dependent peaks in the out-of-phase (χm'') component of the alternating-current (ac) magnetic susceptibility data, which is the characteristic behavior of single molecule magnets (SMMs).
Collapse
Affiliation(s)
- Meng Yang
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | | | | | | | | | | |
Collapse
|
22
|
Banerjee A, Banerjee S, Gómez García CJ, Benmansour S, Chattopadhyay S. Field-induced single molecule magnet behavior of a dinuclear cobalt(II) complex: a combined experimental and theoretical study. Dalton Trans 2020; 49:16778-16790. [PMID: 33174540 DOI: 10.1039/d0dt02158j] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two dinuclear cobalt(ii) complexes, [(dmso)CoIIL1(μ-(m-NO2)C6H4COO)CoII(NCS)] (1) and [(dmso)CoIIL2(μ-(m-NO2)C6H4COO)CoII(NCS)] (2) [dmso = dimethylsulfoxide, H2L1 = (2,2-dimethyl-1,3-propanediyl)bis(iminomethylene)bis(6-methoxyphenol) and H2L2 = (2,2-dimethyl-1,3-propanediyl)bis(iminomethylene)bis(6-ethoxyphenol)] have been synthesized and structurally characterized by single-crystal X-ray diffraction, magnetic-susceptibility measurements and various spectroscopic techniques. Each complex contains a cobalt(ii) center with a slightly distorted octahedral geometry and a second cobalt(ii) center with a distorted trigonal prismatic one. To obtain insight into the physical nature of weak non-covalent interactions, we have extensively used the Bader's quantum theory of atoms-in-molecules (QTAIM). In addition, the non-covalent interaction reduced density gradient (NCI-RDG) methods established the presence of such non-covalent intermolecular interactions. Variable temperature magnetic susceptibility measurements show that both cobalt centers in each complex are in the high spin state (S = 3/2) and both complexes show weak ferromagnetic couplings through the double phenoxido bridges (J = 3.36(3) cm-1 in 1 and 4.56(2) cm-1 in 2). The magnetic properties of both complexes can be fitted to a Co(ii) dimer model including similar orbital reduction factors (α = -0.94(1) for 1 and -0.85(1) for 2) although different zero field splitting parameters D(1) = 11.0(4) cm-1 and D(2) = 19.5(4) cm-1 in 1 and D(1) = 8.2(4) cm-1 and D(2) = -1.3(4) cm-1 in 2. AC magnetic measurements reveal that the CoII2 unit in complex 2 exhibits field-induced slow relaxation of the magnetization at low temperatures and high frequencies.
Collapse
Affiliation(s)
- Abhisek Banerjee
- Department of Chemistry, Inorganic Section, Jadavpur University, Kolkata - 700032, India.
| | | | | | | | | |
Collapse
|
23
|
Sarkar A, Dey S, Rajaraman G. Role of Coordination Number and Geometry in Controlling the Magnetic Anisotropy in Fe II , Co II , and Ni II Single-Ion Magnets. Chemistry 2020; 26:14036-14058. [PMID: 32729641 DOI: 10.1002/chem.202003211] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/22/2022]
Abstract
Since the last decade, the focus in the area of single-molecule magnets (SMMs) has been shifting constructively towards the development of single-ion magnets (SIMs) based on transition metals and lanthanides. Although ground-breaking results have been witnessed for DyIII -based SIMs, significant results have also been obtained for some mononuclear transition metal SIMs. Among others, studies based on CoII ion are very prominent as they often exhibit high magnetic anisotropy or zero-field splitting parameters and offer a large barrier height for magnetisation reversal. Although CoII possibly holds the record for having the largest number of zero-field SIMs known for any transition metal ion, controlling the magnetic anisotropy in these systems are is still a challenge. In addition to the modern spectroscopic techniques, theoretical studies, especially ab initio CASSCF/NEVPT2 approaches, have been used to uncover the electronic structure of various CoII SIMs. In this article, with some selected examples, the aim is to showcase how varying the coordination number from two to eight, and the geometry around the CoII centre alters the magnetic anisotropy. This offers some design principles for the experimentalists to target new generation SIMs based on the CoII ion. Additionally, some important FeII /FeIII and NiII complexes exhibiting large magnetic anisotropy and SIM properties are also discussed.
Collapse
Affiliation(s)
- Arup Sarkar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Sourav Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| |
Collapse
|
24
|
Yao B, Lu F, Gan DX, Liu S, Zhang YQ, Deng YF, Zhang YZ. Incorporating Trigonal-Prismatic Cobalt(II) Blocks into an Exchange-Coupled [Co 2Cu] System. Inorg Chem 2020; 59:10389-10394. [PMID: 32700532 DOI: 10.1021/acs.inorgchem.0c01151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Taking advantage of a rigid tetradentate ligand of bis(pyrazoly)(3-pyrazolypyridinyl)methane (PyPz3) and the [CuII(opba)]2- unit [opba4- = o-phenylenebis(oxamato)], the trinuclear complex [{CoII(PyPz3)}2CuII(opba)][ClO4]2·5MeCN·MeOH (1) was constructed, in which the CoII centers adopt a trigonal-prismatic geometry, while considerable intramolecular magnetic coupling was successfully introduced through the oxamido bridges, representing another very first example of single-molecule magnets marrying both selected coordination geometry and magnetic exchanges.
Collapse
Affiliation(s)
- Binling Yao
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Fang Lu
- Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China
| | - De-Xuan Gan
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Shihao Liu
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China
| | - Yi-Fei Deng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
25
|
Paul A, Viciano-Chumillas M, Puschmann H, Cano J, Manna SC. Field-induced slow magnetic relaxation in mixed valence di- and tri-nuclear Co II-Co III complexes. Dalton Trans 2020; 49:9516-9528. [PMID: 32608402 DOI: 10.1039/d0dt00588f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel mixed valence CoII-CoIII complexes, namely [CoIICoIII(L1)(ab)(mb)2(H2O)]·dmf (1) and [CoCoII(L2)4(H2O)4]·2H2O (2) [H2L1 = (E)-2-((1-hydroxybutan-2-ylimino)methyl)-6-methoxyphenol, ab = 2-amino-butan-1-ol anion, mb = p-methyl benzoate, H2L2 = 3-((2-hydroxy-3-methoxy-benzylidene)-amino)-propionic acid, and dmf = N,N-dimethyl-formamide], were synthesized and characterized by single crystal X-ray diffraction and magnetic studies at low temperature. The structure determination reveals that both complexes belong to the monoclinic system with P21/c (1) and I2/a (2) space groups. Complex 1 is a dinuclear CoIIICoII compound with distorted octahedral cobalt centers showing different coordination environments. In 2, a bent trinuclear CoCoII complex, the coordination environments around the two terminal CoIII sites are alike, whereas they are different in the central CoII ion. Alternating current/direct current (ac/dc) magnetic studies revealed that both complexes show field-induced slow magnetic relaxation. The dc magnetic susceptibility and magnetization data were analyzed with the following Hamiltonianwhere D and E are the axial and rhombic zero-field splitting (zfs) parameters, respectively, and a good agreement between experimental and simulated results was found using the parameters g⊥ = 2.585, g∥ = 2.437, D = +98.1 cm-1, E/D = 0.008 and F = 8.2× 10-5 for 1 and g⊥ = 2.580, g∥ = 2.580, D = +55.4 cm-1, and E/D = 0.000 for 2.
Collapse
Affiliation(s)
- Aparup Paul
- Department of Chemistry, Vidyasagar University, Midnapore 721102, West Bengal, India.
| | | | | | | | | |
Collapse
|
26
|
Yao B, Singh MK, Deng YF, Wang YN, Dunbar KR, Zhang YZ. Trigonal Prismatic Cobalt(II) Single-Ion Magnets: Manipulating the Magnetic Relaxation Through Symmetry Control. Inorg Chem 2020; 59:8505-8513. [DOI: 10.1021/acs.inorgchem.0c00950] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Binling Yao
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Mukesh Kumar Singh
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Yi-Fei Deng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yi-Nuo Wang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Kim R. Dunbar
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
27
|
Zhu XQ, Cao WH, Su SD, Wu XT, Sheng TL. Effects of ligand substituents on the single-molecule magnetic behavior of quinonoid-bridged dicobalt compounds. Dalton Trans 2020; 49:6738-6743. [PMID: 32373806 DOI: 10.1039/d0dt00033g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of quinonoid-bridged dicobalt compounds [(N4Co)2LX](ClO4)2 (1-4) (X = H, Cl, Br and OMe; N4 = 1,4,7,10-tetrabenzyl-1,4,7,10-tetraazacyclododecane) are synthesized and well characterized. Single crystal X-ray diffraction analyses reveal that the coordination geometry of one side Co in compounds 1-4 changes from a triangular prism to distorted octahedron with a change in the bridged-ligand substituent. Magnetic measurements show that compounds 1 and 3 exhibit single-molecule magnetic behavior. Magneto-structural analyses indicate that the difference in the relaxation barrier U between the four compounds results from the different orientations of the anisotropy axes of the two Co centers in the molecule.
Collapse
Affiliation(s)
- Xiao-Quan Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | | | | | | | | |
Collapse
|
28
|
Modak R, Mondal B, Sikdar Y, Banerjee J, Colacio E, Oyarzabal I, Cano J, Goswami S. Slow magnetic relaxation and water oxidation activity of dinuclear Co IICo III and unique triangular Co IICo IICo III mixed-valence complexes. Dalton Trans 2020; 49:6328-6340. [PMID: 32342075 DOI: 10.1039/d0dt00036a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Construction of efficient multifunctional materials is one of the greatest challenges of our time. We herein report the magnetic and catalytic characterization of dinuclear [CoIIICoII(HL1)2(EtOH)(H2O)]Cl·2H2O (1) and trinuclear [CoIIICoII2(HL2)2(L2)Cl2]·3H2O (2) mixed valence complexes. Relevant structural features of the complexes have been mentioned to correlate with their magnetic and catalytic properties. Unique structural features, especially in terms of significant distortions around the CoII centre(s), prompted us to test both spin-orbit coupling (SOC) and zero field splitting (ZFS) methodologies for the systems. The positive sign of D values has been established from X-band EPR spectra recorded in the 5-40 K temperature range and reaffirmed by CAS/NEVPT2 calculations. ZFS tensors are also extracted for the compounds along with CoIIGaIII and CoIIZnIICoIII model species. Interestingly, 1 shows slow relaxation of magnetization below 6.5 K in the presence of a 1000 Oe external dc field with two relaxation processes (Ueff = 37.0 K with τ0 = 1.57 × 10-8 s for the SR process and Ueff = 7 K with τ0 = 1.66 × 10-6 s for the FR process). As mixed valence cobalt complexes with various nuclearities are central to the quest for water oxidation catalysts, we were prompted to explore their features and to our surprise, water oxidation ability has been realized for both 1 and 2 with significant nuclearity control.
Collapse
Affiliation(s)
- Ritwik Modak
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India.
| | - Biswajit Mondal
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Yeasin Sikdar
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India.
| | - Jayisha Banerjee
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India.
| | - Enrique Colacio
- Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain.
| | - Itziar Oyarzabal
- Departamento de Química Aplicada, Facultad de Química, UPV/EHU, Paseo Manuel Lardizabal, n° 3, 20018, Donostia-San Sebastián, Spain
| | - Joan Cano
- Fundació General de la Universitat de València (FGUV), Universitat de València, 46980 Paterna, València, Spain.
| | - Sanchita Goswami
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India.
| |
Collapse
|
29
|
Peng G, Chen Y, Li B, Zhang YQ, Ren XM. Bulky Schiff-base ligand supported Co(ii) single-ion magnets with zero-field slow magnetic relaxation. Dalton Trans 2020; 49:5798-5802. [PMID: 32338258 DOI: 10.1039/d0dt00790k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two mononuclear Co(ii) complexes with tetrahedral coordination geometry have been constructed from different bulky Schiff-base ligands. Both complexes exhibit slow magnetic relaxation without a static field and their relaxation behaviors can be tuned by ligand substitution. Clear magnetic hysteresis loops were observed for both complexes at 2 K.
Collapse
Affiliation(s)
- Guo Peng
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | | | | | | | | |
Collapse
|
30
|
Thiel AM, Damgaard-Møller E, Overgaard J. High-Pressure Crystallography as a Guide in the Design of Single-Molecule Magnets. Inorg Chem 2020; 59:1682-1691. [PMID: 31944683 DOI: 10.1021/acs.inorgchem.9b02794] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Single-molecule magnet materials owe their function to the presence of significant magnetic anisotropy, which arises from the interplay between the ligand field and spin-orbit coupling, and this is responsible for setting up an energy barrier for magnetic relaxation. Therefore, chemical control of magnetic anisotropy is a central challenge in the quest to synthesize new molecular nanomagnets with improved properties. There have been several reports of design principles targeting such control; however, these principles rely on idealized geometries, which are rarely obtained in crystal structures. Here, we present the results of high-pressure single-crystal diffraction on the single-ion magnet, Co(SPh)4(PPh4)2, in the pressure range of 0-9.2 GPa. Upon pressurization a sequence of small geometrical distortions of the central CoS4 moeity are observed, enabling a thorough analysis of the magneto-structural correlations. The magneto-structural correlations are investigated by theoretical analyses of the pressure-dependent experimental molecular structures. We observed a significant increase in the magnitude of the zero-field splitting parameter D, from -54.6 cm-1 to -89.7 cm-1, which was clearly explained from the reduction of the energy difference between the essential dxy and dx2-y2 orbitals, and structurally assigned to the change of an angle of compression of the CoS4 moeity.
Collapse
Affiliation(s)
- Andreas M Thiel
- Department of Chemistry , Aarhus University , Langelandsgade 140 , DK-8000 Aarhus C , Denmark
| | - Emil Damgaard-Møller
- Department of Chemistry , Aarhus University , Langelandsgade 140 , DK-8000 Aarhus C , Denmark
| | - Jacob Overgaard
- Department of Chemistry , Aarhus University , Langelandsgade 140 , DK-8000 Aarhus C , Denmark
| |
Collapse
|
31
|
Wu Y, Xi J, Yang J, Song W, Luo S, Wang Z, Liu X. Coligand effects on the architectures and magnetic properties of octahedral cobalt( ii) complexes with easy-axis magnetic anisotropy. CrystEngComm 2020. [DOI: 10.1039/c9ce01871a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Coligand effects lead to two mononuclear octahedral Co(ii) complexes exhibiting easy-axis magnetic anisotropies and distinct magnetic properties.
Collapse
Affiliation(s)
- Yuewei Wu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| | - Jing Xi
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| | - Jinhui Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| | - Weiming Song
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| | - Shuchang Luo
- School of Chemical Engineering
- Guizhou University of Engineering Science
- Bijie
- China
| | - Zheng Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| | - Xiangyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| |
Collapse
|
32
|
Palacios MA, Díaz-Ortega IF, Nojiri H, Suturina EA, Ozerov M, Krzystek J, Colacio E. Tuning magnetic anisotropy by the π-bonding features of the axial ligands and the electronic effects of gold( i) atoms in 2D {Co(L) 2[Au(CN) 2] 2} n metal–organic frameworks with field-induced single-ion magnet behaviour. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00996b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AuI atoms play an important role in determining the anisotropy of CoII nodes in 2D AuI–CoII field-induced SIMs.
Collapse
Affiliation(s)
- María A. Palacios
- Departamento de Química Inorgánica
- Facultad de Ciencias
- Universidad de Granada
- 18071 Granada
- Spain
| | - Ismael F. Díaz-Ortega
- Departamento de Química Inorgánica
- Facultad de Ciencias
- Universidad de Granada
- 18071 Granada
- Spain
| | - Hiroyuki Nojiri
- Institute for Materials Research
- Tohoku University
- Sendai
- Japan
| | - Elizaveta A. Suturina
- Department of Chemistry
- University of Bath
- Wessex House 1.28
- University of Bath
- Bath BA2 7AY
| | - Mykhaylo Ozerov
- National High Magnetic Field Laboratory
- Florida State University
- Tallahassee
- USA
| | - J. Krzystek
- National High Magnetic Field Laboratory
- Florida State University
- Tallahassee
- USA
| | - Enrique Colacio
- Departamento de Química Inorgánica
- Facultad de Ciencias
- Universidad de Granada
- 18071 Granada
- Spain
| |
Collapse
|
33
|
Saber MR, Singh MK, Dunbar KR. Geometrical control of the magnetic anisotropy in six coordinate cobalt complexes. Chem Commun (Camb) 2020; 56:8492-8495. [DOI: 10.1039/d0cc03238g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Combined experimental and ab initio calculations attribute the suppression of quantum tunneling and zero-field SMM behavior in the trigonal prismatic [CoTppy]PF6 (2), evidenced by hysteresis up to 3 K, to the enforced rigidity and axial geometry.
Collapse
Affiliation(s)
- Mohamed R. Saber
- Department of Chemistry
- Texas A&M University
- College Station
- USA
- Chemistry Department
| | - Mukesh K. Singh
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | - Kim R. Dunbar
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| |
Collapse
|
34
|
Massoud SS, Perez ZE, Courson JR, Fischer RC, Mautner FA, Vančo J, Čajan M, Trávníček Z. Slow magnetic relaxation in penta-coordinate cobalt(ii) field-induced single-ion magnets (SIMs) with easy-axis magnetic anisotropy. Dalton Trans 2020; 49:11715-11726. [DOI: 10.1039/d0dt02338h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two penta-coordinate [Co(Ln)(NCS)]ClO4 with substituted pyridyl based bispyrazolyl ligands have been structurally characterized. The complexes show an easy-axis magnetic anisotropy, large rhombicity and slow relaxation of magnetization.
Collapse
Affiliation(s)
- Salah S. Massoud
- Department of Chemistry
- University of Louisiana at Lafayette
- Lafayette
- USA
- Department of Chemistry
| | - Zoe E. Perez
- Department of Chemistry
- University of Louisiana at Lafayette
- Lafayette
- USA
| | | | - Roland C. Fischer
- Institut für Anorganische Chemie
- Technische Universität Graz
- A-8010 Graz
- Austria
| | - Franz A. Mautner
- Institut für Physikalische and Theoretische Chemie
- Technische Universität Graz
- A-8010 Graz
- Austria
| | - Ján Vančo
- Regional Centre of Advanced Technologies and Materials
- Division of Biologically Active Complexes and Molecular Magnets
- Palacký University in Olomouc
- CZ-783 71 Olomouc
- Czech Republic
| | - Michal Čajan
- Regional Centre of Advanced Technologies and Materials
- Division of Biologically Active Complexes and Molecular Magnets
- Palacký University in Olomouc
- CZ-783 71 Olomouc
- Czech Republic
| | - Zdeněk Trávníček
- Regional Centre of Advanced Technologies and Materials
- Division of Biologically Active Complexes and Molecular Magnets
- Palacký University in Olomouc
- CZ-783 71 Olomouc
- Czech Republic
| |
Collapse
|
35
|
Cui Y, Ge Y, Li Y, Tao J, Yao J, Dong Y. Single-ion magnet behavior of two pentacoordinate CoII complexes with a pincer ligand 2,6-bis(imidazo[1,5-a] pyridin-3-yl)pyridine. Struct Chem 2019. [DOI: 10.1007/s11224-019-01429-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Li M, Zhao Q, Gao L, Zhang J, Zhai L, Niu X, Hu T. Slow magnetic relaxation in two mononuclear trigonal antiprismatic Co(II) complexes. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.03.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Tripathi S, Vaidya S, Ansari KU, Ahmed N, Rivière E, Spillecke L, Koo C, Klingeler R, Mallah T, Rajaraman G, Shanmugam M. Influence of a Counteranion on the Zero-Field Splitting of Tetrahedral Cobalt(II) Thiourea Complexes. Inorg Chem 2019; 58:9085-9100. [DOI: 10.1021/acs.inorgchem.9b00632] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shalini Tripathi
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Shefali Vaidya
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Kamal Uddin Ansari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Naushad Ahmed
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Eric Rivière
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, CNRS, Université Paris Sud, Université Paris Saclay, 91405 Orsay Cedex, France
| | | | | | | | - Talal Mallah
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, CNRS, Université Paris Sud, Université Paris Saclay, 91405 Orsay Cedex, France
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Maheswaran Shanmugam
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
38
|
Klug CM, Ozumerzifon TJ, Bhowmick I, Livesay BN, Rappé AK, Shores MP. Anionic guest-dependent slow magnetic relaxation in Co(ii) tripodal iminopyridine complexes. Dalton Trans 2019; 48:9117-9126. [PMID: 30843557 DOI: 10.1039/c9dt00739c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report the syntheses and magnetic property characterizations of four mononuclear cobalt(ii) complex salts featuring a tripodal iminopyridine ligand with external anion receptor groups, [CoL5-ONHtBu]X2 (X = Cl (1), Br (2), I (3) and ClO4 (4)). While all four salts exhibit anion binding through pendant amide moieties, only in the case of 1 is field-induced slow relaxation of magnetisation observed, whereas in the other salts this phenomenon is absent at the limits of our instrumentation. The effect of chloride inducing a seventh Co-N interaction and concomitant structural distortion is hypothesized as the origin of the observed dynamic magnetic properties observed in 1. Ab initio computational studies carried out on a 7-coordinate Co(ii) model species survey the complex interplay of coordination number and trigonal twisting on the sign and magnitude of the axial anisotropy parameter (D), and identify structural features whose distortions can trigger large switches in the sign and magnitude of magnetic anisotropy.
Collapse
Affiliation(s)
- Christina M Klug
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Ishizaki T, Fukuda T, Akaki M, Fuyuhiro A, Hagiwara M, Ishikawa N. Synthesis of a Neutral Mononuclear Four-Coordinate Co(II) Complex Having Two Halved Phthalocyanine Ligands That Shows Slow Magnetic Relaxations under Zero Static Magnetic Field. Inorg Chem 2019; 58:5211-5220. [DOI: 10.1021/acs.inorgchem.9b00286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Toshiharu Ishizaki
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Takamitsu Fukuda
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Mitsuru Akaki
- Center for Advanced High Magnetic Field Science (AHMF), Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Akira Fuyuhiro
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Masayuki Hagiwara
- Center for Advanced High Magnetic Field Science (AHMF), Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Naoto Ishikawa
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
40
|
Rajnák C, Titiš J, Moncol J, Mičová R, Boča R. Field-Induced Slow Magnetic Relaxation in a Mononuclear Manganese(II) Complex. Inorg Chem 2019; 58:991-994. [DOI: 10.1021/acs.inorgchem.8b02675] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- C. Rajnák
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 91701 Trnava, Slovakia
| | - J. Titiš
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 91701 Trnava, Slovakia
| | - J. Moncol
- Institute of Inorganic Chemistry, FCHPT, Slovak University of Technology, 81237 Bratislava, Slovakia
| | - R. Mičová
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 91701 Trnava, Slovakia
| | - R. Boča
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 91701 Trnava, Slovakia
| |
Collapse
|
41
|
Wu Y, Tian D, Ferrando-Soria J, Cano J, Yin L, Ouyang Z, Wang Z, Luo S, Liu X, Pardo E. Modulation of the magnetic anisotropy of octahedral cobalt(ii) single-ion magnets by fine-tuning the axial coordination microenvironment. Inorg Chem Front 2019. [DOI: 10.1039/c8qi01373j] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The alteration of the axial N-donor ligands leads to two octahedral Co(ii) SIMs with varying easy-plane magnetic anisotropies and dynamic magnetic behaviors.
Collapse
Affiliation(s)
- Yuewei Wu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Danian Tian
- College of Public Health and Management
- Ningxia Medical University
- Yinchuan 750021
- China
| | - Jesús Ferrando-Soria
- Departamento de Química Inorgánica
- Instituto de Ciencia Molecular (ICMOL)
- Universidad de Valencia
- Paterna 46980
- Spain
| | - Joan Cano
- Departamento de Química Inorgánica
- Instituto de Ciencia Molecular (ICMOL)
- Universidad de Valencia
- Paterna 46980
- Spain
| | - Lei Yin
- Wuhan National High Magnetic Field Center & School of Physics
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Zhongwen Ouyang
- Wuhan National High Magnetic Field Center & School of Physics
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Zhenxing Wang
- Wuhan National High Magnetic Field Center & School of Physics
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Shuchang Luo
- College of Chemical Engineering
- Guizhou University of Engineering Science
- Bijie 551700
- China
| | - Xiangyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Emilio Pardo
- Departamento de Química Inorgánica
- Instituto de Ciencia Molecular (ICMOL)
- Universidad de Valencia
- Paterna 46980
- Spain
| |
Collapse
|
42
|
Mitsuhashi R, Hosoya S, Suzuki T, Sunatsuki Y, Sakiyama H, Mikuriya M. Hydrogen-bonding interactions and magnetic relaxation dynamics in tetracoordinated cobalt(ii) single-ion magnets. Dalton Trans 2019; 48:395-399. [DOI: 10.1039/c8dt04537b] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zero field slow magnetic relaxation was observed in two cobalt(ii) complexes with 1-D chain hydrogen-bonded structures.
Collapse
Affiliation(s)
- Ryoji Mitsuhashi
- Department of Applied Chemistry for Environment
- School of Science and Technology
- Kwansei Gakuin University
- Sanda
- Japan
| | - Satoshi Hosoya
- Department of Applied Chemistry for Environment
- School of Science and Technology
- Kwansei Gakuin University
- Sanda
- Japan
| | - Takayoshi Suzuki
- Department of Chemistry
- Faculty of Science
- Okayama University
- Okayama 700-8530
- Japan
| | - Yukinari Sunatsuki
- Department of Chemistry
- Faculty of Science
- Okayama University
- Okayama 700-8530
- Japan
| | - Hiroshi Sakiyama
- Department of Science
- Faculty of Science
- Yamagata University
- Yamagata 990-8560
- Japan
| | - Masahiro Mikuriya
- Department of Applied Chemistry for Environment
- School of Science and Technology
- Kwansei Gakuin University
- Sanda
- Japan
| |
Collapse
|
43
|
Meng YS, Ouyang Z, Yang MW, Zhang YQ, Deng L, Wang BW, Gao S. Multiple magnetic relaxation pathways in T-shaped N-heterocyclic carbene-supported Fe( i) single-ion magnets. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00073a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The magnetic properties of T-shaped N-heterocyclic carbene-supported Fe(i) complexes were studied. Both of them exhibited multi-pathway magnetic relaxation behaviors.
Collapse
Affiliation(s)
- Yin-Shan Meng
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- P. R. China
- Beijing National Laboratory for Molecular Sciences
| | - Zhengwu Ouyang
- State Key Laboratory of Organometallic Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- P. R. China
| | - Mu-Wen Yang
- Beijing National Laboratory for Molecular Sciences
- Beijing Key Laboratory for Magnetoelectric Materials and Devices
- Peking University
- Beijing 100871
- 100871 P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS
- School of Physical Science and Technology
- Nanjing Normal University
- Nanjing 210023
- P. R. China
| | - Liang Deng
- State Key Laboratory of Organometallic Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- P. R. China
| | - Bing-Wu Wang
- Beijing National Laboratory for Molecular Sciences
- Beijing Key Laboratory for Magnetoelectric Materials and Devices
- Peking University
- Beijing 100871
- 100871 P. R. China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences
- Beijing Key Laboratory for Magnetoelectric Materials and Devices
- Peking University
- Beijing 100871
- 100871 P. R. China
| |
Collapse
|
44
|
Yao B, Deng YF, Li T, Xiong J, Wang BW, Zheng Z, Zhang YZ. Construction and Magnetic Study of a Trigonal-Prismatic Cobalt(II) Single-Ion Magnet. Inorg Chem 2018; 57:14047-14051. [DOI: 10.1021/acs.inorgchem.8b02692] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Binling Yao
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yi-Fei Deng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Tianran Li
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Jin Xiong
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, State Key Laboratory of Rare Earth Materials Chemistry and Applications, Peking University, Beijing 100871, P. R. China
| | - Bing-Wu Wang
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, State Key Laboratory of Rare Earth Materials Chemistry and Applications, Peking University, Beijing 100871, P. R. China
| | - Zhiping Zheng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
45
|
Hu ZB, Jing ZY, Li MM, Yin L, Gao YD, Yu F, Hu TP, Wang Z, Song Y. Important Role of Intermolecular Interaction in Cobalt(II) Single-Ion Magnet from Single Slow Relaxation to Double Slow Relaxation. Inorg Chem 2018; 57:10761-10767. [PMID: 30109925 DOI: 10.1021/acs.inorgchem.8b01389] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two cobalt complexes with similar structures were synthesized using quinoline-2-carboxylic acid (HL) as the ligand. Both complexes are six-coordinated in antitriangular prism coordination geometries. There are one and four molecule units per cell for 1 and 2, respectively, with nearest Co-Co distances of 7.129 and 5.855 Å, respectively, which lead to their intermolecular interactions zj'. Both complexes are field-induced single-ion magnets. Complex 1 shows single slow relaxation under Hdc = 1.5 kOe attributed to the moment reversal, while complex 2 shows double slow relaxation resulting from intermolecular dipolar interaction and moment reversal, respectively.
Collapse
Affiliation(s)
- Zhao-Bo Hu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , Xianlin Road 163 , Nanjing 210023 , PR China
| | - Zhao-Yang Jing
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , Xianlin Road 163 , Nanjing 210023 , PR China
| | - Miao-Miao Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , Xianlin Road 163 , Nanjing 210023 , PR China.,Department of Chemistry, College of Science , North University of China , Xueyuan Road 3 , Taiyuan 030051 , PR China
| | - Lei Yin
- Wuhan National High Magnetic Field Center & School of Physics , Huazhong University of Science and Technology , Wuhan 430074 , PR China
| | - Yan-Dong Gao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , Xianlin Road 163 , Nanjing 210023 , PR China
| | - Fei Yu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , Xianlin Road 163 , Nanjing 210023 , PR China
| | - Tuo-Ping Hu
- Department of Chemistry, College of Science , North University of China , Xueyuan Road 3 , Taiyuan 030051 , PR China
| | - Zhenxing Wang
- Wuhan National High Magnetic Field Center & School of Physics , Huazhong University of Science and Technology , Wuhan 430074 , PR China
| | - You Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , Xianlin Road 163 , Nanjing 210023 , PR China
| |
Collapse
|
46
|
Mitsuhashi R, Pedersen KS, Ueda T, Suzuki T, Bendix J, Mikuriya M. Field-induced single-molecule magnet behavior in ideal trigonal antiprismatic cobalt(ii) complexes: precise geometrical control by a hydrogen-bonded rigid metalloligand. Chem Commun (Camb) 2018; 54:8869-8872. [PMID: 30042991 DOI: 10.1039/c8cc04756a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new cobalt(ii) complex bearing a pair of cobalt(iii) tris-chelate complexes as metalloligands was prepared. The CoII ion possesses an ideal trigonal antiprismatic geometry because of the intermolecular hydrogen-bonds between the metalloligands via counter anions. This complex exhibits slow magnetic relaxation under a dc field reminiscent of a single-molecule magnet behavior.
Collapse
Affiliation(s)
- Ryoji Mitsuhashi
- Department of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan.
| | | | | | | | | | | |
Collapse
|
47
|
Zhou J, Song J, Yuan A, Wang Z, Chen L, Ouyang ZW. Slow magnetic relaxation in two octahedral cobalt(II) complexes with positive axial anisotropy. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Rigamonti L, Bridonneau N, Poneti G, Tesi L, Sorace L, Pinkowicz D, Jover J, Ruiz E, Sessoli R, Cornia A. A Pseudo-Octahedral Cobalt(II) Complex with Bispyrazolylpyridine Ligands Acting as a Zero-Field Single-Molecule Magnet with Easy Axis Anisotropy. Chemistry 2018; 24:8857-8868. [PMID: 29655240 DOI: 10.1002/chem.201801026] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Indexed: 01/31/2023]
Abstract
The homoleptic mononuclear compound [Co(bpp-COOMe)2 ](ClO4 )2 (1) (bpp-COOMe=methyl 2,6-di(pyrazol-1-yl)pyridine-4-carboxylate) crystallizes in the monoclinic C2/c space group, and the cobalt(II) ion possesses a pseudo-octahedral environment given by the two mer-coordinated tridentate ligands. Direct-current magnetic data, single-crystal torque magnetometry, and EPR measurements disclosed the easy-axis nature of this cobalt(II) complex, which shows single-molecule magnet behavior when a static field is applied in alternating-current susceptibility measurements. Diamagnetic dilution in the zinc(II) analogue [Zn(bpp-COOMe)2 ](ClO4 )2 (2) afforded the derivative [Zn0.95 Co0.05 (bpp-COOMe)2 ](ClO4 )2 (3), which exhibits slow relaxation of magnetization even in zero field thanks to the reduction of dipolar interactions. Theoretical calculations confirmed the overall electronic structure and the magnetic scenario of the compound as drawn by experimental data, thus confirming the spin-phonon Raman relaxation mechanism, and a direct quantum tunneling in the ground state as the most plausible relaxation pathway in zero field.
Collapse
Affiliation(s)
- Luca Rigamonti
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, and INSTM RU of Modena and Reggio Emilia, via G. Campi 103, 41125, Modena, Italy
| | - Nathalie Bridonneau
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, and INSTM RU of Modena and Reggio Emilia, via G. Campi 103, 41125, Modena, Italy.,Current address: Laboratoire Interfaces Traitements Organisation, et Dynamique des Systèmes (ITODYS), UMR 7086 CNRS, Université Paris 7 Diderot, Paris Bât. Lavoisier, 15 rue Jean-Antoine de Baïf, 75205, Paris Cedex 13, France
| | - Giordano Poneti
- Laboratory of Molecular Magnetism (LAMM), Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, and INSTM RU of Firenze, via della Lastruccia 3-13, 50019, Sesto Fiorentino, FI, Italy.,Current address: Instituto de Química, Universidade Federal do Rio de Janeiro, 21941-909, Rio de Janeiro, Brazil
| | - Lorenzo Tesi
- Laboratory of Molecular Magnetism (LAMM), Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, and INSTM RU of Firenze, via della Lastruccia 3-13, 50019, Sesto Fiorentino, FI, Italy
| | - Lorenzo Sorace
- Laboratory of Molecular Magnetism (LAMM), Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, and INSTM RU of Firenze, via della Lastruccia 3-13, 50019, Sesto Fiorentino, FI, Italy
| | - Dawid Pinkowicz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Jesus Jover
- Departament de Química Inorgànica i Orgànica, Institut de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028, Barcelona, Spain
| | - Eliseo Ruiz
- Departament de Química Inorgànica i Orgànica, Institut de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028, Barcelona, Spain
| | - Roberta Sessoli
- Laboratory of Molecular Magnetism (LAMM), Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, and INSTM RU of Firenze, via della Lastruccia 3-13, 50019, Sesto Fiorentino, FI, Italy
| | - Andrea Cornia
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, and INSTM RU of Modena and Reggio Emilia, via G. Campi 103, 41125, Modena, Italy
| |
Collapse
|
49
|
Zhang J, Li J, Yang L, Yuan C, Zhang YQ, Song Y. Magnetic Anisotropy from Trigonal Prismatic to Trigonal Antiprismatic Co(II) Complexes: Experimental Observation and Theoretical Prediction. Inorg Chem 2018. [PMID: 29528627 DOI: 10.1021/acs.inorgchem.8b00055] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A family of trigonal antiprismatic Co(II) complexes was synthesized, which exhibited field-induced Raman process dominated single-molecule magnet behavior. Despite the coordination environment of Co(II) being of similar symmetry, the four complexes exhibit distinct dynamic magnetic properties owing to their packing arrangements and dipole-dipole interactions. On the basis of computational results we have demonstrated that the g z and giso values follow a cosine relation with respect to the rotated angle φ (twist angle φ defined as the rotation angle of one coordination square away from the eclipse conformation to the other).
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Jing Li
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Li Yang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Chen Yuan
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology , Nanjing Normal University , Nanjing 210023 , China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology , Nanjing Normal University , Nanjing 210023 , China
| | - You Song
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
50
|
Rajnák C, Varga F, Titiš J, Moncol J, Boča R. Octahedral-Tetrahedral Systems [Co( dppm O, O) 3] 2+[CoX 4] 2- Showing Slow Magnetic Relaxation with Two Relaxation Modes. Inorg Chem 2018; 57:4352-4358. [PMID: 29600851 DOI: 10.1021/acs.inorgchem.7b03193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Three compounds with octahedral-tetrahedral Co(II) moieties of [Co( dppm O, O)3][CoX4] type, where X = SCN (1), Cl (2), or I (4) have been synthesized and characterized by the X-ray structure analysis (1 and 4), and spectroscopic methods. The dc magnetic measurements show high magnetic anisotropy for octahedral centers whereas tetrahedral sites possess moderate D values. These results are confirmed by the ab initio calculations. The ac susceptibility data reveals a slow magnetic relaxation for 2 and 4, similar to that of the X = Br analogue (3), whereas 1 displays no ac-absorption signal. There are two relaxation channels; the slower for 2 (4) possesses a relaxation time as long as τLF= 178 (588) ms at T = 1.9 K and Bdc = 0.7 T. Also, the half-Zn analogue, [Co( dppm O, O)3][ZnI4], shows slow magnetic relaxation with two relaxation channels conditioned by the cationic unit [Co( dppm O, O)3]2+.
Collapse
Affiliation(s)
- Cyril Rajnák
- Department of Chemistry, Faculty of Natural Sciences , University of SS. Cyril and Methodius , 917 01 Trnava , Slovakia
| | - Filip Varga
- Department of Chemistry, Faculty of Natural Sciences , University of SS. Cyril and Methodius , 917 01 Trnava , Slovakia
| | - Ján Titiš
- Department of Chemistry, Faculty of Natural Sciences , University of SS. Cyril and Methodius , 917 01 Trnava , Slovakia
| | - Ján Moncol
- Institute of Inorganic Chemistry , Slovak University of Technology , 812 38 Bratislava , Slovakia
| | - Roman Boča
- Department of Chemistry, Faculty of Natural Sciences , University of SS. Cyril and Methodius , 917 01 Trnava , Slovakia
| |
Collapse
|