1
|
Gupta S, Arora S, Mondal A, Stieber SCE, Gupta P, Kundu S. A Copper(II)‐Nitrite Complex Hydrogen‐Bonded to a Protonated Amine in the Second‐Coordination‐Sphere. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shourya Gupta
- IISER-TVM: Indian Institute of Science Education Research Thiruvananthapuram Chemistry INDIA
| | - Sumangla Arora
- IIT Roorkee: Indian Institute of Technology Roorkee Chemistry INDIA
| | - Aditesh Mondal
- IISER-TVM: Indian Institute of Science Education Research Thiruvananthapuram Chemistry INDIA
| | | | - Puneet Gupta
- IIT Roorkee: Indian Institute of Technology Roorkee Chemistry INDIA
| | - Subrata Kundu
- Indian Institute of Science Education and Research Thiruvananthapuram Chemistry Maruthamala POVithura 695551 Thiruvananthapuram INDIA
| |
Collapse
|
2
|
Abstract
This tutorial review showcases recent (2015-2021) work describing ligand construction as it relates to the design of secondary coordination spheres (SCSs). Metalloenzymes, for example, utilize SCSs to stabilize reactive substrates, shuttle small molecules, and alter redox properties, promoting functional activity. In the realm of biomimetic chemistry, specific incorporation of SCS residues (e.g., Brønsted or Lewis acid/bases, crown ethers, redox groups etc.) has been shown to be equally critical to function. This contribution illustrates how fundamental advances in organic and inorganic chemistry have been used for the construction of such SCSs. These imaginative contributions have driven exciting findings in many transformations relevant to clean fuel generation, including small molecule (e.g., H+, N2, CO2, NOx, O2) reduction. In most cases, these reactions occur cooperatively, where both metal and ligand are requisite for substrate activation.
Collapse
Affiliation(s)
- Marcus W Drover
- Department of Chemistry and Biochemistry, The University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
3
|
Marks WR, Reinheimer EW, Seda T, Zakharov LN, Gilbertson JD. NO Coupling by Nonclassical Dinuclear Dinitrosyliron Complexes to Form N 2O Dictated by Hemilability. Inorg Chem 2021; 60:15901-15909. [PMID: 34514780 DOI: 10.1021/acs.inorgchem.1c02285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Selective coupling of NO by a nonclassical dinuclear dinitrosyliron complex (D-DNIC) to form N2O is reported. The coupling is facilitated by the pyridinediimine (PDI) ligand scaffold, which enables the necessary denticity changes to produce mixed-valent, electron-deficient tethered DNICs. One-electron oxidation of the [{Fe(NO)2}]210/10 complex Fe2(PyrrPDI)(NO)4 (4) results in NO coupling to form N2O via the mixed-valent {[Fe(NO)2]2}9/10 species, which possesses an electron-deficient four-coordinate {Fe(NO)2}10 site, crucial in N-N bond formation. The hemilability of the PDI scaffold dictates the selectivity in N-N bond formation because stabilization of the five-coordinate {Fe(NO)2}9 site in the mixed-valent [{Fe(NO)2}]29/10 species, [Fe2(Pyr2PDI)(NO)4][PF6] (6), does not result in an electron-deficient, four-coordinate {Fe(NO)2}10 site, and hence no N-N coupling is observed.
Collapse
Affiliation(s)
- Walker R Marks
- Department of Chemistry, Western Washington University, Bellingham, Washington 98225, United States
| | | | - Takele Seda
- Department of Physics, Western Washington University, Bellingham, Washington 98225, United States
| | - Lev N Zakharov
- Department of Chemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - John D Gilbertson
- Department of Chemistry, Western Washington University, Bellingham, Washington 98225, United States
| |
Collapse
|
4
|
Singh B, Indra A. Role of redox active and redox non-innocent ligands in water splitting. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Baumgardner DF, Parks WE, Gilbertson JD. Harnessing the active site triad: merging hemilability, proton responsivity, and ligand-based redox-activity. Dalton Trans 2020; 49:960-965. [PMID: 31907502 PMCID: PMC7386000 DOI: 10.1039/c9dt04470a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metalloenzymes catalyze many important reactions by managing the proton and electron flux at the enzyme active site. The motifs utilized to facilitate these transformations include hemilabile, redox-active, and so called proton responsive sites. Given the importance of incorporating and understanding these motifs in the area of coordination chemistry and catalysis, we highlight recent milestones in the field. Work incorporating the triad of hemilability, redox-activity, and proton responsivity into single ligand scaffolds will be described.
Collapse
Affiliation(s)
- Douglas F Baumgardner
- Department of Chemistry, Western Washington University, Bellingham, Washington 98225, USA.
| | - Wyatt E Parks
- Department of Chemistry, Western Washington University, Bellingham, Washington 98225, USA.
| | - John D Gilbertson
- Department of Chemistry, Western Washington University, Bellingham, Washington 98225, USA.
| |
Collapse
|
6
|
Cooperative Reactivity by Pincer-Type Complexes Possessing Secondary Coordination Sphere. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Zhang R, Hong DL, He XT, Chen FH, Jiao J, Zhao XQ, Li X, Luo YH, Sun BW. Protonation-induced ligand distortion of spin-crossover complexes. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2018.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Römelt C, Weyhermüller T, Wieghardt K. Structural characteristics of redox-active pyridine-1,6-diimine complexes: Electronic structures and ligand oxidation levels. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.09.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Cheung PM, Burns KT, Kwon YM, Deshaye MY, Aguayo KJ, Oswald VF, Seda T, Zakharov LN, Kowalczyk T, Gilbertson JD. Hemilabile Proton Relays and Redox Activity Lead to {FeNO} x and Significant Rate Enhancements in NO 2- Reduction. J Am Chem Soc 2018; 140:17040-17050. [PMID: 30427681 PMCID: PMC6668709 DOI: 10.1021/jacs.8b08520] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Incorporation of the triad of redox activity, hemilability, and proton responsivity into a single ligand scaffold is reported. Due to this triad, the complexes Fe(PyrrPDI)(CO)2 (3) and Fe(MorPDI)(CO)2 (4) display 40-fold enhancements in the initial rate of NO2- reduction, with respect to Fe(MeOPDI)(CO)2 (7). Utilizing the proper sterics and p Ka of the pendant base(s) to introduce hemilability into our ligand scaffolds, we report unusual {FeNO} x mononitrosyl iron complexes (MNICs) as intermediates in the NO2- reduction reaction. The {FeNO} x species behave spectroscopically and computationally similar to {FeNO}7, an unusual intermediate-spin Fe(III) coupled to triplet NO- and a singly reduced PDI ligand. These {FeNO} x MNICs facilitate enhancements in the initial rate.
Collapse
Affiliation(s)
- Pui Man Cheung
- Department of Chemistry, Western Washington University, Bellingham, Washington 98225, United States
| | - Kyle T. Burns
- Department of Chemistry, Western Washington University, Bellingham, Washington 98225, United States
| | - Yubin M. Kwon
- Department of Chemistry, Western Washington University, Bellingham, Washington 98225, United States
| | - Megan Y. Deshaye
- Department of Chemistry, Western Washington University, Bellingham, Washington 98225, United States
| | - Kristopher J. Aguayo
- Department of Chemistry, Western Washington University, Bellingham, Washington 98225, United States
| | - Victoria F. Oswald
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Takele Seda
- Department of Physics, Western Washington University, Bellingham, Washington 98225, United States
| | - Lev N. Zakharov
- Department of Chemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Tim Kowalczyk
- Department of Chemistry, Western Washington University, Bellingham, Washington 98225, United States
| | - John D. Gilbertson
- Department of Chemistry, Western Washington University, Bellingham, Washington 98225, United States
| |
Collapse
|
10
|
Burns KT, Marks WR, Cheung PM, Seda T, Zakharov LN, Gilbertson JD. Uncoupled Redox-Inactive Lewis Acids in the Secondary Coordination Sphere Entice Ligand-Based Nitrite Reduction. Inorg Chem 2018; 57:9601-9610. [PMID: 29608297 PMCID: PMC6102076 DOI: 10.1021/acs.inorgchem.8b00032] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal complexes composed of redox-active pyridinediimine (PDI) ligands are capable of forming ligand-centered radicals. In this Forum article, we demonstrate that integration of these types of redox-active sites with bioinspired secondary coordination sphere motifs produce direduced complexes, where the reduction potential of the ligand-based redox sites is uncoupled from the secondary coordination sphere. The utility of such ligand design was explored by encapsulating redox-inactive Lewis acidic cations via installation of a pendant benzo-15-crown-5 in the secondary coordination sphere of a series of Fe(PDI) complexes. Fe(15bz5PDI)(CO)2 was shown to encapsulate the redox-inactive alkali ion, Na+, causing only modest (31 mV) anodic shifts in the ligand-based redox-active sites. By uncoupling the Lewis acidic sites from the ligand-based redox sites, the pendant redox-inactive ion, Na+, can entice the corresponding counterion, NO2-, for reduction to NO. The subsequent initial rate analysis reveals an acceleration in anion reduction, confirming this hypothesis.
Collapse
Affiliation(s)
- Kyle T. Burns
- Department of Chemistry, Western Washington University, Bellingham, Washington 98225, United States
| | - Walker R. Marks
- Department of Chemistry, Western Washington University, Bellingham, Washington 98225, United States
| | - Pui Man Cheung
- Department of Chemistry, Western Washington University, Bellingham, Washington 98225, United States
| | - Takele Seda
- Department of Physics, Western Washington University, Bellingham, Washington 98225, United States
| | - Lev N. Zakharov
- Department of Chemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - John D. Gilbertson
- Department of Chemistry, Western Washington University, Bellingham, Washington 98225, United States
| |
Collapse
|
11
|
Haas RM, Hern Z, Sproules S, Hess CR. An Unsymmetric Ligand Framework for Noncoupled Homo- and Heterobimetallic Complexes. Inorg Chem 2017; 56:14738-14742. [PMID: 29172466 DOI: 10.1021/acs.inorgchem.7b02294] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We introduce a new unsymmetric ligand, PDIpCy (PDI = pyridyldiimine; Cy = cyclam), that offers two distinct, noncoupled coordination sites. A series of homo- and heterobimetallic complexes, [Zn2(PDIpCy)(THF)(OTf)4] (1; THF = tetrahydrofuran and OTf = triflate), [Ni2(PDIpCy)(THF)(OTf)2](OTf)2 (2), and [NiZn(PDIpCy)(THF)(OTf)4] (3), are described. The one-electron-reduced compounds, [Zn2(PDIpCy)(OTF)3] (4), [Ni2(PDIpCy)(OTf)](OTf)2 (5), and [NiZn(PDIpCy)(OTf)3] (6), were isolated, and their electronic structures were characterized. The reduced compounds are charge-separated species, with electron storage at either the PDI ligand (4) or at the PDI-bound metal ion (5 and 6).
Collapse
Affiliation(s)
- Ruth M Haas
- Department of Chemistry and Catalysis Research Center, Technische Universität München , Lichtenbergstraße 4, Garching 85748, Germany
| | - Zachary Hern
- Department of Chemistry, University of Texas at San Antonio , San Antonio, Texas 78249, United States
| | - Stephen Sproules
- School of Chemistry, University of Glasgow , University Avenue, Glasgow G12 8QQ, U.K
| | - Corinna R Hess
- Department of Chemistry and Catalysis Research Center, Technische Universität München , Lichtenbergstraße 4, Garching 85748, Germany
| |
Collapse
|
12
|
Gordon Z, Drummond MJ, Matson EM, Bogart JA, Schelter EJ, Lord RL, Fout AR. Tuning the Fe(II/III) Redox Potential in Nonheme Fe(II)-Hydroxo Complexes through Primary and Secondary Coordination Sphere Modifications. Inorg Chem 2017; 56:4852-4863. [PMID: 28394119 DOI: 10.1021/acs.inorgchem.6b03071] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The derivatization of the imino-functionalized tris(pyrrolylmethyl)amine ligand framework, N(XpiR)3 (XLR; X = H, Br; R = cyclohexyl (Cy), phenyl (Ph), 2,6- diisopropylphenyl (DIPP)), is reported. Modular ligand synthesis allows for facile modification of both the primary and secondary coordination sphere electronics. The iron(II)-hydroxo complexes, N(XpiR)(XafaR)2Fe(II)OH (XLRFeIIOH), are synthesized to establish the impact of the ligand modifications on the complexes' electronic properties, including their chemical and electrochemical oxidation. Cyclic voltammetry demonstrates that the Fe(II/III) redox couple spans a 400 mV range across the series. The origin of the shifted potential is explained based on spectroscopic, structural, and theoretical analyses of the iron(II) and iron(III) compounds.
Collapse
Affiliation(s)
- Zachary Gordon
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Michael J Drummond
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Ellen M Matson
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Justin A Bogart
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34 Street, Philadelphia, Pennsylvania 19104, United States
| | - Eric J Schelter
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34 Street, Philadelphia, Pennsylvania 19104, United States
| | - Richard L Lord
- Department of Chemistry, Grand Valley State University , 1 Campus Drive, Allendale, Michigan 49401, United States
| | - Alison R Fout
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
13
|
Delgado M, Gilbertson JD. Ligand-based reduction of nitrate to nitric oxide utilizing a proton-responsive secondary coordination sphere. Chem Commun (Camb) 2017; 53:11249-11252. [PMID: 28967024 DOI: 10.1039/c7cc06541h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Utilizing the proton-responsive pyridinediimine ligand [(2,6-iPrC6H3)(NCMe)(N(iPr)2C2H4)(NCMe)C5H3N] (didpa), the ligand-based reduction of nitrate (NO3−) to nitric oxide (NO) was achieved.
Collapse
Affiliation(s)
- Mayra Delgado
- Department of Chemistry
- Western Washington University
- Bellingham
- USA
| | | |
Collapse
|
14
|
Khosrowabadi Kotyk JF, Ziller JW, Yang JY. Copper tetradentate N 2Py 2 complexes with pendant bases in the secondary coordination sphere: improved ligand synthesis and protonation studies. J COORD CHEM 2016. [DOI: 10.1080/00958972.2015.1130223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Joseph W. Ziller
- Department of Chemistry, University of California, Irvine, CA, USA
| | - Jenny Y. Yang
- Department of Chemistry, University of California, Irvine, CA, USA
| |
Collapse
|
15
|
Hartle MD, Delgado M, Gilbertson JD, Pluth MD. Stabilization of a Zn(ii) hydrosulfido complex utilizing a hydrogen-bond accepting ligand. Chem Commun (Camb) 2016; 52:7680-2. [DOI: 10.1039/c6cc01373b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Inclusion of a hydrogen bond accepting motif in the secondary coordination sphere of a pyridinediimine ligand enables formation of a stable Zn–SH adduct. We report here reversible coordination of HS− to Zn(didpa)Cl2 to form [Zn(didpa)Cl2SH]−, which is stabilized by an intramolecular hydrogen bond.
Collapse
Affiliation(s)
- Matthew D. Hartle
- Department of Chemistry and Biochemistry
- Materials Science Institute
- Institute of Molecular Biology
- University of Oregon
- Eugene
| | - Mayra Delgado
- Department of Chemistry
- Western Washington University
- Bellingham
- USA
| | | | - Michael D. Pluth
- Department of Chemistry and Biochemistry
- Materials Science Institute
- Institute of Molecular Biology
- University of Oregon
- Eugene
| |
Collapse
|
16
|
Kwon YM, Delgado M, Zakharov LN, Seda T, Gilbertson JD. Nitrite reduction by a pyridinediimine complex with a proton-responsive secondary coordination sphere. Chem Commun (Camb) 2016; 52:11016-9. [DOI: 10.1039/c6cc05962g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The reduction of NO2− to NO is achieved with a FePDI complex containing a proton-responsive secondary coordination sphere coupled with redox-active sites.
Collapse
Affiliation(s)
- Yubin M. Kwon
- Department of Chemistry
- Western Washington University
- USA
| | - Mayra Delgado
- Department of Chemistry
- Western Washington University
- USA
| | | | - Takele Seda
- Department of Physics
- Western Washington University
- Bellingham
- USA
| | | |
Collapse
|
17
|
Delgado M, Ziegler JM, Seda T, Zakharov LN, Gilbertson JD. Pyridinediimine Iron Complexes with Pendant Redox-Inactive Metals Located in the Secondary Coordination Sphere. Inorg Chem 2015; 55:555-7. [PMID: 26692111 DOI: 10.1021/acs.inorgchem.5b02544] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of pyridinediimine (PDI) iron complexes that contain a pendant 15-crown-5 located in the secondary coordination sphere were synthesized and characterized. The complex Fe((15c5)PDI)(CO)2 (2) was shown in both the solid state and solution to encapsulate redox-inactive metal ions. Modest shifts in the reduction potential of the metal-ligand scaffold were observed upon encapsulation of either Na(+) or Li(+).
Collapse
Affiliation(s)
| | | | | | - Lev N Zakharov
- Department of Chemistry, University of Oregon , Eugene, Oregon 97403, United States
| | | |
Collapse
|