1
|
Li M, Zhou Y, Yao Y, Gao T, Yan P, Li H. Designing water-quenching resistant highly luminescent europium complexes by regulating the orthogonal arrangement of bis-β-diketone ligands. Dalton Trans 2021; 50:9914-9922. [PMID: 34223568 DOI: 10.1039/d1dt00155h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Luminescent β-diketone-based lanthanide complexes have been well explored as chemical sensor materials for biomedicine applications. Herein, three mononuclear Eu3+ complexes based on bis-β-diketone ligands (L1, L2 and L3) that can reduce luminescence quenching caused by water were developed. The ligands feature two β-diketone units covalently bound at the 1,8-position of the derivatized anthracene (modified with tetracyanoethylene, TCNE). X-ray crystallographic analysis reveals that their self-assemblies with Ln3+ ions in a 2 : 1 stoichiometric ratio form mononuclear anion complexes, [EuL2]-, in which two ligands coordinate to the metal center in a mutually orthogonal manner. This kind of arrangement together with the bulge of TCNE from the anthracene plane well protected the complexes from the quenching effects of water molecules in the second coordination. The photophysical measurements showed that the complexes not only had high luminescence quantum yields (QYs, up to 50-67%) but also presented excellent water-quenching resistant capability.
Collapse
Affiliation(s)
- Mei Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education; School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| | - Yanyan Zhou
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education; School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| | - Yuan Yao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education; School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| | - Ting Gao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education; School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| | - Pengfei Yan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education; School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| | - Hongfeng Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education; School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| |
Collapse
|
2
|
Cosby AG, Woods JJ, Nawrocki P, Sørensen TJ, Wilson JJ, Boros E. Accessing lanthanide-based, in situ illuminated optical turn-on probes by modulation of the antenna triplet state energy. Chem Sci 2021; 12:9442-9451. [PMID: 34349918 PMCID: PMC8278976 DOI: 10.1039/d1sc02148f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/13/2021] [Indexed: 12/16/2022] Open
Abstract
Luminescent lanthanides possess ideal properties for biological imaging, including long luminescent lifetimes and emission within the optical window. Here, we report a novel approach to responsive luminescent Tb(iii) probes that involves direct modulation of the antenna excited triplet state energy. If the triplet energy lies too close to the 5D4 Tb(iii) excited state (20 500 cm-1), energy transfer to 5D4 competes with back energy transfer processes and limits lanthanide-based emission. To validate this approach, a series of pyridyl-functionalized, macrocyclic lanthanide complexes were designed, and the corresponding lowest energy triplet states were calculated using density functional theory (DFT). Subsequently, three novel constructs L3 (nitro-pyridyl), L4 (amino-pyridyl) and L5 (fluoro-pyridyl) were synthesized. Photophysical characterization of the corresponding Gd(iii) complexes revealed antenna triplet energies between 25 800 and 30 400 cm-1 and a 500-fold increase in quantum yield upon conversion of Tb(L3) to Tb(L4) using the biologically relevant analyte H2S. The corresponding turn-on reaction can be monitored using conventional, small-animal optical imaging equipment in presence of a Cherenkov radiation emitting isotope as an in situ excitation source, demonstrating that antenna triplet state energy modulation represents a viable approach to biocompatible, Tb-based optical turn-on probes.
Collapse
Affiliation(s)
- Alexia G Cosby
- Department of Chemistry, Stony Brook University Stony Brook New York 11794 USA
| | - Joshua J Woods
- Department of Chemistry and Chemical Biology, Cornell University Ithaca New York 14853 USA
| | - Patrick Nawrocki
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5 2100 København Ø Denmark
| | - Thomas J Sørensen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5 2100 København Ø Denmark
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University Ithaca New York 14853 USA
| | - Eszter Boros
- Department of Chemistry, Stony Brook University Stony Brook New York 11794 USA
| |
Collapse
|
3
|
Dai L, Zhang J, Wong CT, Chan WTK, Ling X, Anderson CJ, Law GL. Design of Functional Chiral Cyclen-Based Radiometal Chelators for Theranostics. Inorg Chem 2021; 60:7082-7088. [PMID: 33689299 DOI: 10.1021/acs.inorgchem.0c03734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of water-soluble chiral cyclen-based chelators with chemical handles for selective targeting have been synthesized (cyclen = 1,4,7,10-Tetraazacyclododecane). Optical studies, relaxivity measurements, and competitive titrations were performed to show the versatility of these chiral chelators. The complexations of L3, L4, and L5 with Lu3+, Y3+, Sc3+, and Cu2+ were successfully demonstrated in around 90% to 100% yields. Efficient and rapid radiolabeling of L5 with 177Lu was achieved under mild conditions with 96% yield. The chelators exhibit near quantitative labeling efficiencies with a wide range of radiometal ions, which are promising for the development of targeting specific radiopharmaceutical and molecular magnetic resonance imaging contrast agents.
Collapse
Affiliation(s)
- Lixiong Dai
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong SAR
| | - Junhui Zhang
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong SAR
| | - Carlos Tinlong Wong
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong SAR
| | - Wesley Ting Kwok Chan
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong SAR
| | - Xiaoxi Ling
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Carolyn J Anderson
- Departments of Medicine, Radiology, Pharmacology and Chemical Biology, Chemistry, and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.,Departments of Chemistry and Radiology, University of Missouri, Columbia, Missouri 65211, United States
| | - Ga-Lai Law
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong SAR
| |
Collapse
|
4
|
Arnedo-Sanchez L, Smith KF, Deblonde GJP, Carter KP, Moreau LM, Rees JA, Tratnjek T, Booth CH, Abergel RJ. Combining the Best of Two Chelating Titans: A Hydroxypyridinone-Decorated Macrocyclic Ligand for Efficient and Concomitant Complexation and Sensitized Luminescence of f-Elements. Chempluschem 2021; 86:483-491. [PMID: 33733616 DOI: 10.1002/cplu.202100083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/02/2021] [Indexed: 12/11/2022]
Abstract
An ideal chelator for f-elements features rapid kinetics of complexation, high thermodynamic stability, and slow kinetics of dissociation. Here we present the facile synthesis of a macrocyclic ligand bearing four 1-hydroxy-2-pyridinone units linked to a cyclen scaffold that rapidly forms thermodynamically stable complexes with lanthanides (Sm3+ , Eu3+ , Tb3+ , Dy3+ ) and a representative late actinide (Cm3+ ) in aqueous media and concurrently sensitizes them. Extended X-ray absorption fine structure (EXAFS) spectroscopy revealed an increase in the Ln/An-O bond lengths following the trend Cm>Eu>Tb and EXAFS data were compatible with time-resolved luminescence studies, which indicated one to two water molecules in the inner metal coordination sphere of Eu(III) and two water molecules for the Cm(III) complex. Spectrofluorimetric ligand competition titrations against DTPA confirmed the high thermodynamic stability of DOTHOPO complexes, with pM values between 19.9(1) and 21.9(2).
Collapse
Affiliation(s)
- Leticia Arnedo-Sanchez
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kurt F Smith
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Gauthier J-P Deblonde
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Glenn T. Seaborg Institute, Physical & Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Korey P Carter
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Liane M Moreau
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Julian A Rees
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Toni Tratnjek
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Corwin H Booth
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Department of Nuclear Engineering, University of California, Berkeley, CA 94709, USA
| |
Collapse
|
5
|
Developing scandium and yttrium coordination chemistry to advance theranostic radiopharmaceuticals. Commun Chem 2020; 3:61. [PMID: 36703424 PMCID: PMC9814396 DOI: 10.1038/s42004-020-0307-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/22/2020] [Indexed: 01/29/2023] Open
Abstract
The octadentate siderophore analog 3,4,3-LI(1,2-HOPO), denoted 343-HOPO hereafter, is known to have high affinity for both trivalent and tetravalent lanthanide and actinide cations. Here we extend its coordination chemistry to the rare-earth cations Sc3+ and Y3+ and characterize fundamental metal-chelator binding interactions in solution via UV-Vis spectrophotometry, nuclear magnetic resonance spectroscopy, and spectrofluorimetric metal-competition titrations, as well as in the solid-state via single crystal X-ray diffraction. Sc3+ and Y3+ binding with 343-HOPO is found to be robust, with both high thermodynamic stability and fast room temperature radiolabeling, indicating that 343-HOPO is likely a promising chelator for in vivo applications with both metals. As a proof of concept, we prepared a 86Y-343-HOPO complex for in vivo PET imaging, and the results presented herein highlight the potential of 343-HOPO chelated trivalent metal cations for therapeutic and theranostic applications.
Collapse
|
6
|
Huang SY, Qian M, Pierre VC. The Ligand Cap Affects the Coordination Number but Not Necessarily the Affinity for Anions of Tris-Bidentate Europium Complexes. Inorg Chem 2020; 59:4096-4108. [PMID: 32105456 DOI: 10.1021/acs.inorgchem.0c00137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
To evaluate the effect of ligand geometry on the coordination number, number of inner-sphere water molecules, and affinity for anions of the corresponding lanthanide complex, six tris-bidentate 1,2-hydroxypyridonate (HOPO) europium(III) complexes with different cap sizes were synthesized and characterized. Wider or more flexible ligand caps, such as in EuIII-TREN-Gly-HOPO and EuIII-3,3-Gly-HOPO, enable the formation of nine-coordinate europium(III) complexes bearing three inner-sphere water molecules. In contrast, smaller or more rigid caps, such as in EuIII-TREN-HOPO, EuIII-2,2-Li-HOPO, EuIII-3,3-Li-HOPO, and EuIII-2,2-Gly-HOPO, favor eight-coordinate europium(III) complexes that have only two inner-sphere water molecules. Notably, there is no correlation between the number of inner-sphere water molecules and the affinity of the Eu(III) complexes for phosphate. Some q = 2 (EuIII-TREN-HOPO, EuIII-3,3-Li-HOPO, and EuIII-2,2-Gly-HOPO) and some q = 3 (EuIII-TREN-Gly-HOPO) complexes have no affinity for anions, whereas one q = 2 complex (EuIII-2,2-Li-HOPO) and one q = 3 complex (EuIII-3,3-Gly-HOPO) have a high affinity for phosphate. For the latter two systems, each inner-sphere water molecule is replaced with a phosphate anion, resulting in the formation of EuLPi2 and EuLPi3 adducts, respectively.
Collapse
Affiliation(s)
- Sheng-Yin Huang
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Michelle Qian
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Valérie C Pierre
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Deblonde GJP, Ricano A, Abergel RJ. Ultra-selective ligand-driven separation of strategic actinides. Nat Commun 2019; 10:2438. [PMID: 31164638 PMCID: PMC6547845 DOI: 10.1038/s41467-019-10240-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/25/2019] [Indexed: 12/30/2022] Open
Abstract
Metal ion separations are critical to numerous fields, including nuclear medicine, waste recycling, space exploration, and fundamental research. Nonetheless, operational conditions and performance are limited, imposing compromises between recovery, purity, and cost. Siderophore-inspired ligands show unprecedented charge-based selectivity and compatibility with harsh industry conditions, affording excellent separation efficiency, robustness and process control. Here, we successfully demonstrate a general separation strategy on three distinct systems, for Ac, Pu, and Bk purification. Separation factors (SF) obtained with model compound 3,4,3-LI(1,2-HOPO) are orders of magnitude higher than with any other ligand currently employed: 106 between Ac and relevant metal impurities, and over 108 for redox-free Pu purification against uranyl ions and trivalent actinides or fission products. Finally, a one-step separation method (SF > 3 × 106 and radiopurity > 99.999%) enables the isolation of Bk from adjacent actinides and fission products. The proposed approach offers a paradigm change for the production of strategic elements. Radionuclides are of great importance for fields such as nuclear medicine and waste recycling, but their efficient purification remains a challenge. Here the authors show that an octadentate hydroxypyridinone chelator enables efficient and robust separation processes for isotopes of Ac, Pu, and Bk.
Collapse
Affiliation(s)
- Gauthier J-P Deblonde
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Abel Ricano
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. .,Department of Nuclear Engineering, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
8
|
Dai L, Lo WS, Gu Y, Xiong Q, Wong KL, Kwok WM, Wong WT, Law GL. Breaking the 1,2-HOPO barrier with a cyclen backbone for more efficient sensitization of Eu(iii) luminescence and unprecedented two-photon excitation properties. Chem Sci 2019; 10:4550-4559. [PMID: 31123564 PMCID: PMC6498141 DOI: 10.1039/c9sc00244h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/27/2019] [Indexed: 11/21/2022] Open
Abstract
A cyclen backbone was utilized to study the effect of backbone rigidity on Eu(iii) luminescence sensitization using a 1,2-HOPO derivative and 2-thenoyltrifluoroacetonate (TTA) as chromophores. The restriction of molecular movement of Eu-Cy-HOPO brought about by the increased rigidity provided a tightly packed coordination environment for the octadentate Eu(iii) center which resulted in the highest overall quantum yield (30.2%) and sensitization efficiency (64.6%) among 1,2-HOPO sensitized Eu(iii) complexes. Eu-Cy-HOPO is also the first 1,2-HOPO-based lanthanide complex to emit Eu(iii) luminescence under two-photon excitation.
Collapse
Affiliation(s)
- Lixiong Dai
- The Hong Kong Polytechnic University Shenzhen Research Institute , Shenzhen , PR China . ; .,State Key Laboratory of Chemical Biology and Drug Discovery , Department of Applied Biology and Chemical Technology , The Hong Kong Polytechnic University , Hung Hom , Kowloon , Hong Kong SAR , PR China.,Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong SAR , PR China
| | - Wai-Sum Lo
- The Hong Kong Polytechnic University Shenzhen Research Institute , Shenzhen , PR China . ; .,State Key Laboratory of Chemical Biology and Drug Discovery , Department of Applied Biology and Chemical Technology , The Hong Kong Polytechnic University , Hung Hom , Kowloon , Hong Kong SAR , PR China
| | - Yanjuan Gu
- State Key Laboratory of Chemical Biology and Drug Discovery , Department of Applied Biology and Chemical Technology , The Hong Kong Polytechnic University , Hung Hom , Kowloon , Hong Kong SAR , PR China
| | - Qingwu Xiong
- State Key Laboratory of Chemical Biology and Drug Discovery , Department of Applied Biology and Chemical Technology , The Hong Kong Polytechnic University , Hung Hom , Kowloon , Hong Kong SAR , PR China
| | - Ka-Leung Wong
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong SAR , PR China
| | - Wai-Ming Kwok
- State Key Laboratory of Chemical Biology and Drug Discovery , Department of Applied Biology and Chemical Technology , The Hong Kong Polytechnic University , Hung Hom , Kowloon , Hong Kong SAR , PR China
| | - Wing-Tak Wong
- The Hong Kong Polytechnic University Shenzhen Research Institute , Shenzhen , PR China . ; .,State Key Laboratory of Chemical Biology and Drug Discovery , Department of Applied Biology and Chemical Technology , The Hong Kong Polytechnic University , Hung Hom , Kowloon , Hong Kong SAR , PR China
| | - Ga-Lai Law
- The Hong Kong Polytechnic University Shenzhen Research Institute , Shenzhen , PR China . ; .,State Key Laboratory of Chemical Biology and Drug Discovery , Department of Applied Biology and Chemical Technology , The Hong Kong Polytechnic University , Hung Hom , Kowloon , Hong Kong SAR , PR China
| |
Collapse
|
9
|
Deblonde GJP, Lohrey TD, Abergel RJ. Inducing selectivity and chirality in group IV metal coordination with high-denticity hydroxypyridinones. Dalton Trans 2019; 48:8238-8247. [PMID: 31094380 DOI: 10.1039/c9dt01031a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The solution- and solid-state interactions between the octadentate siderophore mimic 3,4,3-LI(1,2-HOPO) (343HOPO) and group IV metal ions were investigated using high-resolution mass spectrometry, liquid chromatography, UV-visible spectrophotometry, metal-competition batch titrations, and single crystal X-ray diffraction. 343HOPO forms a neutral 1 : 1 complex, [HfIV343HOPO], that exhibits extreme stability in aqueous solution, with a log β110 value reaching 42.3. These results affirm the remarkable charge-based selectivity of 343HOPO for octacoordinated tetravalent cations with a Hf(iv) complex 1021 more stable than its Lu(iii) analogue. Moreover, [HfIV343HOPO] and its Zr(iv) counterpart show exceptional robustness, with the ligand remaining bound to the cation over a very broad pH range: from pH ∼ 11 to acidic conditions as strong as 10 M HCl. In stark contrast, Ti(iv)-343HOPO species are far less stable and undergo hydrolysis at pH as low as ∼6, likely due to the mismatch between the preferred hexacoordinated Ti(iv) ion and octadentate 343HOPO ligand. The extreme charge-based and denticity-driven selectivity of 343HOPO, now observed across the periodic table, paves the way for new selective sequestration systems for radionuclides including medical 44Ti, 89Zr or 177Lu/Hf isotopes, toxic polonium (Po) contaminants, as well as rutherfordium (Rf) research isotopes. Furthermore, despite the lack of a chiral center in 343HOPO, its complexes with metal ions are chiral and appear to form a single set of enantiomers.
Collapse
Affiliation(s)
- Gauthier J-P Deblonde
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
10
|
Cilibrizzi A, Abbate V, Chen YL, Ma Y, Zhou T, Hider RC. Hydroxypyridinone Journey into Metal Chelation. Chem Rev 2018; 118:7657-7701. [DOI: 10.1021/acs.chemrev.8b00254] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King’s College London, Stamford Street, London SE1 9NH, United Kingdom
| | - Vincenzo Abbate
- Institute of Pharmaceutical Science, King’s College London, Stamford Street, London SE1 9NH, United Kingdom
- King’s Forensics, School of Population Health & Environmental Sciences, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Yu-Lin Chen
- Institute of Pharmaceutical Science, King’s College London, Stamford Street, London SE1 9NH, United Kingdom
| | - Yongmin Ma
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, P. R. China 311402
| | - Tao Zhou
- Department of Applied Chemistry, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China 310018
| | - Robert C. Hider
- Institute of Pharmaceutical Science, King’s College London, Stamford Street, London SE1 9NH, United Kingdom
| |
Collapse
|
11
|
Junker AKR, Hill LR, Thompson AL, Faulkner S, Sørensen TJ. Shining light on the antenna chromophore in lanthanide based dyes. Dalton Trans 2018; 47:4794-4803. [PMID: 29560975 DOI: 10.1039/c7dt04788f] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lanthanide based dyes and assays exploit the antenna effect, where a sensitiser-chromophore is used as a light harvesting antenna and subsequent excited state energy transfer populates the emitting lanthanide centred excited state. A rudimentary understanding of the design criteria for designing efficient dyes and assays based on the antenna effect is in place. By preparing kinetically inert lanthanide complexes based on the DO3A scaffold, we are able to study the excited state energy transfer from a 7-methoxy-coumarin antenna chromophore to europium(iii) and terbium(iii) centred excited states. By contrasting the photophysical properties of complexes of metal centres with and without accessible excited states, we are able to separate the contributions from the heavy atom effect, photoinduced electron transfer quenching, excited state energy transfer and molecular conformations. Furthermore, by studying the photophysical properties of the antenna chromophore, we can directly monitor the solution structure and are able to conclude that excited state energy transfer from the chromophore singlet state to the lanthanide centre does occur.
Collapse
Affiliation(s)
- Anne Kathrine R Junker
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark.
| | - Leila R Hill
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK.
| | - Amber L Thompson
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK.
| | - Stephen Faulkner
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK.
| | - Thomas Just Sørensen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark.
| |
Collapse
|
12
|
Daumann LJ, Werther P, Ziegler MJ, Raymond KN. Siderophore inspired tetra- and octadentate antenna ligands for luminescent Eu(III) and Tb(III) complexes. J Inorg Biochem 2016; 162:263-273. [DOI: 10.1016/j.jinorgbio.2016.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 01/09/2023]
|
13
|
Daumann LJ, Tatum DS, Andolina CM, Pacold JI, D’Aléo A, Law GL, Xu J, Raymond KN. Effects of Ligand Geometry on the Photophysical Properties of Photoluminescent Eu(III) and Sm(III) 1-Hydroxypyridin-2-one Complexes in Aqueous Solution. Inorg Chem 2015; 55:114-24. [DOI: 10.1021/acs.inorgchem.5b01927] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lena J. Daumann
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - David S. Tatum
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Christopher M. Andolina
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Joseph I. Pacold
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Anthony D’Aléo
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Ga-lai Law
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Jide Xu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Kenneth N. Raymond
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| |
Collapse
|
14
|
Williams NJ, Do-Thanh CL, Stankovich JJ, Luo H, Dai S. Extraction of lanthanides using 1-hydroxy-6-N-octylcarboxamido-2(1H)-pyridinone as an extractant via competitive ligand complexations between aqueous and organic phases. RSC Adv 2015. [DOI: 10.1039/c5ra23443c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Increased lanthanide extraction by octyl-HOPO improves the TALSPEAK process and allowed for a greater separation of lanthanides from actinides.
Collapse
Affiliation(s)
- Neil J. Williams
- Chemical Sciences Division
- Oak Ridge National Laboratory
- Oak Ridge
- USA
- Department of Chemistry
| | | | | | - Huimin Luo
- Energy and Transportation Science Division
- Oak Ridge National Laboratory
- Oak Ridge
- USA
| | - Sheng Dai
- Chemical Sciences Division
- Oak Ridge National Laboratory
- Oak Ridge
- USA
- Department of Chemistry
| |
Collapse
|