1
|
Horiuchi S, Hiroiwa H, Sakuda E, Arikawa Y, Umakoshi K. An asymmetric Pt diimine acetylide complex providing unique luminescent multinuclear sandwich complexes with Cu salts. Chem Commun (Camb) 2022; 58:3489-3492. [PMID: 35191432 DOI: 10.1039/d1cc07108d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation and photophysical properties of two types of sandwich complexes supported by asymmetric Pt complex units having two different acetylide moieties are reported. The asymmetric Pt complex unit was obtained via acetylide metathesis reaction between two types of symmetric Pt complexes. The reversible acetylide exchange reaction was effectively suppressed by the incorporation of Cu ions to give unique chiral Pt4Cu3 and achiral Pt2Cu4Br4 sandwich complexes. The sandwich complexes exhibited moderate photoluminescence in the solid state, and their photophysical properties depended on the sandwich structures. These results suggest that asymmetric Pt complex units can give remarkable assembled structures by the concerted effect of labile coordination bonds and weak noncovalent interactions.
Collapse
Affiliation(s)
- Shinnosuke Horiuchi
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, Bunkyo-machi, Nagasaki, 852-8521, Japan.
| | - Hirotaka Hiroiwa
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, Bunkyo-machi, Nagasaki, 852-8521, Japan.
| | - Eri Sakuda
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, Bunkyo-machi, Nagasaki, 852-8521, Japan.
| | - Yasuhiro Arikawa
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, Bunkyo-machi, Nagasaki, 852-8521, Japan.
| | - Keisuke Umakoshi
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, Bunkyo-machi, Nagasaki, 852-8521, Japan.
| |
Collapse
|
2
|
Ultrafast Electron/Energy Transfer and Intersystem Crossing Mechanisms in BODIPY-Porphyrin Compounds. Processes (Basel) 2021. [DOI: 10.3390/pr9020312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Meso-substituted borondipyrromethene (BODIPY)-porphyrin compounds that include free base porphyrin with two different numbers of BODIPY groups (BDP-TTP and 3BDP-TTP) were designed and synthesized to analyze intramolecular energy transfer mechanisms of meso-substituted BODIPY-porphyrin dyads and the effect of the different numbers of BODIPY groups connected to free-base porphyrin on the energy transfer mechanism. Absorption spectra of BODIPY-porphyrin conjugates showed wide absorption features in the visible region, and that is highly valuable to increase light-harvesting efficiency. Fluorescence spectra of the studied compounds proved that BODIPY emission intensity decreased upon the photoexcitation of the BODIPY core, due to the energy transfer from BODIPY unit to porphyrin. In addition, ultrafast pump-probe spectroscopy measurements indicated that the energy transfer of the 3BDP-TTP compound (about 3 ps) is faster than the BDP-TTP compound (about 22 ps). Since the BODIPY core directly binds to the porphyrin unit, rapid energy transfer was seen for both compounds. Thus, the energy transfer rate increased with an increasing number of BODIPY moiety connected to free-base porphyrin.
Collapse
|
3
|
Zhang X, Chen X, Zhao J. Electron spin-controlled charge transfer and the resulting long-lived charge transfer state: from transition metal complexes to organic compounds. Dalton Trans 2021; 50:59-67. [PMID: 33338095 DOI: 10.1039/d0dt03737k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The generation of long-lived charge transfer (CT) states in electron donor/acceptor dyads upon photoexcitation is crucial for artificial photosynthesis, photocatalysis and photovoltaics. Electron spin control is a novel strategy to prolong the CT state lifetime via generation of the 3CT triplet state, instead of the traditional short-lived 1CT state. This method involves a local triplet excited state (3LE) as the precursor of charge separation (CS), and the electron forbidden feature of the charge recombination (CR) of 3CT → S0vs. the electron spin allowed 1CT → S0 prolongs the CT state lifetime. In this article, we summarized the recent developments and challenges in this emerging fascinating area.
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China.
| | | | | |
Collapse
|
4
|
Inoue R, Morisaki Y. Efficient Stereoselective Synthesis and Optical Properties of Heteroleptic Square‐Planar Platinum(II) Complexes with Bidentate Iminopyrrolyl Ligands. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ryo Inoue
- Department of Applied Chemistry for Environment School of Science and Technology Kwansei Gakuin University 2‐1 Gakuen 669‐1337 Sanda Hyogo Japan
| | - Yasuhiro Morisaki
- Department of Applied Chemistry for Environment School of Science and Technology Kwansei Gakuin University 2‐1 Gakuen 669‐1337 Sanda Hyogo Japan
| |
Collapse
|
5
|
Chen K, Hussain M, Razi SS, Hou Y, Yildiz EA, Zhao J, Yaglioglu HG, Donato MD. Anthryl-Appended Platinum(II) Schiff Base Complexes: Exceptionally Small Stokes Shift, Triplet Excited States Equilibrium, and Application in Triplet-Triplet-Annihilation Upconversion. Inorg Chem 2020; 59:14731-14745. [PMID: 32864961 DOI: 10.1021/acs.inorgchem.0c01932] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Two anthryl platinum(II) N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-benzenediamine Schiff base complexes were synthesized, with the anthryl attached via its 9 position (Pt-9An) or 2 position (Pt-2An) to the platinum (Pt) Schiff base backbone. The complexes show unusually small Stokes shifts (0.23 eV), representing a very small energy loss for the photoexcitation/intersystem crossing process, which is beneficial for applications as triplet photosensitizers. Phosphorescence of the Pt(II) coordination framework (ΦP = 11.0%) is quenched in the anthryl-containing complexes (ΦP = 4.0%) and shows a biexponential decay (τP = 3.4 μs/87% and 18.2 μs/13%) compared to the single-exponential decay of the native Pt(II) Schiff base complex (τP = 3.7 μs). Femtosecond/nanosecond transient absorption spectroscopy suggests an equilibrium between triplet anthracene (3An) and triplet metal-to-ligand charge-transfer (3MLCT) states, with the dark 3An state slightly lower in energy (1.96 eV for Pt-9An and 1.90 eV for Pt-2An) than the emissive 3MLCT state (1.97 eV for Pt-9An and 1.91 eV for Pt-2An). Intramolecular triplet-triplet energy transfer (TTET) and reverse TTET take 4.8 ps/444 ps for Pt-9An and 55 ps/1.7 ns for Pt-2An, respectively. The triplet-state equilibrium extends the triplet-state lifetime of the complexes to 103 μs (Pt-2An) or 163 μs (Pt-9An), in comparison to the native Pt(II) complex, which shows a lifetime of 4.0 μs. The complexes were used for triplet-triplet-annihilation upconversion with perylene as the triplet acceptor. The upconversion quantum yield is up to 15%, and a large anti-Stokes shift (0.75 eV) is achieved by excitation into the singlet metal-to-ligand charge-transfer absorption band (589 nm) of the complexes (anti-Stokes shift is 0.92 eV with 9,10-diphenylanthracene as the acceptor).
Collapse
Affiliation(s)
- Kepeng Chen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China
| | - Mushraf Hussain
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China
| | - Syed S Razi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China.,Department of Chemistry, Gaya College, Gaya, Constituent Unit of Magadh University, Bodhgaya, Bihar 823001, India
| | - Yuqi Hou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China
| | - Elif Akhuseyin Yildiz
- Department of Engineering Physics, Faculty of Engineering, Ankara University, Bes̨evler, Ankara 06100, Turkey
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China
| | - Halime Gul Yaglioglu
- Department of Engineering Physics, Faculty of Engineering, Ankara University, Bes̨evler, Ankara 06100, Turkey
| | - Mariangela Di Donato
- European Laboratory for Non-Linear Spectroscopy, via North Carrara 1, Sesto Fiorentino, Florence 50019, Italy.,ICCOM-CNR via Madonna del Piano 10, Sesto Fiorentino, Florence 50019, Italy
| |
Collapse
|
6
|
Zhang X, Hou Y, Xiao X, Chen X, Hu M, Geng X, Wang Z, Zhao J. Recent development of the transition metal complexes showing strong absorption of visible light and long-lived triplet excited state: From molecular structure design to photophysical properties and applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213371] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Wang J, Gong Q, Wang L, Hao E, Jiao L. The main strategies for tuning BODIPY fluorophores into photosensitizers. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424619300234] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Photodynamic therapy (PDT) is a minimally invasive technique for the treatment of target malignant tumors via the generation of highly reactive singlet oxygen species. PDT treatment of cancer/tumor tissues greatly relies on the development of suitable stable, highly specific and efficient photosensitizers. BODIPY (Boron dipyrromethene) derivatives, as a class of well-developed, versatile fluorescent dyes, has emerged as a new class of PDT agents over the past decade. Many elegant strategies have been developed to enhance the singlet oxygen generation efficiency and the cancer/tumor cell selectivity of BODIPY-based photosensitizers to improve the therapeutic outcomes as well as to minimize the side effects. Many of the currently reported BODIPY-based photosensitizers are valuable dual imaging and therapeutic agents, which can efficiently generate singlet oxygen for PDT and emit fluorescence for in vivo imaging. Although the currently approved PDT agents used for clinical trials do not feature BODIPYs, this situation is expected to change. In this review, we provide an overview of the various strategies that have been used to improve the singlet oxygen generation efficiency for tuning BODIPY fluorophores into photosensitizers and dual imaging/therapeutic agents. Their photophysical properties and photocytotoxic activity including the absorption/emission wavelengths, the singlet oxygen generation efficiency ([Formula: see text] and the half maximal inhibitory concentration [Formula: see text] of these currently reported photosensitizers are summarized. We believe these newly developed BODIPY-based photosensitizers will broaden current concepts of strategies for PDT agent design, and promise to make an important contribution to the diagnosis and therapeutics for the treatment of cancer.
Collapse
Affiliation(s)
- Jun Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
- Department of Chemical and Chemical Engineering, Hefei Normal University, Hefei, 230601, China
| | - Qingbao Gong
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Long Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| |
Collapse
|
8
|
|
9
|
Zhong F, Zhao J, Hayvali M, Elmali A, Karatay A. Effect of Molecular Conformation Restriction on the Photophysical Properties of N^N Platinum(II) Bis(ethynylnaphthalimide) Complexes Showing Close-Lying 3MLCT and 3LE Excited States. Inorg Chem 2019; 58:1850-1861. [PMID: 30672269 DOI: 10.1021/acs.inorgchem.8b02558] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using naphthalimide (NI), complexes (Pt-PhNI and Pt-PhMeNI) based on the N^N platinum(II) bis(phenylacetylide) coordination framework were prepared, in which there are two close-lying triplet states, i.e., the metal-to-ligand-charge-transfer (3MLCT) and the NI localized emissive state (3LE). Pt-PhNI has better electronic communication between the Pt coordination center and the NI moiety, whereas in Pt-PhMeNI, they are more isolated by orthogonal geometry. For Pt-PhMeNI, the S0 → 1MLCT and S0 → 1LE absorption bands are separated by 5655 cm-1, while they are more overlapped in Pt-PhNI. The 3MLCT → S0 and 3LE → S0 dual phosphorescence emissions were observed for both Pt-PhNI (in toluene) and Pt-PhMeNI (in benzonitrile). The molecular conformation tunes the 3MLCT/3LE state population ratio, and the orthogonal geometry makes the 3LE state in Pt-PhMeNI basically a dark state (in toluene). Switching of the relative energy levels of the 3MLCT/3LE states by variation of the solvent polarity and temperature was achieved. For Pt-PhMeNI, the energy level of 3MLCT state is higher in a polar solvent; thus, the 3MLCT emission decreases, while the phosphorescence lifetime is prolonged from 9.5 μs (in toluene) to 58 μs (in benzonitrile) because of the different equilibria with the nonemissive 3LE state. Conversely, increasing the temperature enhances the upward transition from the nonemissive 3LE state to the emissive 3MLCT state; as such, the phosphorescence of Pt-PhMeNI was intensified at higher temperature (which is unusual), and the phosphorescence lifetime decreased from 58 μs (298 K) to ca. 5 μs (348 K). The ultrafast intersystem crossing (ca. 0.5 ps) and intramolecular triplet-triplet energy transfer (3-11 ps) were studied by femtosecond transient absorption spectroscopy. These results are useful for an in-depth understanding of the photophysics of multichromophore transition-metal complexes and for the design of external stimuli-responsive sensing materials, for instance, temperature or microenvironment sensing materials.
Collapse
Affiliation(s)
- Fangfang Zhong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering , Dalian University of Technology , E-208 West Campus, 2 Ling Gong Road , Dalian 116024 , P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering , Dalian University of Technology , E-208 West Campus, 2 Ling Gong Road , Dalian 116024 , P. R. China
| | | | | | | |
Collapse
|
10
|
Irmler P, Gogesch FS, Larsen CB, Wenger OS, Winter RF. Four different emissions from a Pt(Bodipy)(PEt3)2(S-Pyrene) dyad. Dalton Trans 2019; 48:1171-1174. [DOI: 10.1039/c8dt04823a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A bodipy-Pt-mercaptopyrene diad emits from a pyrene-to-bodipy charge-transfer, the bodipy 1ππ* and 3ππ* and the pyrene 3ππ* states.
Collapse
Affiliation(s)
- Peter Irmler
- Fachbereich Chemie
- Universität Konstanz
- D-78457 Konstanz
- Germany
| | | | | | - Oliver S. Wenger
- Department of Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
| | | |
Collapse
|
11
|
Haque A, Al-Balushi RA, Al-Busaidi IJ, Khan MS, Raithby PR. Rise of Conjugated Poly-ynes and Poly(Metalla-ynes): From Design Through Synthesis to Structure-Property Relationships and Applications. Chem Rev 2018; 118:8474-8597. [PMID: 30112905 DOI: 10.1021/acs.chemrev.8b00022] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Conjugated poly-ynes and poly(metalla-ynes) constitute an important class of new materials with potential application in various domains of science. The key factors responsible for the diverse usage of these materials is their intriguing and tunable chemical and photophysical properties. This review highlights fascinating advances made in the field of conjugated organic poly-ynes and poly(metalla-ynes) incorporating group 4-11 metals. This includes several important aspects of conjugated poly-ynes viz. synthetic protocols, bonding, electronic structure, nature of luminescence, structure-property relationships, diverse applications, and concluding remarks. Furthermore, we delineated the future directions and challenges in this particular area of research.
Collapse
Affiliation(s)
- Ashanul Haque
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Rayya A Al-Balushi
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Idris Juma Al-Busaidi
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Muhammad S Khan
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Paul R Raithby
- Department of Chemistry , University of Bath , Claverton Down , Bath BA2 7AY , U.K
| |
Collapse
|
12
|
Hussain M, El-Zohry AM, Gobeze HB, Zhao J, D'Souza F, Mohammed OF. Intramolecular Energy and Electron Transfers in Bodipy Naphthalenediimide Triads. J Phys Chem A 2018; 122:6081-6088. [PMID: 29961320 DOI: 10.1021/acs.jpca.8b03884] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Borondipyrromethene (BDP) naphthalenediimide (NDI) triads (BDP-NDI) and diiodo-BDP derivative (DiiodoBDP-NDI)) were synthesized to study the Förster resonance energy transfer (FRET) and its impact on the triplet state formation and dynamics. In these triads, diiodo-BDP and BDP are the energy donors and NDI is the energy acceptor. Nanosecond transient absorption spectra of triads indicated that triplet state is localized on NDI moiety, either by selective photoexcitation of the Diiodo-BDP or NDI unit. The intersystem crossing (ISC) is attributed to intramolecular heavy atom effect. The triplet state quantum yield was found to be 54% with a lifetime of 38 μs. However, no triplet state is observed for BDP-NDI system either by exciting BDP or NDI unit. Thus, we confirmed that charge recombination does not produce a triplet state. Interestingly, DiiodoBDP-NDI can be used as broadband excitable (500-620 nm) triplet photosensitizer, and high triplet-triplet annihilation (TTA) upconversion quantum yield of ΦUC = 2.8% was observed with 9,10-bis(phenylethynyl)-anthracene (BPEA) as a triplet acceptor/emitter.
Collapse
Affiliation(s)
- Mushraf Hussain
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering , Dalian University of Technology , E-208 West Campus, 2 Ling-Gong Road , Dalian 116024 , P. R. China
| | - Ahmed M El-Zohry
- KAUST Solar Center, Division of Physical Sciences and Engineering , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Kingdom of Saudi Arabia
| | - Habtom B Gobeze
- Department of Chemistry , University of North Texas , 1155 Union Circle, #305070 , Denton , Texas 76203-5017 , United States
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering , Dalian University of Technology , E-208 West Campus, 2 Ling-Gong Road , Dalian 116024 , P. R. China
| | - Francis D'Souza
- Department of Chemistry , University of North Texas , 1155 Union Circle, #305070 , Denton , Texas 76203-5017 , United States
| | - Omar F Mohammed
- KAUST Solar Center, Division of Physical Sciences and Engineering , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Kingdom of Saudi Arabia
| |
Collapse
|
13
|
Mitra K. Platinum complexes as light promoted anticancer agents: a redefined strategy for controlled activation. Dalton Trans 2018; 45:19157-19171. [PMID: 27883129 DOI: 10.1039/c6dt03665a] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Site-specific delivery and amenable activation of prodrugs are indispensible criteria for designing novel anticancer agents. Platinum based drugs vanguard the chemotherapeutic regimes and over the years significant attention has been paid to achieve more efficacious drugs with fewer adverse effects. The switch from platinum(ii) drugs to the inert platinum(iv) analogues proved advantageous but the new prodrugs still suffered from unspecific cytotoxic actions. Thus the photoactivation of an inert platinum prodrug specifically within neoplastic cells provided the desired spatio-temporal control over drug activation by means of illumination, thereby limiting the cytotoxic events to only at the targeted tumors. This article collates research on platinum complexes which exhibit potential light mediated anticancer effects and provides insights into the underlying mechanisms of activation. Fine tuning of the coordination sphere results in dramatic alteration of the redox and spectral properties of both ground and excited states and the cellular properties of the molecules. This concise article highlights the various light promoted strategies employed to attain a controlled release of active platinum(ii) and/or reactive oxygen species such as photoreduction, photocaging, photodissociation and photosensitization. Such dual action photoactive metal complexes with improved aqueous solubility and versatility are promising candidates for combination therapy which is likely to be the future of anticancer research.
Collapse
Affiliation(s)
- Koushambi Mitra
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560-012, India.
| |
Collapse
|
14
|
Irmler P, Winter RF. σ-Pt-BODIPY Complexes with Platinum Attachment to Carbon Atoms C2 or C3: Spectroscopic, Structural, and (Spectro)Electrochemical Studies and Photocatalysis. Organometallics 2018. [DOI: 10.1021/acs.organomet.7b00806] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Peter Irmler
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße
10, D-78457 Konstanz, Germany
| | - Rainer F. Winter
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße
10, D-78457 Konstanz, Germany
| |
Collapse
|
15
|
Synthesis and photophysical characterization of phosphorescent platinum(II) bis-(trimethylsilyl)ethynyl-phenanthroline organometallic complexes with bis-arylethynyl derivatives. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
16
|
Zhang XP, Zhang DS, Qi XW, Zhu LH, Wang XH, Sun W, Shi ZF, Lin Q. Luminescent mechanochromism of chiral alkynylplatinum(II) bipyridine complexes functionalized with pinene groups. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.07.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Kisel KS, Melnikov AS, Grachova EV, Hirva P, Tunik SP, Koshevoy IO. Linking Re I and Pt II Chromophores with Aminopyridines: A Simple Route to Achieve a Complicated Photophysical Behavior. Chemistry 2017. [PMID: 28636113 DOI: 10.1002/chem.201701539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The bifunctional aminopyridine ligands H2 N-(CH2 )n -4-C5 H4 N (n=0, L1; 1, L2; 2, L3) have been utilized for the preparation of the rhenium complexes [Re(phen)(CO)3 (L1-L3)]+ (1-3; phen=phenanthroline). Complexes 2 and 3 with NH2 -coordinated L2 and L3, respectively, were coupled with cycloplatinated motifs {Pt(ppy)Cl} and {Pt(dpyb)}+ (ppy=2-phenylpyridine, dpyb=dipyridylbenzene) to give the bimetallic species [Re(phen)(CO)3 (μ-L2/L3)Pt(ppy)Cl]+ (4, 6) and [Re(phen)(CO)3 (μ-L2/L3)Pt(dpyb)]2+ (5, 7). In solution, complexes 4 and 6 show 3 MLCT {Re}-based emission at 298 K, which changes to the 3 IL(ppy) state at 77 K. The photophysical properties of compounds 5 and 7 display a pronounced concentration dependence, presumably due to the formation of bimolecular aggregates. Analysis of the spectroscopic data, combined with TD-DFT simulations, suggest that unconventional heteroleptic {Re(phen)}⋅⋅⋅{Pt(dpyb)} π-π stacking operates as the driving force for ground-state association. The latter, together with intra- and intermolecular energy-transfer processes, determines the appearance of multiple emission bands and results in nonlinear relaxation kinetics of the excited states.
Collapse
Affiliation(s)
- Kristina S Kisel
- Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, Joensuu, Finland.,Institute of Chemistry, St.-Petersburg State University, 26 Universitetskiy pr., Petergof, St. Petersburg, Russia
| | - Alexei S Melnikov
- Peter the Great St.-Petersburg Polytechnic University, Polytechnicheskaya, 29, St. Petersburg, Russia
| | - Elena V Grachova
- Institute of Chemistry, St.-Petersburg State University, 26 Universitetskiy pr., Petergof, St. Petersburg, Russia
| | - Pipsa Hirva
- Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, Joensuu, Finland
| | - Sergey P Tunik
- Institute of Chemistry, St.-Petersburg State University, 26 Universitetskiy pr., Petergof, St. Petersburg, Russia
| | - Igor O Koshevoy
- Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, Joensuu, Finland
| |
Collapse
|
18
|
Zhong F, Zhao J. An N^N Platinum(II) Bis(acetylide) Complex with Naphthalimide and Pyrene Ligands: Synthesis, Photophysical Properties, and Application in Triplet-Triplet Annihilation Upconversion. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700656] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Fangfang Zhong
- State Key Laboratory of Fine Chemicals; School of Chemical Engineering; Dalian University of Technology; E-208 Western Campus, 2 Ling-Gong Road 116024 Dalian China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals; School of Chemical Engineering; Dalian University of Technology; E-208 Western Campus, 2 Ling-Gong Road 116024 Dalian China
| |
Collapse
|
19
|
Barbour JC, Kim AJI, deVries E, Shaner SE, Lovaasen BM. Chromium(III) Bis-Arylterpyridyl Complexes with Enhanced Visible Absorption via Incorporation of Intraligand Charge-Transfer Transitions. Inorg Chem 2017; 56:8212-8222. [PMID: 28665604 DOI: 10.1021/acs.inorgchem.7b00953] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A series of chromium(III) bis-arylterpyridyl complexes containing intraligand charge-transfer (ILCT) excited states were prepared and characterized. These complexes show significant absorption in the visible region due to the ILCT bands. The ILCT bands are tunable across the UV and visible spectrum via incorporation of electron-withdrawing and electron-donating groups on the aryl ring. The absorption of Cr(4'-(4-methoxyphenyl)-2,2':6',2″-terpyridine)23+ (4) in particular is much stronger in the visible region (ε = 11 900 M-1 cm-1 at 450 nm and ε = 5090 M-1 cm-1 at 500 nm) than that of the parent complex Cr(tpy)23+ (tpy = 2,2':6',2″-terpyridine; ε = 2160 M-1 cm-1 at 450 nm, and ε = 170 M-1 cm-1 at 500 nm). Emission experiments on this series reveal Cr(III)-based phosphorescence with lifetimes from 140 to 600 ns upon excitation into the ILCT bands, which indicates funneling of the excitation energy from ligand-localized excited states to Cr(III)-based excited states. Cyclic voltammograms exhibit at least three reversible ligand-based reductions. The first reduction shows shifts of up to -160 mV compared to Cr(tpy)23+. The excited-state reduction potential of these complexes ranges from +0.95 to +1.04 V vs the ferrocene/ferrocenium couple, making them potent photooxidants.
Collapse
Affiliation(s)
- Johanna C Barbour
- Department of Chemistry, Wheaton College , 501 College Avenue, Wheaton, Illinois 60187, United States
| | - Amy J I Kim
- Department of Chemistry, Wheaton College , 501 College Avenue, Wheaton, Illinois 60187, United States
| | - Elsemarie deVries
- Department of Chemistry, Wheaton College , 501 College Avenue, Wheaton, Illinois 60187, United States
| | - Sarah E Shaner
- Department of Chemistry, Benedictine University , 5700 College Road, Lisle, Illinois 60532, United States
| | - Benjamin M Lovaasen
- Department of Chemistry, Wheaton College , 501 College Avenue, Wheaton, Illinois 60187, United States
| |
Collapse
|
20
|
Figliola C, Robertson KN, Greening S, Thompson A. Asymmetric Dipyrrin and F-BODIPYs Conjugated to Terminal Alkynes and Alkenes. J Org Chem 2017. [PMID: 28648076 DOI: 10.1021/acs.joc.7b01129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An asymmetric meso-H dipyrrin featuring a conjugated terminal alkyne substituent was converted to its corresponding difluoro boron complex, and the extent of π-conjugation was extended using Sonogashira cross-coupling. Treatment of the alkyne-substituted dipyrrin with BF3·OEt2 and NEt3 revealed the reactivity of the conjugated terminal alkyne toward Lewis-activated electrophilic substitution and led to the isolation of F-BODIPYs bearing terminal bromovinyl and enol substituents.
Collapse
Affiliation(s)
- Carlotta Figliola
- Department of Chemistry, Dalhousie University , Halifax, NS B3H 4R2, Canada
| | | | - Sarah Greening
- Department of Chemistry, Dalhousie University , Halifax, NS B3H 4R2, Canada
| | - Alison Thompson
- Department of Chemistry, Dalhousie University , Halifax, NS B3H 4R2, Canada
| |
Collapse
|
21
|
Azarias C, Russo R, Cupellini L, Mennucci B, Jacquemin D. Modeling excitation energy transfer in multi-BODIPY architectures. Phys Chem Chem Phys 2017; 19:6443-6453. [PMID: 28197587 DOI: 10.1039/c7cp00427c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The excitation energy transfer (EET) allowing the concentration of the energy has been investigated in several multi-BODIPY architectures with the help of an approach coupling time dependent density functional theory to an implicit solvation scheme, the polarizable continuum model. We have first considered several strategies to compute the electronic coupling in a dyad varying the size of the donor/acceptor units, the bridge, the geometries and conformations. We have next studied the electronic coupling in three different architectures for which the EET rate constants have been experimentally measured both from luminescence and transient absorption data and from Förster theory. A good agreement with experimental values was obtained. Finally, in an effort to further improve these systems, we have designed several series of BODIPY triads, investigating the effect of acidochromism, core modifications, the position of the linkage and chemical substitutions on the EET coupling and rate constant. We show that several architectures allow us to increase the EET rate by one order of magnitude compared to the original compound.
Collapse
Affiliation(s)
- Cloé Azarias
- Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS no. 6230, BP 92208, Université de Nantes, 2, Rue de la Houssinière, 44322 Nantes, France.
| | - Roberto Russo
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Moruzzi 3, 56124 Pisa, Italy.
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Moruzzi 3, 56124 Pisa, Italy.
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Moruzzi 3, 56124 Pisa, Italy.
| | - Denis Jacquemin
- Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS no. 6230, BP 92208, Université de Nantes, 2, Rue de la Houssinière, 44322 Nantes, France. and Institut Universitaire de France, 1 rue Descartes, F-75231 Paris Cedex 05, France
| |
Collapse
|
22
|
Geist F, Jackel A, Irmler P, Linseis M, Malzkuhn S, Kuss-Petermann M, Wenger OS, Winter RF. Directing Energy Transfer in Panchromatic Platinum Complexes for Dual Vis–Near-IR or Dual Visible Emission from σ-Bonded BODIPY Dyes. Inorg Chem 2016; 56:914-930. [DOI: 10.1021/acs.inorgchem.6b02549] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Fabian Geist
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, D-78457 Konstanz, Germany
| | - Andrej Jackel
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, D-78457 Konstanz, Germany
| | - Peter Irmler
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, D-78457 Konstanz, Germany
| | - Michael Linseis
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, D-78457 Konstanz, Germany
| | - Sabine Malzkuhn
- Department of Chemistry, University of Basel, St.-Johanns-Ring
19, CH-4056 Basel, Switzerland
| | - Martin Kuss-Petermann
- Department of Chemistry, University of Basel, St.-Johanns-Ring
19, CH-4056 Basel, Switzerland
| | - Oliver S. Wenger
- Department of Chemistry, University of Basel, St.-Johanns-Ring
19, CH-4056 Basel, Switzerland
| | - Rainer F. Winter
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, D-78457 Konstanz, Germany
| |
Collapse
|
23
|
Yang W, Zhao J. Photophysical Properties of Visible-Light-Harvesting PtIIBis(acetylide) Complexes. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600968] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Wenbo Yang
- State Key Laboratory of Fine Chemicals; School of Chemical Engineering; Dalian University of Technology; E-208 Western Campus, 2 Ling-Gong Road 116024 Dalian China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals; School of Chemical Engineering; Dalian University of Technology; E-208 Western Campus, 2 Ling-Gong Road 116024 Dalian China
| |
Collapse
|
24
|
Archer SA, Keane T, Delor M, Meijer AJHM, Weinstein JA. (13)C or Not (13)C: Selective Synthesis of Asymmetric Carbon-13-Labeled Platinum(II) cis-Acetylides. Inorg Chem 2016; 55:8251-3. [PMID: 27504991 DOI: 10.1021/acs.inorgchem.6b01287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Asymmetric isotopic labeling of parallel and identical electron- or energy-transfer pathways in symmetrical molecular assemblies is an extremely challenging task owing to the inherent lack of isotopic selectivity in conventional synthetic methods. Yet, it would be a highly valuable tool in the study and control of complex light-matter interactions in molecular systems by exclusively and nonintrusively labeling one of otherwise identical reaction pathways, potentially directing charge and energy transport along a chosen path. Here we describe the first selective synthetic route to asymmetrically labeled organometallic compounds, on the example of charge-transfer platinum(II) cis-acetylide complexes. We demonstrate the selective (13)C labeling of one of two acetylide groups. We further show that such isotopic labeling successfully decouples the two ν(C≡C) in the mid-IR region, permitting independent spectroscopic monitoring of two otherwise identical electron-transfer pathways, along the (12)C≡(12)C and (13)C≡(13)C coordinates. Quantum-mechanical mixing leads to intriguing complex features in the vibrational spectra of such species, which we successfully model by full-dimensional anharmonically corrected DFT calculations, despite the large size of these systems. The synthetic route developed and demonstrated herein should lead to a great diversity of asymmetric organometallic complexes inaccessible otherwise, opening up a plethora of opportunities to advance the fundamental understanding and control of light-matter interactions in molecular systems.
Collapse
Affiliation(s)
- Stuart A Archer
- Department of Chemistry, University of Sheffield , Sheffield S3 7HF, United Kingdom
| | - Theo Keane
- Department of Chemistry, University of Sheffield , Sheffield S3 7HF, United Kingdom
| | - Milan Delor
- Department of Chemistry, University of Sheffield , Sheffield S3 7HF, United Kingdom
| | - Anthony J H M Meijer
- Department of Chemistry, University of Sheffield , Sheffield S3 7HF, United Kingdom
| | - Julia A Weinstein
- Department of Chemistry, University of Sheffield , Sheffield S3 7HF, United Kingdom
| |
Collapse
|
25
|
Berenguer JR, Lalinde E, Martín A, Moreno MT, Sánchez S, Shahsavari HR. Binuclear Complexes and Extended Chains Featuring PtII–TlI Bonds: Influence of the Pyridine-2-Thiolate and Cyclometalated Ligands on the Self-Assembly and Luminescent Behavior. Inorg Chem 2016; 55:7866-78. [DOI: 10.1021/acs.inorgchem.6b00699] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jesús R. Berenguer
- Departamento
de Química, Centro de Síntesis Química de La
Rioja, Universidad de La Rioja, Logroño 26006, Spain
| | - Elena Lalinde
- Departamento
de Química, Centro de Síntesis Química de La
Rioja, Universidad de La Rioja, Logroño 26006, Spain
| | - Antonio Martín
- Departamento de Química Inorgánica,
Instituto de Síntesis Química y Catálisis Homogénea. Universidad de Zaragoza, CSIC, Zaragoza 50009, Spain
| | - M. Teresa Moreno
- Departamento
de Química, Centro de Síntesis Química de La
Rioja, Universidad de La Rioja, Logroño 26006, Spain
| | - Sergio Sánchez
- School of Chemistry, University of Manchester, Oxford
Road, Manchester M13 9PL, U.K
| | - Hamid R. Shahsavari
- Departamento
de Química, Centro de Síntesis Química de La
Rioja, Universidad de La Rioja, Logroño 26006, Spain
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences, Yousef Sobouti Boulevard, Zanjan 45195-1159, Iran
| |
Collapse
|
26
|
Mitra K, Gautam S, Kondaiah P, Chakravarty AR. BODIPY-Appended 2-(2-Pyridyl)benzimidazole Platinum(II) Catecholates for Mitochondria-Targeted Photocytotoxicity. ChemMedChem 2016; 11:1956-67. [PMID: 27465792 DOI: 10.1002/cmdc.201600320] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Indexed: 12/21/2022]
Abstract
Platinum(II) complexes of the type [Pt(L)(cat)] (1 and 2), in which H2 cat is catechol and L represents two 2-(2-pyridyl)benzimidazole ligands with 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) pendants, were synthesized to achieve mitochondria-targeted photocytotoxicity. The complexes showed strong absorptions in the range λ=510-540 nm. Complex 1 exhibited intense emission at λ=525 nm in 1 % DMSO/water solution (fluorescence quantum yield of 0.06). Nanosecond transient absorption spectral features indicated an enhanced population of the triplet excited state in di-iodinated complex 2. The generation of singlet oxygen by complex 2 upon exposure to visible light, as evidenced from experiments with 1,3-diphenylisobenzofuran, is suitable for photodynamic therapy because of the remarkable photosensitizing ability. The complexes resulted in excellent photocytotoxicity in HaCaT cells (half maximal inhibitory concentration IC50 ≈3 μm, λ=400-700 nm, light dose=10 J cm(-2) ), but they remained non-toxic in the dark (IC50 >100 μm). Confocal microscopy images of 1 and Pt estimation from isolated mitochondria showed colocalization of the complexes in the mitochondria. Complex 2 displayed generation of reactive oxygen species induced by visible light, disruption of the mitochondrial membrane potential, and apoptosis.
Collapse
Affiliation(s)
- Koushambi Mitra
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Srishti Gautam
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Paturu Kondaiah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, Karnataka, India.
| | - Akhil R Chakravarty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India.
| |
Collapse
|