1
|
Elvers BJ, Fischer C, Schulzke C. Dynamics and Coordination of a P 2N 2 Ligand - from Twisted Conformation to Chelation. Chemistry 2024; 30:e202304103. [PMID: 38372510 DOI: 10.1002/chem.202304103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/10/2024] [Accepted: 02/19/2024] [Indexed: 02/20/2024]
Abstract
Based on their general spacial flexibility, their Lewis and Brønsted basicity, and ability to mimic second sphere effects the 1,5-diaza-3,7-diphosphacyclooctane ligand family and their complexes have regained substantial scientific interest. It was now possible to structurally analyze a recently reported member of this family with p-tolyl and t-butyl substituents on P and N, respectively, (P2 p-tolN2 tBu). Notably, the ligand crystallizes with a 'twisted' backbone. This compound is the very first of its kind to have been unambiguously characterized with regard to its chemical and molecular structure as being in this conformation. A temperature-dependent NMR study provides insight into the molecular dynamics of two isomers in solution, which are most likely also both twisted, as judged by the observed limited reactivity. Despite the in principle unfavorable conformation of the free ligand, it was successfully chelated to tungsten and molybdenum centers in mononuclear carbonyl complexes. The ligand, a derivative thereof and four new complexes were comprehensively characterized and analyzed in comparison. This includes single crystal XRD molecular structures of P2 p-tolN2 tBu and all four complexes. P2 p-tolN2 tBu, regardless of its twisted conformation, is able to coordinate to metal centers given that enough energy (heat) for a conformational change is provided.
Collapse
Affiliation(s)
- Benedict J Elvers
- Bioinorganic Chemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Christian Fischer
- Bioinorganic Chemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Carola Schulzke
- Bioinorganic Chemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| |
Collapse
|
2
|
Hau JL, Kaltwasser S, Muras V, Casutt MS, Vohl G, Claußen B, Steffen W, Leitner A, Bill E, Cutsail GE, DeBeer S, Vonck J, Steuber J, Fritz G. Conformational coupling of redox-driven Na +-translocation in Vibrio cholerae NADH:quinone oxidoreductase. Nat Struct Mol Biol 2023; 30:1686-1694. [PMID: 37710014 PMCID: PMC10643135 DOI: 10.1038/s41594-023-01099-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/17/2023] [Indexed: 09/16/2023]
Abstract
In the respiratory chain, NADH oxidation is coupled to ion translocation across the membrane to build up an electrochemical gradient. In the human pathogen Vibrio cholerae, the sodium-pumping NADH:quinone oxidoreductase (Na+-NQR) generates a sodium gradient by a so far unknown mechanism. Here we show that ion pumping in Na+-NQR is driven by large conformational changes coupling electron transfer to ion translocation. We have determined a series of cryo-EM and X-ray structures of the Na+-NQR that represent snapshots of the catalytic cycle. The six subunits NqrA, B, C, D, E, and F of Na+-NQR harbor a unique set of cofactors that shuttle the electrons from NADH twice across the membrane to quinone. The redox state of a unique intramembranous [2Fe-2S] cluster orchestrates the movements of subunit NqrC, which acts as an electron transfer switch. We propose that this switching movement controls the release of Na+ from a binding site localized in subunit NqrB.
Collapse
Affiliation(s)
- Jann-Louis Hau
- Department of Cellular Microbiology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Susann Kaltwasser
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Valentin Muras
- Department of Cellular Microbiology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Marco S Casutt
- Department of Cellular Microbiology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Georg Vohl
- Department of Cellular Microbiology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Björn Claußen
- Department of Cellular Microbiology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Wojtek Steffen
- Department of Cellular Microbiology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - George E Cutsail
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| | - Julia Steuber
- Department of Cellular Microbiology, Institute of Biology, University of Hohenheim, Stuttgart, Germany.
| | - Günter Fritz
- Department of Cellular Microbiology, Institute of Biology, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
3
|
Chodkiewicz M, Pawlędzio S, Woińska M, Woźniak K. Fragmentation and transferability in Hirshfeld atom refinement. IUCRJ 2022; 9:298-315. [PMID: 35371499 PMCID: PMC8895009 DOI: 10.1107/s2052252522000690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/19/2022] [Indexed: 05/06/2023]
Abstract
Hirshfeld atom refinement (HAR) is one of the most effective methods for obtaining accurate structural parameters for hydrogen atoms from X-ray diffraction data. Unfortunately, it is also relatively computationally expensive, especially for larger molecules due to wavefunction calculations. Here, a fragmentation approach has been tested as a remedy for this problem. It gives an order of magnitude improvement in computation time for larger organic systems and is a few times faster for metal-organic systems at the cost of only minor differences in the calculated structural parameters when compared with the original HAR calculations. Fragmentation was also applied to polymeric and disordered systems where it provides a natural solution to problems that arise when HAR is applied. The concept of fragmentation is closely related to the transferable aspherical atom model (TAAM) and allows insight into possible ways to improve TAAM. Hybrid approaches combining fragmentation with the transfer of atomic densities between chemically similar atoms have been tested. An efficient handling of intermolecular interactions was also introduced for calculations involving fragmentation. When applied in fragHAR (a fragmentation approach for polypeptides) as a replacement for the original approach, it allowed for more efficient calculations. All of the calculations were performed with a locally modified version of Olex2 combined with a development version of discamb2tsc and ORCA. Care was taken to efficiently use the power of multicore processors by simple implementation of load-balancing, which was found to be very important for lowering computational time.
Collapse
Affiliation(s)
- Michał Chodkiewicz
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warszawa 02-089, Poland
| | - Sylwia Pawlędzio
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warszawa 02-089, Poland
| | - Magdalena Woińska
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warszawa 02-089, Poland
| | - Krzysztof Woźniak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warszawa 02-089, Poland
| |
Collapse
|
4
|
Kaim V, Kaur-Ghumaan S. Mononuclear Mn complexes featuring N,S-/N,N-donor and 1,3,5-triaza-7-phosphaadamantane ligands: synthesis and electrocatalytic properties. NEW J CHEM 2021. [DOI: 10.1039/d1nj02104d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mononuclear Mn(i) carbonyl complexes incorporating 2-mercaptobenzothiazole or 2-mercaptobenzimidazole and phosphaadamantane ligands were evaluated as electrocatalysts for the HER both in acetonitrile and acetonitrile/water.
Collapse
Affiliation(s)
- Vishakha Kaim
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | | |
Collapse
|
5
|
|
6
|
Landge VG, Babu R, Yadav V, Subaramanian M, Gupta V, Balaraman E. Iron-Catalyzed Direct Julia-Type Olefination of Alcohols. J Org Chem 2020; 85:9876-9886. [PMID: 32600041 DOI: 10.1021/acs.joc.0c01173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we report an iron-catalyzed, convenient, and expedient strategy for the synthesis of styrene and naphthalene derivatives with the liberation of dihydrogen. The use of a catalyst derived from an earth-abundant metal provides a sustainable strategy to olefins. This method exhibits wide substrate scope (primary and secondary alcohols) functional group tolerance (amino, nitro, halo, alkoxy, thiomethoxy, and S- and N-heterocyclic compounds) that can be scaled up. The unprecedented synthesis of 1-methyl naphthalenes proceeds via tandem methenylation/double dehydrogenation. Mechanistic study shows that the cleavage of the C-H bond of alcohol is the rate-determining step.
Collapse
Affiliation(s)
- Vinod G Landge
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Reshma Babu
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Vinita Yadav
- Organic Chemistry Division, Dr. Homi Bhabha Road, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India
| | - Murugan Subaramanian
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Virendrakumar Gupta
- Polymer Synthesis & Catalysis, Reliance Research & Development Centre, Reliance Industries Limited, Ghansoli, Navi Mumbai 400701, India
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| |
Collapse
|
7
|
Ishihara K, Araki Y, Tada M, Takayama T, Sakai Y, Sameera WMC, Ohki Y. Synthesis of Dinuclear Mo-Fe Hydride Complexes and Catalytic Silylation of N 2. Chemistry 2020; 26:9537-9546. [PMID: 32180271 DOI: 10.1002/chem.202000104] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/24/2020] [Indexed: 11/08/2022]
Abstract
Two transition-metal atoms bridged by hydrides may represent a useful structural motif for N2 activation by molecular complexes and the enzyme active site. In this study, dinuclear MoIV -FeII complexes with bridging hydrides, CpR Mo(PMe3 )(H)(μ-H)3 FeCp* (2 a; CpR =Cp*=C5 Me5 , 2 b; CpR =C5 Me4 H), were synthesized via deprotonation of CpR Mo(PMe3 )H5 (1 a; CpR =Cp*, 1 b; CpR =C5 Me4 H) by Cp*FeN(SiMe3 )2 , and they were characterized by spectroscopy and crystallography. These Mo-Fe complexes reveal the shortest Mo-Fe distances ever reported (2.4005(3) Å for 2 a and 2.3952(3) Å for 2 b), and the Mo-Fe interactions were analyzed by computational studies. Removal of the terminal Mo-H hydride in 2 a-2 b by [Ph3 C]+ in THF led to the formation of cationic THF adducts [CpR Mo(PMe3 )(THF)(μ-H)3 FeCp*]+ (3 a; CpR =Cp*, 3 b; CpR =C5 Me4 H). Further reaction of 3 a with LiPPh2 gave rise to a phosphido-bridged complex Cp*Mo(PMe3 )(μ-H)(μ-PPh2 )FeCp* (4). A series of Mo-Fe complexes were subjected to catalytic silylation of N2 in the presence of Na and Me3 SiCl, furnishing up to 129±20 equiv of N(SiMe3 )3 per molecule of 2 b. Mechanism of the catalytic cycle was analyzed by DFT calculations.
Collapse
Affiliation(s)
- Kodai Ishihara
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Yuna Araki
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Mizuki Tada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.,Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Tsutomu Takayama
- Department of Chemistry, Daido University, Takiharu-cho, Minami-ku, Nagoya, 457-8530, Japan
| | - Yoichi Sakai
- Department of Chemistry, Daido University, Takiharu-cho, Minami-ku, Nagoya, 457-8530, Japan
| | - W M C Sameera
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan
| | - Yasuhiro Ohki
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| |
Collapse
|
8
|
Bridge BJ, Boyle PD, Blacquiere JM. endo-Selective Iron Catalysts for Intramolecular Alkyne Hydrofunctionalization. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00307] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Benjamin J. Bridge
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Paul D. Boyle
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Johanna M. Blacquiere
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada N6A 5B7
| |
Collapse
|
9
|
Agarwal T, Kaur-Ghumaan S. Mono- and dinuclear mimics of the [FeFe] hydrogenase enzyme featuring bis(monothiolato) and 1,3,5-triaza-7-phosphaadamantane ligands. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Tang H, Brothers EN, Grapperhaus CA, Hall MB. Electrocatalytic Hydrogen Evolution and Oxidation with Rhenium Tris(thiolate) Complexes: A Competition between Rhenium and Sulfur for Electrons and Protons. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04579] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hao Tang
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | | | - Craig A. Grapperhaus
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292, United States
| | - Michael B. Hall
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| |
Collapse
|
11
|
|
12
|
A tetranuclear iron complex: substitution with triphenylphosphine ligand and investigation into electrocatalytic proton reduction. J CHEM SCI 2018. [DOI: 10.1007/s12039-018-1529-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Robinson SJC, Heinekey DM. Hydride & dihydrogen complexes of earth abundant metals: structure, reactivity, and applications to catalysis. Chem Commun (Camb) 2018; 53:669-676. [PMID: 27928559 DOI: 10.1039/c6cc07529k] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent developments in the chemistry of hydride and dihydrogen complexes of iron, cobalt, and nickel are summarized. Applications in homogeneous catalysis are emphasized.
Collapse
Affiliation(s)
| | - D M Heinekey
- University of Washington, Department of Chemistry, Seattle, WA, USA
| |
Collapse
|
14
|
Fukuzumi S, Lee YM, Nam W. Thermal and photocatalytic production of hydrogen with earth-abundant metal complexes. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.07.014] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Malischewski M, Seppelt K, Sutter J, Heinemann FW, Dittrich B, Meyer K. Protonation of Ferrocene: A Low-Temperature X-ray Diffraction Study of [Cp2
FeH](PF6
) Reveals an Iron-Bound Hydrido Ligand. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704854] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Moritz Malischewski
- Freie Universität Berlin; Institut für Chemie und Biochemie, Anorganische Chemie; Fabeckstrasse 34-36 14195 Berlin Germany
| | - Konrad Seppelt
- Freie Universität Berlin; Institut für Chemie und Biochemie, Anorganische Chemie; Fabeckstrasse 34-36 14195 Berlin Germany
| | - Jörg Sutter
- Friedrich-Alexander-Universität Erlangen-Nürnberg; Department für Chemie und Pharmazie, Anorganische Chemie; Egerlandstrasse 1 91058 Erlangen Germany
| | - Frank W. Heinemann
- Friedrich-Alexander-Universität Erlangen-Nürnberg; Department für Chemie und Pharmazie, Anorganische Chemie; Egerlandstrasse 1 91058 Erlangen Germany
| | - Birger Dittrich
- Heinrich-Heine-Universität Düsseldorf; Anorganische Chemie und Strukturchemie; Universitätsstrasse 1 40225 Düsseldorf Germany
| | - Karsten Meyer
- Friedrich-Alexander-Universität Erlangen-Nürnberg; Department für Chemie und Pharmazie, Anorganische Chemie; Egerlandstrasse 1 91058 Erlangen Germany
| |
Collapse
|
16
|
Malischewski M, Seppelt K, Sutter J, Heinemann FW, Dittrich B, Meyer K. Protonation of Ferrocene: A Low-Temperature X-ray Diffraction Study of [Cp2
FeH](PF6
) Reveals an Iron-Bound Hydrido Ligand. Angew Chem Int Ed Engl 2017; 56:13372-13376. [DOI: 10.1002/anie.201704854] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/18/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Moritz Malischewski
- Freie Universität Berlin; Institut für Chemie und Biochemie, Anorganische Chemie; Fabeckstrasse 34-36 14195 Berlin Germany
| | - Konrad Seppelt
- Freie Universität Berlin; Institut für Chemie und Biochemie, Anorganische Chemie; Fabeckstrasse 34-36 14195 Berlin Germany
| | - Jörg Sutter
- Friedrich-Alexander-Universität Erlangen-Nürnberg; Department für Chemie und Pharmazie, Anorganische Chemie; Egerlandstrasse 1 91058 Erlangen Germany
| | - Frank W. Heinemann
- Friedrich-Alexander-Universität Erlangen-Nürnberg; Department für Chemie und Pharmazie, Anorganische Chemie; Egerlandstrasse 1 91058 Erlangen Germany
| | - Birger Dittrich
- Heinrich-Heine-Universität Düsseldorf; Anorganische Chemie und Strukturchemie; Universitätsstrasse 1 40225 Düsseldorf Germany
| | - Karsten Meyer
- Friedrich-Alexander-Universität Erlangen-Nürnberg; Department für Chemie und Pharmazie, Anorganische Chemie; Egerlandstrasse 1 91058 Erlangen Germany
| |
Collapse
|
17
|
Karasik AA, Musina EI, Balueva AS, Strelnik ID, Sinyashin OG. Cyclic aminomethylphosphines as ligands. Rational design and unpredicted findings. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2016-1022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract:Rational design of title ligands and their transition metal complexes gave the high effective catalysts for hydrogen economy and perspective “stimuli-responsive” luminescent materials. Together with the above novel cyclic aminomehtylphospine ligands have showed a row of unpredicted properties like spontaneous formation of macrocyclic molecules, unique reversible slitting of macrocycles on to the smaller cycles, rapid interconversion of the isomers catalyzed by both acids and transitional metals, bridging behavior of usually chelating ligands and unexpected high influence of handling substituents on N-atoms on to the catalytic and luminescent properties of P-complexes.
Collapse
Affiliation(s)
- Andrey A. Karasik
- 1A.E. Arbuzov Institute of Organic and Physical Chemistry of Kazan Scientific Center of Russian Academy of Sciences, Arbuzov str. 8, 420088, Kazan, Russia
| | - Elvira I. Musina
- 1A.E. Arbuzov Institute of Organic and Physical Chemistry of Kazan Scientific Center of Russian Academy of Sciences, Arbuzov str. 8, 420088, Kazan, Russia
| | - Anna S. Balueva
- 1A.E. Arbuzov Institute of Organic and Physical Chemistry of Kazan Scientific Center of Russian Academy of Sciences, Arbuzov str. 8, 420088, Kazan, Russia
| | - Igor D. Strelnik
- 1A.E. Arbuzov Institute of Organic and Physical Chemistry of Kazan Scientific Center of Russian Academy of Sciences, Arbuzov str. 8, 420088, Kazan, Russia
| | - Oleg G. Sinyashin
- 1A.E. Arbuzov Institute of Organic and Physical Chemistry of Kazan Scientific Center of Russian Academy of Sciences, Arbuzov str. 8, 420088, Kazan, Russia
| |
Collapse
|
18
|
Mulder DW, Guo Y, Ratzloff MW, King PW. Identification of a Catalytic Iron-Hydride at the H-Cluster of [FeFe]-Hydrogenase. J Am Chem Soc 2016; 139:83-86. [PMID: 27973768 DOI: 10.1021/jacs.6b11409] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hydrogenases couple electrochemical potential to the reversible chemical transformation of H2 and protons, yet the reaction mechanism and composition of intermediates are not fully understood. In this Communication we describe the biophysical properties of a hydride-bound state (Hhyd) of the [FeFe]-hydrogenase from Chlamydomonas reinhardtii. The catalytic H-cluster of [FeFe]-hydrogenase consists of a [4Fe-4S] subcluster ([4Fe-4S]H) linked by a cysteine thiol to an azadithiolate-bridged 2Fe subcluster ([2Fe]H) with CO and CN- ligands. Mössbauer analysis and density functional theory (DFT) calculations show that Hhyd consists of a reduced [4Fe-4S]H+ coupled to a diferrous [2Fe]H with a terminally bound Fe-hydride. The existence of the Fe-hydride in Hhyd was demonstrated by an unusually low Mössbauer isomer shift of the distal Fe of the [2Fe]H subcluster. A DFT model of Hhyd shows that the Fe-hydride is part of a H-bonding network with the nearby bridging azadithiolate to facilitate fast proton exchange and catalytic turnover.
Collapse
Affiliation(s)
- David W Mulder
- Biosciences Center, National Renewable Energy Laboratory , Golden, Colorado 80401, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Michael W Ratzloff
- Biosciences Center, National Renewable Energy Laboratory , Golden, Colorado 80401, United States
| | - Paul W King
- Biosciences Center, National Renewable Energy Laboratory , Golden, Colorado 80401, United States
| |
Collapse
|
19
|
Abstract
Transition metal hydride complexes are usually amphoteric, not only acting as hydride donors, but also as Brønsted-Lowry acids. A simple additive ligand acidity constant equation (LAC for short) allows the estimation of the acid dissociation constant Ka(LAC) of diamagnetic transition metal hydride and dihydrogen complexes. It is remarkably successful in systematizing diverse reports of over 450 reactions of acids with metal complexes and bases with metal hydrides and dihydrogen complexes, including catalytic cycles where these reactions are proposed or observed. There are links between pKa(LAC) and pKa(THF), pKa(DCM), pKa(MeCN) for neutral and cationic acids. For the groups from chromium to nickel, tables are provided that order the acidity of metal hydride and dihydrogen complexes from most acidic (pKa(LAC) -18) to least acidic (pKa(LAC) 50). Figures are constructed showing metal acids above the solvent pKa scales and organic acids below to summarize a large amount of information. Acid-base features are analyzed for catalysts from chromium to gold for ionic hydrogenations, bifunctional catalysts for hydrogen oxidation and evolution electrocatalysis, H/D exchange, olefin hydrogenation and isomerization, hydrogenation of ketones, aldehydes, imines, and carbon dioxide, hydrogenases and their model complexes, and palladium catalysts with hydride intermediates.
Collapse
Affiliation(s)
- Robert H Morris
- Department of Chemistry, University of Toronto , 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
20
|
Kügler M, Scholz J, Kronz A, Siewert I. Copper complexes as catalyst precursors in the electrochemical hydrogen evolution reaction. Dalton Trans 2016; 45:6974-82. [DOI: 10.1039/c6dt00082g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two copper complexes were investigated with respect to their activity in the electrocatalysed hydrogen evolution reaction. The complexes are precursors for highly active copper(0) and Cu2O deposits.
Collapse
Affiliation(s)
- Merle Kügler
- Georg-August-University Göttingen
- Institute of Inorganic Chemistry
- D-37077 Göttingen
- Germany
| | - Julius Scholz
- Georg-August-University Göttingen
- Institut für Materialphysik
- D-37077 Göttingen
- Germany
| | - Andreas Kronz
- Georg-August-University Göttingen
- Geowissenschaftliches Zentrum
- D-37077 Göttingen
- Germany
| | - Inke Siewert
- Georg-August-University Göttingen
- Institute of Inorganic Chemistry
- D-37077 Göttingen
- Germany
| |
Collapse
|