1
|
Wang L, Qian Y. Heavy-atom-free BODIPY dendrimer: utilizing the spin-vibronic coupling mechanism for two-photon photodynamic therapy in zebrafish. J Mater Chem B 2024; 12:6175-6189. [PMID: 38831689 DOI: 10.1039/d4tb00535j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
In this study, the heavy-atom-free BODIPY dendrimer TM4-BDP was synthesized for near-infrared photodynamic therapy, and was composed of a triphenylamine-BODIPY dimer and four 1-(2-morpholinoethyl)-1H-indole-3-ethenyl groups. The TM4-BDP could achieve near-infrared photodynamic therapy through two different photosensitive pathways, which include one-photon excitation at 660 nm and two-photon excitation at 1000 nm. In the one-photon excitation pathway, the TM4-BDP could generate singlet oxygen and superoxide radicals under 660 nm illumination. In addition, the one-photon PDT experiment in human nasopharyngeal carcinoma (CNE-2) cells also indicated that the TM4-BDP could specifically accumulate in lysosomes and show great cell phototoxicity with an IC50 of 22.1 μM. In the two-photon excitation pathway, the two-photon absorption cross-section at 1030 nm of TM4-BDP was determined to be 383 GM, which means that it could generate reactive oxygen species (ROS) under 1000 nm femtosecond laser excitation. Moreover, the two-photon PDT experiment in zebrafish also indicated the TM4-BDP could be used for two-photon fluorescence imaging and two-photon induced ROS generation in biological environments. Furthermore, in terms of the ROS generation mechanism, the TM4-BDP employed a novel spin-vibronic coupling intersystem crossing (SV-ISC) process for the mechanism of ROS generation and the femtosecond transient absorption spectra indicated that this novel SV-ISC mechanism was closely related to its charge transfer state lifetime. These above experiments of TM4-BDP demonstrate that the dendrimer design is an effective strategy for constructing heavy-atom-free BODIPY photosensitizers in the near-infrared region and lay the foundation for two-photon photodynamic therapy in future clinical trials.
Collapse
Affiliation(s)
- Lingfeng Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Ying Qian
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
2
|
Boixel J, Colombo A, Fagnani F, Matozzo P, Dragonetti C. Intriguing second‐order NLO switches based on new DTE compounds. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | | | - Claudia Dragonetti
- Università degli Studi di Milano Dip. di Chimica Inorganica Metallorganica e Analitica ""Lamberto Malatesta"" Via Venezian 21 20133 Milano ITALY
| |
Collapse
|
3
|
Zarcone SR, Yarbrough HJ, Neal MJ, Kelly JC, Kaczynski KL, Bloomfield AJ, Bowers GM, Montgomery TD, Chase DT. Synthesis and photophysical properties of nitrated aza-BODIPYs. NEW J CHEM 2022. [DOI: 10.1039/d1nj05976a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of nitrated aza-BODIPYs on the 2- and 6-positions were regioselectively synthesized and their photophysical properties were examined.
Collapse
Affiliation(s)
- Samuel R. Zarcone
- Department of Chemistry and Biochemistry, St. Mary's College of Maryland, St. Mary's City, Maryland 20686, USA
| | - Hana J. Yarbrough
- Department of Chemistry and Biochemistry, St. Mary's College of Maryland, St. Mary's City, Maryland 20686, USA
| | - Martin J. Neal
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | - Jordan C. Kelly
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | - Katie L. Kaczynski
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | - Aaron J. Bloomfield
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | - Geoffrey M. Bowers
- Department of Chemistry and Biochemistry, St. Mary's College of Maryland, St. Mary's City, Maryland 20686, USA
| | - Thomas D. Montgomery
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | - Daniel T. Chase
- Department of Chemistry and Biochemistry, St. Mary's College of Maryland, St. Mary's City, Maryland 20686, USA
| |
Collapse
|
4
|
Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021; 121:13454-13619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Citation(s) in RCA: 686] [Impact Index Per Article: 171.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a robust strategy to design photosensitizers (PSs) for various species. Photodynamic therapy (PDT) is a photochemical-based treatment approach that involves the use of light combined with a light-activated chemical, referred to as a PS. Attractively, PDT is one of the alternatives to conventional cancer treatment due to its noninvasive nature, high cure rates, and low side effects. PSs play an important factor in photoinduced reactive oxygen species (ROS) generation. Although the concept of photosensitizer-based photodynamic therapy has been widely adopted for clinical trials and bioimaging, until now, to our surprise, there has been no relevant review article on rational designs of organic PSs for PDT. Furthermore, most of published review articles in PDT focused on nanomaterials and nanotechnology based on traditional PSs. Therefore, this review aimed at reporting recent strategies to develop innovative organic photosensitizers for enhanced photodynamic therapy, with each example described in detail instead of providing only a general overview, as is typically done in previous reviews of PDT, to provide intuitive, vivid, and specific insights to the readers.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yeonghwan Choi
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Songyi Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.,Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
5
|
Ly JT, Presley KF, Cooper TM, Baldwin LA, Dalton MJ, Grusenmeyer TA. Impact of iodine loading and substitution position on intersystem crossing efficiency in a series of ten methylated- meso-phenyl-BODIPY dyes. Phys Chem Chem Phys 2021; 23:12033-12044. [PMID: 33942042 DOI: 10.1039/d0cp05904h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four core and six distyryl-extended methylated-meso-phenyl-BODIPY dyes with varying iodine content were synthesized. The influence of iodine loading and substitution position on the photophysical properties of these chromophores was evaluated. Selective iodine insertion at the 2- and 6-positions of the methylated-meso-phenyl-BODIPY core, rather than maximum iodine content, resulted in the highest intersystem crossing efficiency. Iodination of the distyryl-extended BODIPY core afforded intersystem crossing quantum yields comparable to 2,6-diiodo-BODIPY. Inclusion of an iodine at the para-meso-phenyl position generally enhanced non-radiative decay in the BODIPY excited-state, leading to lower fluorescence and intersystem crossing quantum yield values. Iodine substitution at the styryl-positions resulted in negligible changes to the excited-state dynamics. This study highlights: (1) the rate of radiative decay is similar in all ten derivatives (on the order of 1 × 108 s-1), (2) iodination of the 2,6-positions results in the greatest enhancement of intersystem crossing efficiency, (3) care must be taken when modifying the para-meso-phenyl position as it could have detrimental effects on the excited-state dynamics, (4) the excited-state is negligibly affected by iodination of the styryl groups, potentially enabling orthogonal functionalization without modifying the molecular photophysics, (5) distyryl extension of the chromophore core diminishes rates of non-radiative decay and intersystem crossing, resulting in higher fluorescence quantum yields and lower intersystem crossing yields in the π-extended derivatives compared to the core BDP derivatives, and (6) DFT calculations provide insight into the electronic and structural factors regulating intersystem crossing and vibrational relaxation in these molecules.
Collapse
Affiliation(s)
- Jack T Ly
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, Ohio 45433, USA. and UES, Inc., Dayton, Ohio 45432, USA
| | - Kayla F Presley
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, Ohio 45433, USA.
| | - Thomas M Cooper
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, Ohio 45433, USA.
| | - Luke A Baldwin
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, Ohio 45433, USA.
| | - Matthew J Dalton
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, Ohio 45433, USA.
| | - Tod A Grusenmeyer
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, Ohio 45433, USA.
| |
Collapse
|
6
|
Hardy M, Engeser M, Lützen A. A heterobimetallic tetrahedron from a linear platinum(II)-bis(acetylide) metalloligand. Beilstein J Org Chem 2020; 16:2701-2708. [PMID: 33214795 PMCID: PMC7653331 DOI: 10.3762/bjoc.16.220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/22/2020] [Indexed: 12/27/2022] Open
Abstract
Employing 4-ethynylaniline as a simple organic ligand we were able to prepare the stable trans-bis(acetylide)platinum(II) complex [Pt(L1)2(PBu3)2] as a linear metalloligand. The reaction of this metalloligand with iron(II) cations and pyridine-2-carbaldehyde according to the subcomponent self-assembly approach yielded decanuclear heterobimetallic tetrahedron [Fe4Pt6(L2)12](OTf)8. Thus, combination of these two design concepts - the subcomponent self-assembly strategy and the complex-as-a-ligand approach - ensured a fast and easy synthesis of large heterobimetallic coordination cages of tetrahedral shape with a diameter of more than 3 nm as a mixture of all three possible T-, S 4- and C 3-symmetric diastereomers. The new complexes were characterized by NMR and UV-vis spectroscopy and ESI mass spectrometry. Using GFN2-xTB we generated energy-minimized models of the diastereomers of this cage that further corroborated the results from analytical findings.
Collapse
Affiliation(s)
- Matthias Hardy
- University of Bonn, Kekulé-Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany
| | - Marianne Engeser
- University of Bonn, Kekulé-Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany
| | - Arne Lützen
- University of Bonn, Kekulé-Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany
| |
Collapse
|
7
|
Chen K, Hussain M, Razi SS, Hou Y, Yildiz EA, Zhao J, Yaglioglu HG, Donato MD. Anthryl-Appended Platinum(II) Schiff Base Complexes: Exceptionally Small Stokes Shift, Triplet Excited States Equilibrium, and Application in Triplet-Triplet-Annihilation Upconversion. Inorg Chem 2020; 59:14731-14745. [PMID: 32864961 DOI: 10.1021/acs.inorgchem.0c01932] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Two anthryl platinum(II) N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-benzenediamine Schiff base complexes were synthesized, with the anthryl attached via its 9 position (Pt-9An) or 2 position (Pt-2An) to the platinum (Pt) Schiff base backbone. The complexes show unusually small Stokes shifts (0.23 eV), representing a very small energy loss for the photoexcitation/intersystem crossing process, which is beneficial for applications as triplet photosensitizers. Phosphorescence of the Pt(II) coordination framework (ΦP = 11.0%) is quenched in the anthryl-containing complexes (ΦP = 4.0%) and shows a biexponential decay (τP = 3.4 μs/87% and 18.2 μs/13%) compared to the single-exponential decay of the native Pt(II) Schiff base complex (τP = 3.7 μs). Femtosecond/nanosecond transient absorption spectroscopy suggests an equilibrium between triplet anthracene (3An) and triplet metal-to-ligand charge-transfer (3MLCT) states, with the dark 3An state slightly lower in energy (1.96 eV for Pt-9An and 1.90 eV for Pt-2An) than the emissive 3MLCT state (1.97 eV for Pt-9An and 1.91 eV for Pt-2An). Intramolecular triplet-triplet energy transfer (TTET) and reverse TTET take 4.8 ps/444 ps for Pt-9An and 55 ps/1.7 ns for Pt-2An, respectively. The triplet-state equilibrium extends the triplet-state lifetime of the complexes to 103 μs (Pt-2An) or 163 μs (Pt-9An), in comparison to the native Pt(II) complex, which shows a lifetime of 4.0 μs. The complexes were used for triplet-triplet-annihilation upconversion with perylene as the triplet acceptor. The upconversion quantum yield is up to 15%, and a large anti-Stokes shift (0.75 eV) is achieved by excitation into the singlet metal-to-ligand charge-transfer absorption band (589 nm) of the complexes (anti-Stokes shift is 0.92 eV with 9,10-diphenylanthracene as the acceptor).
Collapse
Affiliation(s)
- Kepeng Chen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China
| | - Mushraf Hussain
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China
| | - Syed S Razi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China.,Department of Chemistry, Gaya College, Gaya, Constituent Unit of Magadh University, Bodhgaya, Bihar 823001, India
| | - Yuqi Hou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China
| | - Elif Akhuseyin Yildiz
- Department of Engineering Physics, Faculty of Engineering, Ankara University, Bes̨evler, Ankara 06100, Turkey
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China
| | - Halime Gul Yaglioglu
- Department of Engineering Physics, Faculty of Engineering, Ankara University, Bes̨evler, Ankara 06100, Turkey
| | - Mariangela Di Donato
- European Laboratory for Non-Linear Spectroscopy, via North Carrara 1, Sesto Fiorentino, Florence 50019, Italy.,ICCOM-CNR via Madonna del Piano 10, Sesto Fiorentino, Florence 50019, Italy
| |
Collapse
|
8
|
Zhang X, Hou Y, Xiao X, Chen X, Hu M, Geng X, Wang Z, Zhao J. Recent development of the transition metal complexes showing strong absorption of visible light and long-lived triplet excited state: From molecular structure design to photophysical properties and applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213371] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Dhindsa JS, Melenbacher A, Barbon SM, Stillman MJ, Gilroy JB. Altering the optoelectronic properties of boron difluoride formazanate dyes via conjugation with platinum(ii)-acetylides. Dalton Trans 2020; 49:16133-16142. [DOI: 10.1039/c9dt03417j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The absorption, emission, and electrochemical properties of conjugates of boron difluoride formazanate dyes and Pt(ii)-acetylides are systematically studied.
Collapse
Affiliation(s)
- Jasveer S. Dhindsa
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
- The Centre for Advanced Materials and Biomaterials Research (CAMBR)
| | - Adyn Melenbacher
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
| | - Stephanie M. Barbon
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
- The Centre for Advanced Materials and Biomaterials Research (CAMBR)
| | | | - Joe B. Gilroy
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
- The Centre for Advanced Materials and Biomaterials Research (CAMBR)
| |
Collapse
|
10
|
Li G, Zhou R, Zhao W, Yu B, Zhou J, Liu S, Huang W, Zhao Q. Photothermally Responsive Conjugated Polymeric Singlet Oxygen Carrier for Phase Change-Controlled and Sustainable Phototherapy for Hypoxic Tumor. RESEARCH (WASHINGTON, D.C.) 2020; 2020:5351848. [PMID: 33103118 PMCID: PMC7569507 DOI: 10.34133/2020/5351848] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/25/2020] [Indexed: 01/10/2023]
Abstract
Hypoxia significantly compromises the therapeutic performance of photodynamic therapy (PDT) owing to the oxygen level which plays a key role in the production of singlet oxygen (1O2). Herein, the photothermally responsive phase change materials (PCM) are used to encapsulate 1,4-dimethylnaphthalene-functionalized platinum(II)-acetylide conjugated polymer (CP1) with intense near-infrared (NIR) absorption to prepare new 1O2 nanocarriers (CP1-NCs). The 1,4-dimethylnaphthalene moieties in CP1-NCs can trap the 1O2 produced from CP1 under irradiation and form a stable endoperoxide. Then, the endoperoxide undergoes cycloreversion to controllably release 1O2 via the NIR light-triggered photothermal effect of CP1 and controllable phase change of PCM, which can be used for oxygen-independent PDT for hypoxic tumor. Furthermore, the in vivo luminescence imaging-guided synergistic PDT and photothermal therapy showed better efficiency in tumor ablation. The smart design shows the potent promise of CP1-NCs in PCM-controlled and sustainable phototherapy under tumor hypoxic microenvironment, providing new insights for constructing oxygen-independent precise cancer phototherapeutic platform.
Collapse
Affiliation(s)
- Guo Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023 Jiangsu, China
| | - Ruyi Zhou
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023 Jiangsu, China
| | - Weili Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023 Jiangsu, China
| | - Bo Yu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023 Jiangsu, China
| | - Jie Zhou
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023 Jiangsu, China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023 Jiangsu, China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023 Jiangsu, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023 Jiangsu, China
| |
Collapse
|
11
|
|
12
|
Avellanal-Zaballa E, Ventura J, Gartzia-Rivero L, Bañuelos J, García-Moreno I, Uriel C, Gómez AM, Lopez JC. Towards Efficient and Photostable Red-Emitting Photonic Materials Based on Symmetric All-BODIPY-Triads, -Pentads, and -Hexads. Chemistry 2019; 25:14959-14971. [PMID: 31515840 DOI: 10.1002/chem.201903804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Indexed: 11/12/2022]
Abstract
The development of efficient and stable red and near-IR emitting materials under hard radiation doses and/or prolonged times is a sought-after task due to their widespread applications in optoelectronics and biophotonics. To this aim, novel symmetric all-BODIPY-triads, -pentads, and -hexads have been designed and synthesized as light-harvesting arrays. These photonic materials are spectrally active in the 655-730 nm region and display high molar absorption across UV-visible region. Furthermore, they provide, to the best of our knowledge, the highest lasing efficiency (up to 68 %) and the highest photostability (tolerance >1300 GJ mol-1 ) in the near-IR spectral region ever recorded under drastic pumping conditions. Additionally, the modular synthetic strategy to access the cassettes allows the systematic study of their photonic behavior related to structural factors. Collectively, the outstanding behavior of these multichromophoric photonic materials provides the keystone for engineering multifunctional systems to expedite the next generation of effective red optical materials.
Collapse
Affiliation(s)
| | - Juan Ventura
- Instituto de Química Organica General (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Leire Gartzia-Rivero
- Dpto. Química Física, Universidad del País Vasco (UPV/EHU), Aptdo. 644, 48080, Bilbao, Spain
| | - Jorge Bañuelos
- Dpto. Química Física, Universidad del País Vasco (UPV/EHU), Aptdo. 644, 48080, Bilbao, Spain
| | | | - Clara Uriel
- Instituto de Química Organica General (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Ana M Gómez
- Instituto de Química Organica General (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - J Cristobal Lopez
- Instituto de Química Organica General (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| |
Collapse
|
13
|
Triplet BODIPY and AzaBODIPY Derived Donor‐acceptor Dyads: Competitive Electron Transfer versus Intersystem Crossing upon Photoexcitation. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900189] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
14
|
Han Y, Liu M, Zhong R, Gao Z, Chen Z, Zhang M, Wang F. Photoresponsiveness of Anthracene-Based Supramolecular Polymers Regulated via a σ-Platinated 4,4-Difluoro-4-bora-3a,4a-diaza- s-indacene Photosensitizer. Inorg Chem 2019; 58:12407-12414. [PMID: 31483635 DOI: 10.1021/acs.inorgchem.9b02073] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Anthracene and its derivatives have attracted tremendous interest in recent years because of their intriguing photoresponsive behaviors. Our research group has previously constructed anthracene-based supramolecular polymers, which display multicycle anthracene-endoperoxide photoswitching in a macroscopic manner. However, high-energy light excitation (λ = 365-460 nm) is required for anthracene-to-endoperoxide photooxygenation, giving rise to severe photodegradation problems. In this work, we have developed an effective approach to addressing this issue, by encapsulating a σ-platinated 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) photosensitizer into anthracene-based supramolecular polymeric systems. The platination effect enhances π-electron delocalization, while promoting intersystem crossing from singlet to triplet excited states. Accordingly, the σ-platinated BODIPY photosensitizer displays excellent 1O2 production capability, facilitating anthracene-to-endoperoxide transformation under low-energy irradiation conditions (λ = 520-590 nm). This leads to the breakup of supramolecular polymers and gels, which can be restored at room and elevated temperatures because of the reversible endoperoxide-to-anthracene deoxygenation process. Overall, the rational design of a σ-metalated photosensitizer opens up a new avenue to regulating the photoresponsiveness of supramolecular polymers under mild and nondestructive conditions.
Collapse
Affiliation(s)
- Yifei Han
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Mingyang Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Ruolei Zhong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Zongchun Gao
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Ze Chen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials , Xi'an Jiaotong University , Xi'an , Shaanxi 710049 , P. R. China
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| |
Collapse
|
15
|
Irmler P, Gogesch FS, Mang A, Bodensteiner M, Larsen CB, Wenger OS, Winter RF. Directing energy transfer in Pt(bodipy)(mercaptopyrene) dyads. Dalton Trans 2019; 48:11690-11705. [PMID: 31265019 DOI: 10.1039/c9dt01737b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report on the photophysical properties of three dyads that combine a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (bodipy, BDP) and a mercaptopyrene (SPyr) dye ligand at a Pt(PEt3)2 fragment. σ-Bonding of the dyes to the Pt ion promotes intersystem crossing (ISC) via the external heavy atom effect. The coupling of efficient ISC with charge-transfer from the electron-rich mercaptopyrene to the electron-accepting BDP ligand (PB-CT) gives rise to a multitude of (potentially) emissive states. This culminates in the presence of four different emissions for the mono- and dinuclear complexes BPtSPyr and BPtSPyrSPtB with an unsubstituted BDP ligand and either a terminal 1-mercaptopyrene or a bridging pyrene-1,6-dithiolate ligand. Thus, in fluid solution, near IR emission at 724 nm from the 3PB-CT state is observed with a quantum yield of up to 15%. Excitation into the BDP-based 1ππ* or the pyrene-based 1ππ* band additionally trigger fluorescence and phosphorescence emissions from the BDP-centred 1ππ* and 3ππ* states. In frozen solution, at 77 K, phosphorescence from the pyrene ligand becomes the prominent emission channel, while PB-CT emission is absent. Alkylation of the BDP ligand in KBPtSPyr funnels all excitation energy into fluorescence and phosphorescence emissions from the KBDP ligand. The assignments of the various excited states and the deactivation cascades were probed by absorption and emission spectroscopy, transient absorption spectroscopy, electrochemical and UV/Vis/NIR spectroelectrochemical measurements, and by quantum chemical calculations. Our conclusions are further corroborated with the aid of suitable reference compounds comprising of just one chromophore. All dyads are triplet sensitizers and are able to generate singlet oxygen.
Collapse
Affiliation(s)
- Peter Irmler
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, D-78457 Konstanz, Germany.
| | | | | | | | | | | | | |
Collapse
|
16
|
Walalawela N, Urrutia MN, Thomas AH, Greer A, Vignoni M. Alkane Chain‐extended Pterin Through a Pendent Carboxylic Acid Acts as Triple Functioning Fluorophore,
1
O
2
Sensitizer and Membrane Binder. Photochem Photobiol 2019; 95:1160-1168. [DOI: 10.1111/php.13098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/12/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Niluksha Walalawela
- Department of Chemistry Brooklyn College City University of New York Brooklyn NY
- Ph.D. Program in Chemistry The Graduate Center of the City University of New York New York NY
| | - María Noel Urrutia
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) Departamento de Química, Facultad de Ciencias Exactas Universidad Nacional de La Plata (UNLP) CCT La Plata‐CONICET La Plata Argentina
| | - Andrés H. Thomas
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) Departamento de Química, Facultad de Ciencias Exactas Universidad Nacional de La Plata (UNLP) CCT La Plata‐CONICET La Plata Argentina
| | - Alexander Greer
- Department of Chemistry Brooklyn College City University of New York Brooklyn NY
- Ph.D. Program in Chemistry The Graduate Center of the City University of New York New York NY
| | - Mariana Vignoni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) Departamento de Química, Facultad de Ciencias Exactas Universidad Nacional de La Plata (UNLP) CCT La Plata‐CONICET La Plata Argentina
| |
Collapse
|
17
|
Haque A, Al-Balushi RA, Al-Busaidi IJ, Khan MS, Raithby PR. Rise of Conjugated Poly-ynes and Poly(Metalla-ynes): From Design Through Synthesis to Structure-Property Relationships and Applications. Chem Rev 2018; 118:8474-8597. [PMID: 30112905 DOI: 10.1021/acs.chemrev.8b00022] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Conjugated poly-ynes and poly(metalla-ynes) constitute an important class of new materials with potential application in various domains of science. The key factors responsible for the diverse usage of these materials is their intriguing and tunable chemical and photophysical properties. This review highlights fascinating advances made in the field of conjugated organic poly-ynes and poly(metalla-ynes) incorporating group 4-11 metals. This includes several important aspects of conjugated poly-ynes viz. synthetic protocols, bonding, electronic structure, nature of luminescence, structure-property relationships, diverse applications, and concluding remarks. Furthermore, we delineated the future directions and challenges in this particular area of research.
Collapse
Affiliation(s)
- Ashanul Haque
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Rayya A Al-Balushi
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Idris Juma Al-Busaidi
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Muhammad S Khan
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Paul R Raithby
- Department of Chemistry , University of Bath , Claverton Down , Bath BA2 7AY , U.K
| |
Collapse
|
18
|
Hussain M, El-Zohry AM, Gobeze HB, Zhao J, D'Souza F, Mohammed OF. Intramolecular Energy and Electron Transfers in Bodipy Naphthalenediimide Triads. J Phys Chem A 2018; 122:6081-6088. [PMID: 29961320 DOI: 10.1021/acs.jpca.8b03884] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Borondipyrromethene (BDP) naphthalenediimide (NDI) triads (BDP-NDI) and diiodo-BDP derivative (DiiodoBDP-NDI)) were synthesized to study the Förster resonance energy transfer (FRET) and its impact on the triplet state formation and dynamics. In these triads, diiodo-BDP and BDP are the energy donors and NDI is the energy acceptor. Nanosecond transient absorption spectra of triads indicated that triplet state is localized on NDI moiety, either by selective photoexcitation of the Diiodo-BDP or NDI unit. The intersystem crossing (ISC) is attributed to intramolecular heavy atom effect. The triplet state quantum yield was found to be 54% with a lifetime of 38 μs. However, no triplet state is observed for BDP-NDI system either by exciting BDP or NDI unit. Thus, we confirmed that charge recombination does not produce a triplet state. Interestingly, DiiodoBDP-NDI can be used as broadband excitable (500-620 nm) triplet photosensitizer, and high triplet-triplet annihilation (TTA) upconversion quantum yield of ΦUC = 2.8% was observed with 9,10-bis(phenylethynyl)-anthracene (BPEA) as a triplet acceptor/emitter.
Collapse
Affiliation(s)
- Mushraf Hussain
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering , Dalian University of Technology , E-208 West Campus, 2 Ling-Gong Road , Dalian 116024 , P. R. China
| | - Ahmed M El-Zohry
- KAUST Solar Center, Division of Physical Sciences and Engineering , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Kingdom of Saudi Arabia
| | - Habtom B Gobeze
- Department of Chemistry , University of North Texas , 1155 Union Circle, #305070 , Denton , Texas 76203-5017 , United States
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering , Dalian University of Technology , E-208 West Campus, 2 Ling-Gong Road , Dalian 116024 , P. R. China
| | - Francis D'Souza
- Department of Chemistry , University of North Texas , 1155 Union Circle, #305070 , Denton , Texas 76203-5017 , United States
| | - Omar F Mohammed
- KAUST Solar Center, Division of Physical Sciences and Engineering , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Kingdom of Saudi Arabia
| |
Collapse
|
19
|
Irmler P, Winter RF. σ-Pt-BODIPY Complexes with Platinum Attachment to Carbon Atoms C2 or C3: Spectroscopic, Structural, and (Spectro)Electrochemical Studies and Photocatalysis. Organometallics 2018. [DOI: 10.1021/acs.organomet.7b00806] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Peter Irmler
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße
10, D-78457 Konstanz, Germany
| | - Rainer F. Winter
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße
10, D-78457 Konstanz, Germany
| |
Collapse
|
20
|
Dhindsa JS, Maar RR, Barbon SM, Olivia Avilés M, Powell ZK, Lagugné-Labarthet F, Gilroy JB. A π-conjugated inorganic polymer constructed from boron difluoride formazanates and platinum(ii) diynes. Chem Commun (Camb) 2018; 54:6899-6902. [DOI: 10.1039/c8cc02424c] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A π-conjugated inorganic polymer comprised of boron difluoride formazanate and platinum(ii) diyne repeat units with unusual redox properties and a narrow optical band gap of ca. 1.4 eV is introduced.
Collapse
Affiliation(s)
- Jasveer S. Dhindsa
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR)
- The University of Western Ontario
- London
- Canada
| | - Ryan R. Maar
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR)
- The University of Western Ontario
- London
- Canada
| | - Stephanie M. Barbon
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR)
- The University of Western Ontario
- London
- Canada
| | - María Olivia Avilés
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR)
- The University of Western Ontario
- London
- Canada
| | - Zachary K. Powell
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR)
- The University of Western Ontario
- London
- Canada
| | - François Lagugné-Labarthet
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR)
- The University of Western Ontario
- London
- Canada
| | - Joe B. Gilroy
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR)
- The University of Western Ontario
- London
- Canada
| |
Collapse
|
21
|
Meares A, Satraitis A, Ptaszek M. BODIPY-Bacteriochlorin Energy Transfer Arrays: Toward Near-IR Emitters with Broadly Tunable, Multiple Absorption Bands. J Org Chem 2017; 82:13068-13075. [PMID: 29119786 PMCID: PMC5873296 DOI: 10.1021/acs.joc.7b02031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A series of energy transfer arrays, comprising a near-IR absorbing and emitting bacteriochlorin, and BODIPY derivatives with different absorption bands in the visible region (503-668 nm) have been synthesized. Absorption band of BODIPY was tuned by installation of 0, 1, or 2 styryl substituents [2-(2,4,6-trimethoxyphenyl)ethenyl], which leads to derivatives with absorption maxima at 503, 587, and 668 nm, respectively. Efficient energy transfer (>0.90) is observed for each dyad, which is manifested by nearly exclusive emission from bacteriochlorin moiety upon BODIPY excitation. Fluorescence quantum yield of each dyad in nonpolar solvent (toluene) is comparable with that observed for corresponding bacteriochlorin monomer, and is significantly reduced in solvent of high dielectric constants (DMF), most likely by photoinduced electron transfer. Given the availability of diverse BODIPY derivatives, with absorption between 500-700 nm, BODIPY-bacteriochlorin arrays should allow for construction of near-IR emitting agents with multiple and broadly tunable absorption bands. Solvent-dielectric constant dependence of Φf in dyads gives an opportunity to construct environmentally sensitive fluorophores and probes.
Collapse
Affiliation(s)
- Adam Meares
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County , 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Andrius Satraitis
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County , 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County , 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| |
Collapse
|
22
|
Jędrzejewska B, Ośmiałowski B. Difluoroboranyl derivatives as efficient panchromatic photoinitiators in radical polymerization reactions. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-2201-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Harvey PD. Organometallic and Coordination Polymers, and Linear and Star Oligomers Using the trans-Pt(PR3)2(C≡C)2 Linker. J Inorg Organomet Polym Mater 2017. [DOI: 10.1007/s10904-017-0673-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Cui J, Sheng W, Wu Q, Yu C, Hao E, Bobadova-Parvanova P, Storer M, Asiri AM, Marwani HM, Jiao L. Synthesis, Structure, and Properties of Near-Infrared [b]Phenanthrene-Fused BF 2 Azadipyrromethenes. Chem Asian J 2017; 12:2486-2493. [PMID: 28730703 DOI: 10.1002/asia.201700876] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/18/2017] [Indexed: 02/06/2023]
Abstract
A new class of phenanthrene-fused BF2 azadipyrromethene (azaBODIPY) dyes have been synthesized through a tandem Suzuki reaction and oxidative ring-fusion reaction, or a palladium-catalyzed intramolecular C-H activation reaction. These phenanthrene-fused azaBODIPY dyes are highly photostable and display markedly redshifted absorption (up to λ=771 nm) and emission bands (λ≈800 nm) in the near-infrared region. DFT calculations and cyclic voltammetry studies indicate that, upon annulation, more pronounced stabilization of the LUMO is the origin of the bathochromic shift of the absorption and high photostability.
Collapse
Affiliation(s)
- Jiuen Cui
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241000, P.R. China
| | - Wanle Sheng
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241000, P.R. China
| | - Qinghua Wu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241000, P.R. China
| | - Changjiang Yu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241000, P.R. China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241000, P.R. China
| | | | - Marie Storer
- Department of Chemistry, Rockhurst University, 1100 Rockhurst Rd, Kansas City, MO, 64110, USA
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hadi M Marwani
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241000, P.R. China
| |
Collapse
|
25
|
Wang J, Wu Y, Sheng W, Yu C, Wei Y, Hao E, Jiao L. Synthesis, Structure, and Properties of β-Vinyl Ketone/Ester Functionalized AzaBODIPYs from FormylazaBODIPYs. ACS OMEGA 2017; 2:2568-2576. [PMID: 31457601 PMCID: PMC6641003 DOI: 10.1021/acsomega.7b00393] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/26/2017] [Indexed: 06/10/2023]
Abstract
Postfunctionalization of azaBODIPY (the BF2 complex of azadipyrromethene) is highly desirable due to the strong tunable absorption bands at wavelengths above 650 nm and the wide-ranging applications of this class of dyes in biomedicine and materials science. Currently available postfunctionalization methods for this class of dyes have been limited to the Pd-catalyzed coupling reactions on β-halogenated (brominated or iodinated) azaBODIPY platforms. In this work, we report a new strategy for the facile postfunctionalization of the azaBODIPY chromophore with various vinyl ketone and vinyl esters based on a Wittig reaction on our previously developed β-formylazaBODIPYs and our recently developed β-bromo-β'-formylazaBODIPYs. Our strategy uses easily accessible starting materials and mild reaction conditions. It is highly compatible with various common phosphonium ylides (aliphatic, aromatic, and ester substituted ones). These resultant bromo-containing β-vinyl ketone/ester functionalized azaBODIPYs are potential photosensitizers and can be further functionalized via coupling reactions. The ester groups on some of these resultant azaBODIPYs can be further hydrolyzed to achieve the desired water solubility and conjugate with the biomolecule and solid surface.
Collapse
|
26
|
Figliola C, Robertson KN, Greening S, Thompson A. Asymmetric Dipyrrin and F-BODIPYs Conjugated to Terminal Alkynes and Alkenes. J Org Chem 2017. [PMID: 28648076 DOI: 10.1021/acs.joc.7b01129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An asymmetric meso-H dipyrrin featuring a conjugated terminal alkyne substituent was converted to its corresponding difluoro boron complex, and the extent of π-conjugation was extended using Sonogashira cross-coupling. Treatment of the alkyne-substituted dipyrrin with BF3·OEt2 and NEt3 revealed the reactivity of the conjugated terminal alkyne toward Lewis-activated electrophilic substitution and led to the isolation of F-BODIPYs bearing terminal bromovinyl and enol substituents.
Collapse
Affiliation(s)
- Carlotta Figliola
- Department of Chemistry, Dalhousie University , Halifax, NS B3H 4R2, Canada
| | | | - Sarah Greening
- Department of Chemistry, Dalhousie University , Halifax, NS B3H 4R2, Canada
| | - Alison Thompson
- Department of Chemistry, Dalhousie University , Halifax, NS B3H 4R2, Canada
| |
Collapse
|
27
|
Geist F, Jackel A, Irmler P, Linseis M, Malzkuhn S, Kuss-Petermann M, Wenger OS, Winter RF. Directing Energy Transfer in Panchromatic Platinum Complexes for Dual Vis–Near-IR or Dual Visible Emission from σ-Bonded BODIPY Dyes. Inorg Chem 2016; 56:914-930. [DOI: 10.1021/acs.inorgchem.6b02549] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Fabian Geist
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, D-78457 Konstanz, Germany
| | - Andrej Jackel
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, D-78457 Konstanz, Germany
| | - Peter Irmler
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, D-78457 Konstanz, Germany
| | - Michael Linseis
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, D-78457 Konstanz, Germany
| | - Sabine Malzkuhn
- Department of Chemistry, University of Basel, St.-Johanns-Ring
19, CH-4056 Basel, Switzerland
| | - Martin Kuss-Petermann
- Department of Chemistry, University of Basel, St.-Johanns-Ring
19, CH-4056 Basel, Switzerland
| | - Oliver S. Wenger
- Department of Chemistry, University of Basel, St.-Johanns-Ring
19, CH-4056 Basel, Switzerland
| | - Rainer F. Winter
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, D-78457 Konstanz, Germany
| |
Collapse
|
28
|
Yang W, Zhao J. Photophysical Properties of Visible-Light-Harvesting PtIIBis(acetylide) Complexes. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600968] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Wenbo Yang
- State Key Laboratory of Fine Chemicals; School of Chemical Engineering; Dalian University of Technology; E-208 Western Campus, 2 Ling-Gong Road 116024 Dalian China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals; School of Chemical Engineering; Dalian University of Technology; E-208 Western Campus, 2 Ling-Gong Road 116024 Dalian China
| |
Collapse
|
29
|
Gong ZL, Zhong YW. H2PO4–- and Solvent-Induced Polymorphism of an Amide-Functionalized [Pt(N^C^N)Cl] Complex. Inorg Chem 2016; 55:10143-10151. [DOI: 10.1021/acs.inorgchem.6b01059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zhong-Liang Gong
- Beijing National Laboratory for Molecular Sciences, CAS
Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Science, 2 Bei Yi Jie, Zhong Guan Cun, Haidian District, Beijing 100190, China
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences, CAS
Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Science, 2 Bei Yi Jie, Zhong Guan Cun, Haidian District, Beijing 100190, China
| |
Collapse
|
30
|
Bonnot A, Harvey PD. Pentacene- and BODIPY-Containing trans-Bis(ethynyl)bis(phosphine)platinum(II) Organometallic Polymers: A DFT Point of View. J Inorg Organomet Polym Mater 2016. [DOI: 10.1007/s10904-016-0405-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Ma Y, Liang H, Zeng Y, Yang H, Ho CL, Xu W, Zhao Q, Huang W, Wong WY. Phosphorescent soft salt for ratiometric and lifetime imaging of intracellular pH variations. Chem Sci 2016; 7:3338-3346. [PMID: 29997827 PMCID: PMC6006953 DOI: 10.1039/c5sc04624f] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/04/2016] [Indexed: 12/30/2022] Open
Abstract
In contrast to traditional short-lived fluorescent probes, long-lived phosphorescent probes based on transition-metal complexes can effectively eliminate unwanted background interference by using time-resolved luminescence imaging techniques, such as photoluminescence lifetime imaging microscopy. Hence, phosphorescent probes have become one of the most attractive candidates for investigating biological events in living systems. However, most of them are based on single emission intensity changes, which might be affected by a variety of intracellular environmental factors. Ratiometric measurement allows simultaneous recording of two separated wavelengths instead of measuring mere intensity changes and thus offers built-in correction for environmental effects. Herein, for the first time, a soft salt based phosphorescent probe has been developed for ratiometric and lifetime imaging of intracellular pH variations in real time. Specifically, a pH sensitive cationic complex (C1) and a pH insensitive anionic complex (A1) are directly connected through electrostatic interaction to form a soft salt based probe (S1), which exhibits a ratiometric phosphorescent response to pH with two well-resolved emission peaks separated by about 150 nm (from 475 to 625 nm). This novel probe was then successfully applied for ratiometric and lifetime imaging of intracellular pH variations. Moreover, quantitative measurements of intracellular pH fluctuations caused by oxidative stress have been performed for S1 based on the pH-dependent calibration curve.
Collapse
Affiliation(s)
- Yun Ma
- Institute of Molecular Functional Materials , Department of Chemistry and Partner State Key Laboratory of Environmental and Biological Analysis , Hong Kong Baptist University , Waterloo Road , Hong Kong , P. R. China . ; ; Tel: +852 34117074
| | - Hua Liang
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications , Nanjing 210023 , P. R. China . ; ; Tel: +86 25 85866396
| | - Yi Zeng
- Institute of Molecular Functional Materials , Department of Chemistry and Partner State Key Laboratory of Environmental and Biological Analysis , Hong Kong Baptist University , Waterloo Road , Hong Kong , P. R. China . ; ; Tel: +852 34117074
| | - Huiran Yang
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications , Nanjing 210023 , P. R. China . ; ; Tel: +86 25 85866396
| | - Cheuk-Lam Ho
- Institute of Molecular Functional Materials , Department of Chemistry and Partner State Key Laboratory of Environmental and Biological Analysis , Hong Kong Baptist University , Waterloo Road , Hong Kong , P. R. China . ; ; Tel: +852 34117074
| | - Wenjuan Xu
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications , Nanjing 210023 , P. R. China . ; ; Tel: +86 25 85866396
| | - Qiang Zhao
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications , Nanjing 210023 , P. R. China . ; ; Tel: +86 25 85866396
| | - Wei Huang
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications , Nanjing 210023 , P. R. China . ; ; Tel: +86 25 85866396
| | - Wai-Yeung Wong
- Institute of Molecular Functional Materials , Department of Chemistry and Partner State Key Laboratory of Environmental and Biological Analysis , Hong Kong Baptist University , Waterloo Road , Hong Kong , P. R. China . ; ; Tel: +852 34117074
- Institute of Polymer Optoelectronic Materials and Devices , State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , P. R. China
| |
Collapse
|
32
|
Xu L, Yang HB. Our Expedition in Linear Neutral Platinum-Acetylide Complexes: The Preparation of Micro/nanostructure Materials, Complicated Topologies, and Dye-Sensitized Solar Cells. CHEM REC 2016; 16:1274-97. [PMID: 27097565 DOI: 10.1002/tcr.201500271] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Indexed: 01/12/2023]
Abstract
During the past few decades, the construction of various kinds of platinum-acetylide complexes has attracted considerable attention, because of their wide applications in photovoltaic cells, non-linear optics, and bio-imaging materials. Among these platinum-acetylide complexes, the linear neutral platinum-acetylide complexes, due to their attractive properties, such as well-defined linear geometry, synthetic accessibility, and intriguing photoproperties, have emerged as a rising star in this field. In this personal account, we will discuss how we entered the field of linear neutral platinum-acetylide chemistry and what we found in this field. The preparation of various types of linear neutral platinum-acetylide complexes and their applications in the areas of micro/nanostructure materials, complicated topologies, and dye-sensitized solar cells will be summarized in this account.
Collapse
Affiliation(s)
- Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| |
Collapse
|
33
|
Zhong YW, Gong ZL, Shao JY, Yao J. Electronic coupling in cyclometalated ruthenium complexes. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.01.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Zhong F, Karatay A, Zhao L, Zhao J, He C, Zhang C, Yaglioglu HG, Elmali A, Küçüköz B, Hayvali M. Broad-Band N∧N Pt(II) Bisacetylide Visible Light Harvesting Complex with Heteroleptic Bodipy Acetylide Ligands. Inorg Chem 2015; 54:7803-17. [PMID: 26230144 DOI: 10.1021/acs.inorgchem.5b00822] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Fangfang Zhong
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, People’s Republic of China
| | | | - Liang Zhao
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, People’s Republic of China
| | - Jianzhang Zhao
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, People’s Republic of China
| | - Cheng He
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, People’s Republic of China
| | - Caishun Zhang
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, People’s Republic of China
| | | | | | | | | |
Collapse
|