1
|
Brown AM, Butman JL, Lengacher R, Vargo NP, Martin KE, Koller A, Śmiłowicz D, Boros E, Robinson JR. N, N-Alkylation Clarifies the Role of N- and O-Protonated Intermediates in Cyclen-Based 64Cu Radiopharmaceuticals. Inorg Chem 2023; 62:1362-1376. [PMID: 36490364 DOI: 10.1021/acs.inorgchem.2c02907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Radioisotopes of Cu, such as 64Cu and 67Cu, are alluring targets for imaging (e.g., positron emission tomography, PET) and radiotherapeutic applications. Cyclen-based macrocyclic polyaminocarboxylates are one of the most frequently examined bifunctional chelators in vitro and in vivo, including the FDA-approved 64Cu radiopharmaceutical, Cu(DOTATATE) (Detectnet); however, connections between the structure of plausible reactive intermediates and their stability under physiologically relevant conditions remain to be established. In this study, we share the synthesis of a cyclen-based, N,N-alkylated spirocyclic chelate, H2DO3AC4H8, which serves as a model for N-protonation. Our combined experimental (in vitro and in vivo) and computational studies unravel complex pH-dependent speciation and enable side-by-side comparison of N- and O-protonated species of relevant 64Cu radiopharmaceuticals. Our studies suggest that N-protonated species are not inherently unstable species under physiological conditions and demonstrate the potential of N,N-alkylation as a tool for the rational design of future radiopharmaceuticals.
Collapse
Affiliation(s)
- Alexander M Brown
- Department of Chemistry, Brown University, Providence, Rhode Island02912, United States
| | - Jana L Butman
- Department of Chemistry, Brown University, Providence, Rhode Island02912, United States
| | - Raphael Lengacher
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York11794, United States
| | - Natasha P Vargo
- Department of Chemistry, Brown University, Providence, Rhode Island02912, United States
| | - Kirsten E Martin
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York11794, United States
| | - Angus Koller
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York11794, United States
| | - Dariusz Śmiłowicz
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York11794, United States
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York11794, United States
| | - Jerome R Robinson
- Department of Chemistry, Brown University, Providence, Rhode Island02912, United States
| |
Collapse
|
2
|
Bildziukevich U, Özdemir Z, Šaman D, Vlk M, Šlouf M, Rárová L, Wimmer Z. Novel cytotoxic 1,10-phenanthroline–triterpenoid amphiphiles with supramolecular characteristics capable of coordinating 64Cu( ii) labels. Org Biomol Chem 2022; 20:8157-8163. [DOI: 10.1039/d2ob01172g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Novel 1,10-phenanthroline–triterpenoid amphiphiles formed nano-assemblies in water, coordinated Cu(ii) and 64Cu(ii) salts for potential cancer monitoring and therapy, and displayed cytotoxicity partly dependent on the formation of nano-assemblies.
Collapse
Affiliation(s)
- Uladzimir Bildziukevich
- Institute of Experimental Botany of the Czech Academy of Sciences, Isotope Laboratory, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Zulal Özdemir
- Institute of Experimental Botany of the Czech Academy of Sciences, Isotope Laboratory, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - David Šaman
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, CZ-16610 Prague 6, Czech Republic
| | - Martin Vlk
- Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, CZ-11519 Prague 1, Czech Republic
| | - Miroslav Šlouf
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovsky Sq. 2, CZ-16206 Prague 6, Czech Republic
| | - Lucie Rárová
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Zdeněk Wimmer
- Institute of Experimental Botany of the Czech Academy of Sciences, Isotope Laboratory, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
- University of Chemistry and Technology in Prague, Department of Chemistry of Natural Compounds, Technická 5, CZ-16628 Prague 6, Czech Republic
| |
Collapse
|
3
|
Tosato M, Pelosato M, Franchi S, Isse AA, May NV, Zanoni G, Mancin F, Pastore P, Badocco D, Asti M, Di Marco V. When ring makes the difference: coordination properties of Cu 2+/Cu + complexes with sulfur-pendant polyazamacrocycles for radiopharmaceutical applications. NEW J CHEM 2022. [DOI: 10.1039/d2nj01032a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Cu2+/+ complexes formed by sulfur-containing polyazamacrocycles were studied in aqueous solution using potentiometry, UV-Vis, NMR, EPR, and cyclic voltammetry.
Collapse
Affiliation(s)
- Marianna Tosato
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Matteo Pelosato
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Sara Franchi
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | | | - Nóra Veronica May
- Centre for Structural Science, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Giordano Zanoni
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Fabrizio Mancin
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Paolo Pastore
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Denis Badocco
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Mattia Asti
- Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Valerio Di Marco
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
4
|
Lee W, Sarkar S, Pal R, Kim JY, Park H, Huynh PT, Bhise A, Bobba KN, Kim KI, Ha YS, Soni N, Kim W, Lee K, Jung JM, Rajkumar S, Lee KC, Yoo J. Successful Application of CuAAC Click Reaction in Constructing 64Cu-Labeled Antibody Conjugates for Immuno-PET Imaging. ACS APPLIED BIO MATERIALS 2021; 4:2544-2557. [PMID: 35014372 DOI: 10.1021/acsabm.0c01555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Immuno-positron emission tomography (immuno-PET) is a rapidly growing imaging technique in which antibodies are radiolabeled to monitor their in vivo behavior in real time. However, effecting the controlled conjugation of a chelate-bearing radioactive atom to a bulky antibody without affecting its immunoreactivity at a specific site is always challenging. The in vivo stability of the radiolabeled chelate is also a key issue for successful tumor imaging. To address these points, a facile ultra-stable radiolabeling platform is developed by using the propylene cross-bridged chelator (PCB-TE2A-alkyne), which can be instantly functionalized with various groups via the click reaction, thus enabling specific conjugation with antibodies as per choice. The PCB-TE2A-tetrazine derivative is selected to demonstrate the proposed strategy. The antibody trastuzumab is functionalized with the trans-cyclooctene (TCO) moiety in the presence or absence of the PEG linker. The complementary 64Cu-PCB-TE2A-tetrazine is synthesized via the click reaction and radiolabeled with 64Cu ions, which then reacts with the aforementioned TCO-modified antibody via a rapid biorthogonal ligation. The 64Cu-PCB-TE2A-trastuzumab conjugate is shown to exhibit excellent in vivo stability and to maintain a higher binding affinity toward HER2-positive cells. The tumor targeting feasibility of the radiolabeled antibody is evaluated in tumor models. Both 64Cu-PCB-TE2A-trastuzumab conjugates show high tumor uptakes in biodistribution studies and enable unambiguous tumor visualization with minimum background noise in PET imaging. Interestingly, the 64Cu-PCB-TE2A-PEG4-trastuzumab containing an additional PEG linker displays a much faster body clearance compared to its counterpart with less PEG linker, thus affording vivid tumor imaging with an unprecedentedly high tumor-to-background ratio.
Collapse
Affiliation(s)
- Woonghee Lee
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Swarbhanu Sarkar
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Rammyani Pal
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Jung Young Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, South Korea
| | - Hyun Park
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, South Korea
| | - Phuong Tu Huynh
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Abhinav Bhise
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Kondapa Naidu Bobba
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Kwang Il Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, South Korea
| | - Yeong Su Ha
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Nisarg Soni
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Wanook Kim
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Kiwoong Lee
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Jung-Min Jung
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Subramani Rajkumar
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Kyo Chul Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, South Korea
| | - Jeongsoo Yoo
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| |
Collapse
|
5
|
Mikulová MB, Mikuš P. Advances in Development of Radiometal Labeled Amino Acid-Based Compounds for Cancer Imaging and Diagnostics. Pharmaceuticals (Basel) 2021; 14:167. [PMID: 33669938 PMCID: PMC7924883 DOI: 10.3390/ph14020167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 02/08/2023] Open
Abstract
Radiolabeled biomolecules targeted at tumor-specific enzymes, receptors, and transporters in cancer cells represent an intensively investigated and promising class of molecular tools for the cancer diagnosis and therapy. High specificity of such biomolecules is a prerequisite for the treatment with a lower burden to normal cells and for the effective and targeted imaging and diagnosis. Undoubtedly, early detection is a key factor in efficient dealing with many severe tumor types. This review provides an overview and critical evaluation of novel approaches in the designing of target-specific probes labeled with metal radionuclides for the diagnosis of most common death-causing cancers, published mainly within the last three years. Advances are discussed such traditional peptide radiolabeling approaches, and click and nanoparticle chemistry. The progress of radiolabeled peptide based ligands as potential radiopharmaceuticals is illustrated via novel structure and application studies, showing how the molecular modifications reflect their binding selectivity to significant onco-receptors, toxicity, and, by that, practical utilization. The most impressive outputs in categories of newly developed structures, as well as imaging and diagnosis approaches, and the most intensively studied oncological diseases in this context, are emphasized in order to show future perspectives of radiometal labeled amino acid-based compounds in nuclear medicine.
Collapse
Affiliation(s)
- Mária Bodnár Mikulová
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32 Bratislava, Slovakia;
| | - Peter Mikuš
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32 Bratislava, Slovakia;
- Toxicological and Antidoping Center (TAC), Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32 Bratislava, Slovakia
| |
Collapse
|
6
|
Knighton RC, Troadec T, Mazan V, Le Saëc P, Marionneau-Lambot S, Le Bihan T, Saffon-Merceron N, Le Bris N, Chérel M, Faivre-Chauvet A, Elhabiri M, Charbonnière LJ, Tripier R. Cyclam-Based Chelators Bearing Phosphonated Pyridine Pendants for 64Cu-PET Imaging: Synthesis, Physicochemical Studies, Radiolabeling, and Bioimaging. Inorg Chem 2021; 60:2634-2648. [PMID: 33496592 DOI: 10.1021/acs.inorgchem.0c03492] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein we present the preparation of two novel cyclam-based macrocycles (te1pyp and cb-te1pyp), bearing phosphonate-appended pyridine side arms for the coordination of copper(II) ions in the context of 64Cu PET imaging. The two ligands have been prepared through conventional protection-alkylation sequences on cyclam, and their coordination properties have been thoroughly investigated. The corresponding copper complexes have been fully characterized in the solid state (X-ray diffraction analysis) and in solution (EPR and UV-vis spectroscopies). Potentiometric studies combined with spectrometry have also allowed us to determine their thermodynamic stability constants, confirming their high affinity for copper(II) cations. The kinetic inertness of the complexes has been verified by acid-assisted dissociation experiments, enabling their use in 64Cu-PET imaging in mice for the first time. Indeed, the two ligands could be quantitatively radiolabeled under mild conditions, and the resulting 64Cu complexes have demonstrated excellent stability in serum. PET imaging demonstrated a set of features emerging from the combination of picolinates and phosphonate units: high stability in vivo, fast clearance from the body via renal elimination, and most interestingly, very low fixation in the liver. This is in contrast with what was observed for monopicolinate cyclam (te1pa), which had a non-negligible accumulation in the liver, owing probably to its different charge and lipophilicity. These results thus pave the way for the use of such phosphonated pyridine chelators for in vivo 64Cu-PET imaging.
Collapse
Affiliation(s)
- Richard C Knighton
- Univ. Brest, UMR CNRS 6521, 6 Avenue Victor Le Gorgeu, 29200 Brest, France
| | - Thibault Troadec
- Univ. Brest, UMR CNRS 6521, 6 Avenue Victor Le Gorgeu, 29200 Brest, France
| | - Valérie Mazan
- Université de Strasbourg, CNRS, UMR 7042-LIMA, Equipe de Chimie Bioorganique et Médicinale, ECPM, 25 rue Becquerel, Strasbourg 67087, France
| | - Patricia Le Saëc
- Université de Nantes, CHRU de Nantes, Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), Unité INSERM 1232-CNRS 6299, 8 quai Moncousu, BP 70721, 44007 Nantes Cedex, France
| | - Séverine Marionneau-Lambot
- Université de Nantes, CHRU de Nantes, Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), Unité INSERM 1232-CNRS 6299, 8 quai Moncousu, BP 70721, 44007 Nantes Cedex, France
| | - Thomas Le Bihan
- Univ. Brest, UMR CNRS 6521, 6 Avenue Victor Le Gorgeu, 29200 Brest, France
| | | | - Nathalie Le Bris
- Univ. Brest, UMR CNRS 6521, 6 Avenue Victor Le Gorgeu, 29200 Brest, France
| | - Michel Chérel
- Université de Nantes, CHRU de Nantes, Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), Unité INSERM 1232-CNRS 6299, 8 quai Moncousu, BP 70721, 44007 Nantes Cedex, France
| | - Alain Faivre-Chauvet
- Université de Nantes, CHRU de Nantes, Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), Unité INSERM 1232-CNRS 6299, 8 quai Moncousu, BP 70721, 44007 Nantes Cedex, France
| | - Mourad Elhabiri
- Université de Strasbourg, CNRS, UMR 7042-LIMA, Equipe de Chimie Bioorganique et Médicinale, ECPM, 25 rue Becquerel, Strasbourg 67087, France
| | - Loïc J Charbonnière
- UMR 7178, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, ECPM, , 25 rue Becquerel, 67087 Strasbourg Cedex 2, France
| | - Raphaël Tripier
- Univ. Brest, UMR CNRS 6521, 6 Avenue Victor Le Gorgeu, 29200 Brest, France
| |
Collapse
|
7
|
Pazderová L, David T, Hlinová V, Plutnar J, Kotek J, Lubal P, Kubíček V, Hermann P. Cross-Bridged Cyclam with Phosphonate and Phosphinate Pendant Arms: Chelators for Copper Radioisotopes with Fast Complexation. Inorg Chem 2020; 59:8432-8443. [PMID: 32437603 DOI: 10.1021/acs.inorgchem.0c00856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cross-bridged cyclam derivatives bearing two phosphonate (H4L1), bis(phosphinate) (H4L2), or phosphinate (H2L3) pendant arms were synthesized and studied with respect to their application as copper radioisotope carriers in nuclear medicine. The ligands show high macrocycle basicity (pK1 > 14) and high Cu(II) complex stability (log K = 20-24). The complexation and dissociation kinetics of the Cu(II) complexes were studied by ultraviolet-visible spectroscopy. Phosphonate Cu(II)-H4L1 and bis(phosphinate) Cu(II)-H4L2 complexes form very quickly, reaching quantitative formation within 1 s at pH ∼6 and millimolar concentrations. Conversely, the formation of the phosphinate complex Cu(II)-H2L3 is much slower (9 min at pH ∼6) due to the low stability of the out-of-cage reaction intermediate. All studied complexes are highly kinetically inert, showing half-lives of 120, 11, and 111 h for Cu(II)-H4L1, Cu(II)-H4L2, and Cu(II)-H2L3 complexes, respectively, in 1 M HClO4 at 90 °C. The high thermodynamic stability, fast formation, and extreme kinetic inertness of Cu(II) complexes indicate that phosphonate and bis(phosphinate) derivatives are promising ligands for nuclear medicine.
Collapse
Affiliation(s)
- Lucia Pazderová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| | - Tomáš David
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| | - Veronika Hlinová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| | - Jan Plutnar
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| | - Jan Kotek
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| | - Přemysl Lubal
- Department of Chemistry, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Vojtěch Kubíček
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| | - Petr Hermann
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| |
Collapse
|
8
|
Mewis RE, Archibald SJ. Side-bridged cyclam transition metal complexes bearing a phenolic ether or a phenolate pendent arm. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Hubin TJ, Walker AN, Davilla DJ, Freeman TNC, Epley BM, Hasley TR, Amoyaw PNA, Jain S, Archibald SJ, Prior TJ, Krause JA, Oliver AG, Tekwani BL, Khan MOF. Tetraazamacrocyclic derivatives and their metal complexes as antileishmanial leads. Polyhedron 2019; 163:42-53. [PMID: 30976133 PMCID: PMC6452907 DOI: 10.1016/j.poly.2019.02.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A total of 44 bis-aryl-monocyclic polyamines, monoaryl-monocyclic polyamines and their transition metal complexes were prepared, chemically characterized, and screened in vitro against the Leishmania donovani promastigotes, axenic amastigotes and intracellular amastigotes in THP1 cells. The IC50 and/or IC90 values showed that 10 compounds were similarly active at about 2-fold less potent than known drug pentamidine against promastigotes. The most potent compound had an IC50 of 2.82 μM (compared to 2.93 μM for pentamidine). Nine compounds were 1.1-13.6-fold more potent than pentamidine against axenic amastigotes, the most potent one being about 2-fold less potent than amphotericin B. Fourteen compounds were about 2-10 fold more potent than pentamidine, the most potent one is about 2-fold less potent than amphotericin B against intracellular amastigotes in THP1 cells. The 2 most promising compounds (FeL7Cl2 and MnL7Cl2), with strong activity against both promastigotes and amastigotes and no observable toxicity against the THP1 cells are the Fe2+- and Mn2+- complexes of a dibenzyl cyclen derivative. Only 2 of the 44 compounds showed observable cytotoxicity against THP1 cells. Tetraazamacrocyclic monocyclic polyamines represent a new class of antileishmanial lead structures that warrant follow up studies.
Collapse
Affiliation(s)
- Timothy J. Hubin
- Department of Chemistry and Physics, Southwestern Oklahoma State University. 100 Campus Drive, Weatherford, OK 73096
| | - Ashlie N. Walker
- Department of Chemistry and Physics, Southwestern Oklahoma State University. 100 Campus Drive, Weatherford, OK 73096
| | - Dustin J. Davilla
- Department of Chemistry and Physics, Southwestern Oklahoma State University. 100 Campus Drive, Weatherford, OK 73096
| | - TaRynn N. Carder Freeman
- Department of Chemistry and Physics, Southwestern Oklahoma State University. 100 Campus Drive, Weatherford, OK 73096
| | - Brittany M. Epley
- Department of Chemistry and Physics, Southwestern Oklahoma State University. 100 Campus Drive, Weatherford, OK 73096
| | - Travis R. Hasley
- Department of Chemistry and Physics, Southwestern Oklahoma State University. 100 Campus Drive, Weatherford, OK 73096
| | - Prince N. A. Amoyaw
- Department of Pharmaceutical Sciences, College of Pharmacy, Southwestern Oklahoma State University. 100 Campus Drive, Weatherford, Ok 73096
| | - Surendra Jain
- National Center for Natural Products Research and Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677
| | | | - Timothy J. Prior
- Department of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX
| | - Jeanette A. Krause
- Department of Chemistry, University of Cincinnati, 301 Clifton Ct., Cincinnati, OH 45221-0172
| | - Allen G. Oliver
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Babu L. Tekwani
- National Center for Natural Products Research and Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677
- (Present address) Southern Research, Division of Drug Discovery, 2000 9th Avenue South Birmingham, AL 35205
| | - M. Omar F. Khan
- Department of Pharmaceutical Sciences, College of Pharmacy, Southwestern Oklahoma State University. 100 Campus Drive, Weatherford, Ok 73096
- (Present address) University of Charleston School of Pharmacy, 2300 MacCorkle Ave SE Charleston, WV 25304
| |
Collapse
|
10
|
David T, Hlinová V, Kubíček V, Bergmann R, Striese F, Berndt N, Szöllősi D, Kovács T, Máthé D, Bachmann M, Pietzsch HJ, Hermann P. Improved Conjugation, 64-Cu Radiolabeling, in Vivo Stability, and Imaging Using Nonprotected Bifunctional Macrocyclic Ligands: Bis(Phosphinate) Cyclam (BPC) Chelators. J Med Chem 2018; 61:8774-8796. [PMID: 30180567 DOI: 10.1021/acs.jmedchem.8b00932] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Bifunctional derivatives of bis(phosphinate)-bearing cyclam (BPC) chelators bearing a carboxylate, amine, isothiocyanate, azide, or cyclooctyne in the BP side chain were synthesized. Conjugations required no protection of phosphinate or ring secondary amine groups. The ring amines were not reactive (proton protected) at pH < ∼8. For isothiocyanate coupling, oligopeptide N-terminal α-amines were more suitable than alkyl amines, e.g., Lys ω-amine (p Ka ∼7.5-8.5 and ∼10-11, respectively) due to lower basicity. The Cu-64 labeling was efficient at room temperature (specific activity ∼100 GBq/μmol; 25 °C, pH 6.2, ∼100 ligand equiv, 10 min). A representative Cu-64-BPC was tested in vivo showing fast clearance and no nonspecific radioactivity deposition. The monoclonal anti-PSCA antibody 7F5 conjugates with thiocyanate BPC derivative or NODAGA were radiolabeled and studied in PC3-PSCA tumor bearing mice by PET. The radiolabeled BPC conjugate was accumulated in the prostate tumor with a low off-target uptake, unlike Cu-64-labeled NODAGA-antibody conjugate. The BPC chelators have a great potential for theranostic applications of the Cu-64/Cu-67 matched pair.
Collapse
Affiliation(s)
- Tomáš David
- Department of Inorganic Chemistry, Faculty of Science , Charles University , Hlavova 2030 , 128 40 Prague , Czech Republic.,Institute of Radiopharmaceutical Cancer Research , Helmholtz-Zentrum Dresden-Rossendorf , Bautzner Landstrasse 400 , 01328 Dresden , Germany
| | - Veronika Hlinová
- Department of Inorganic Chemistry, Faculty of Science , Charles University , Hlavova 2030 , 128 40 Prague , Czech Republic
| | - Vojtěch Kubíček
- Department of Inorganic Chemistry, Faculty of Science , Charles University , Hlavova 2030 , 128 40 Prague , Czech Republic
| | - Ralf Bergmann
- Institute of Radiopharmaceutical Cancer Research , Helmholtz-Zentrum Dresden-Rossendorf , Bautzner Landstrasse 400 , 01328 Dresden , Germany
| | - Franziska Striese
- Institute of Radiopharmaceutical Cancer Research , Helmholtz-Zentrum Dresden-Rossendorf , Bautzner Landstrasse 400 , 01328 Dresden , Germany
| | - Nicole Berndt
- Partner Site Dresden , German Cancer Consortium (DKTK) , Fetscherstrasse 74 , 01307 Dresden , Germany.,German Cancer Research Center (DKFZ) , Im Neuenheimer Feld 280 , 69120 Heidelberg , Germany
| | - Dávid Szöllősi
- Department of Biophysics and Radiation Biology , Semmelweis University , Tűzoltó utca 37-47 , H-1094 Budapest , Hungary
| | - Tibor Kovács
- Institute of Radiochemistry and Radioecology , University of Pannonia , Egyetem St. 10 , H-8200 Veszprém , Hungary.,Social Organization for Radioecological Cleanliness , P.O. Box 158, H-8200 Veszprém , Hungary
| | - Domokos Máthé
- Department of Biophysics and Radiation Biology , Semmelweis University , Tűzoltó utca 37-47 , H-1094 Budapest , Hungary
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research , Helmholtz-Zentrum Dresden-Rossendorf , Bautzner Landstrasse 400 , 01328 Dresden , Germany.,Tumor Immunology, University Cancer Center (UCC) , "Carl Gustav Carus" Technische Universität Dresden , Fetscherstrasse 74 , 01307 Dresden , Germany.,National Center for Tumor Diseases (NCT) , "Carl Gustav Carus" Technische Universität Dresden , Fetscherstrasse 74 , 01307 Dresden , Germany
| | - Hans-Jürgen Pietzsch
- Institute of Radiopharmaceutical Cancer Research , Helmholtz-Zentrum Dresden-Rossendorf , Bautzner Landstrasse 400 , 01328 Dresden , Germany
| | - Petr Hermann
- Department of Inorganic Chemistry, Faculty of Science , Charles University , Hlavova 2030 , 128 40 Prague , Czech Republic
| |
Collapse
|
11
|
Ahmedova A, Todorov B, Burdzhiev N, Goze C. Copper radiopharmaceuticals for theranostic applications. Eur J Med Chem 2018; 157:1406-1425. [DOI: 10.1016/j.ejmech.2018.08.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 08/15/2018] [Accepted: 08/18/2018] [Indexed: 12/12/2022]
|
12
|
Debordeaux F, Chansel-Debordeaux L, Pinaquy JB, Fernandez P, Schulz J. What about αvβ3 integrins in molecular imaging in oncology? Nucl Med Biol 2018; 62-63:31-46. [DOI: 10.1016/j.nucmedbio.2018.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/19/2018] [Accepted: 04/30/2018] [Indexed: 10/17/2022]
|
13
|
Deng H, Wang H, Zhang H, Wang M, Giglio B, Ma X, Jiang G, Yuan H, Wu Z, Li Z. Imaging Neurotensin Receptor in Prostate Cancer With 64Cu-Labeled Neurotensin Analogs. Mol Imaging 2018; 16:1536012117711369. [PMID: 28849698 PMCID: PMC6081756 DOI: 10.1177/1536012117711369] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION Neurotensin receptor 1 (NTR-1) is expressed and activated in prostate cancer cells. In this study, we explore the NTR expression in normal mouse tissues and study the positron emission tomography (PET) imaging of NTR in prostate cancer models. MATERIALS AND METHODS Three 64Cu chelators (1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid [DOTA], 1,4,7-triazacyclononane-N,N',N″-triacetic acid [NOTA], or AmBaSar) were conjugated to an NT analog. Neurotensin receptor binding affinity was evaluated using cell binding assay. The imaging profile of radiolabeled probes was compared in well-established NTR+ HT-29 tumor model. Stability of the probes was tested. The selected agents were further evaluated in human prostate cancer PC3 xenografts. RESULTS All 3 NT conjugates retained the majority of NTR binding affinity. In HT-29 tumor, all agents demonstrated prominent tumor uptake. Although comparable stability was observed, 64Cu-NOTA-NT and 64Cu-AmBaSar-NT demonstrated improved tumor to background contrast compared with 64Cu-DOTA-NT. Positron emission tomography/computed tomography imaging of the NTR expression in PC-3 xenografts showed high tumor uptake of the probes, correlating with the in vitro Western blot results. Blocking experiments further confirmed receptor specificity. CONCLUSIONS Our results demonstrated that 64Cu-labeled neurotensin analogs are promising imaging agents for NTR-positive tumors. These agents may help us identify NTR-positive lesions and predict which patients and individual tumors are likely to respond to novel interventions targeting NTR-1.
Collapse
Affiliation(s)
- Huaifu Deng
- 1 Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,2 PET/CT Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hui Wang
- 1 Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - He Zhang
- 1 Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,3 Department of Radiology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Mengzhe Wang
- 1 Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ben Giglio
- 1 Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xiaofen Ma
- 1 Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,4 Department of Medical Imaging, Provincial People's Hospital, Guangzhou, China
| | - Guihua Jiang
- 4 Department of Medical Imaging, Provincial People's Hospital, Guangzhou, China
| | - Hong Yuan
- 1 Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhanhong Wu
- 1 Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zibo Li
- 1 Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
14
|
Kubíček V, Böhmová Z, Ševčíková R, Vaněk J, Lubal P, Poláková Z, Michalicová R, Kotek J, Hermann P. NOTA Complexes with Copper(II) and Divalent Metal Ions: Kinetic and Thermodynamic Studies. Inorg Chem 2018; 57:3061-3072. [PMID: 29488748 DOI: 10.1021/acs.inorgchem.7b02929] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
H3nota derivatives are among the most studied macrocyclic ligands and are widely used for metal ion binding in biology and medicine. Despite more than 40 years of chemical research on H3nota, the comprehensive study of its solution chemistry has been overlooked. Thus, the coordination behavior of H3nota with several divalent metal ions was studied in detail with respect to its application as a chelator for copper radioisotopes in medical imaging and therapy. In the solid-state structure of the free ligand in zwitterionic form, one proton is bound in the macrocyclic cavity through a strong intramolecular hydrogen-bond system supporting the high basicity of the ring amine groups (log Ka = 13.17). The high stability of the [Cu(nota)]- complex (log KML = 23.33) results in quantitative complex formation, even at pH <1.5. The ligand is moderately selective for Cu(II) over other metal ions (e.g., log KML(Zn) = 22.32 and log KML(Ni) = 19.24). This ligand forms a more stable complex with Mg(II) than with Ca(II) and forms surprisingly stable complexes with alkali-metal ions (stability order Li(I) > Na(I) > K(I)). Thus, H3nota shows high selectivity for small metal ions. The [Cu(nota)]- complex is hexacoordinated at neutral pH, and the equatorial N2O2 interaction is strengthened by complex protonation. Detailed kinetic studies showed that the Cu(II) complex is formed quickly (millisecond time scale at cCu ≈ 0.1 mM) through an out-of-cage intermediate. Conversely, conductivity measurements revealed that the Zn(II) complex is formed much more slowly than the Cu(II) complex. The Cu(II) complex has medium kinetic inertness (τ1/2 46 s; pH 0, 25 °C) and is less resistant to acid-assisted decomplexation than Cu(II) complexes with H4dota and H4teta. Surprisingly, [Cu(nota)]- decomplexation is decelerated in the presence of Zn(II) ions due to the formation of a stable dinuclear complex. In conclusion, H3nota is a good carrier of copper radionuclides because the [Cu(nota)]- complex is predominantly formed over complexes with common impurities in radiochemical formulations, Zn(II) and Ni(II), for thermodynamic and, primarily, for kinetic reasons. Furthermore, the in vivo stability of the [Cu(nota)]- complex may be increased due to the formation of dinuclear complexes when it interacts with biometals.
Collapse
Affiliation(s)
- Vojtěch Kubíček
- Department of Inorganic Chemistry, Faculty of Science , Charles University , Hlavova 8 , 128 40 Prague 2 , Czech Republic
| | - Zuzana Böhmová
- Department of Inorganic Chemistry, Faculty of Science , Charles University , Hlavova 8 , 128 40 Prague 2 , Czech Republic
| | - Romana Ševčíková
- Department of Chemistry , Masaryk University , Kotlářská 2 , 611 37 Brno , Czech Republic
| | - Jakub Vaněk
- Department of Chemistry , Masaryk University , Kotlářská 2 , 611 37 Brno , Czech Republic.,Central European Institute of Technology (CEITEC) , Masaryk University , Kamenice 5 , 625 00 Brno , Czech Republic
| | - Přemysl Lubal
- Department of Chemistry , Masaryk University , Kotlářská 2 , 611 37 Brno , Czech Republic.,Central European Institute of Technology (CEITEC) , Masaryk University , Kamenice 5 , 625 00 Brno , Czech Republic
| | - Zuzana Poláková
- Department of Inorganic Chemistry, Faculty of Science , Charles University , Hlavova 8 , 128 40 Prague 2 , Czech Republic
| | - Romana Michalicová
- Department of Chemistry , Masaryk University , Kotlářská 2 , 611 37 Brno , Czech Republic
| | - Jan Kotek
- Department of Inorganic Chemistry, Faculty of Science , Charles University , Hlavova 8 , 128 40 Prague 2 , Czech Republic
| | - Petr Hermann
- Department of Inorganic Chemistry, Faculty of Science , Charles University , Hlavova 8 , 128 40 Prague 2 , Czech Republic
| |
Collapse
|
15
|
Price TW, Greenman J, Stasiuk GJ. Current advances in ligand design for inorganic positron emission tomography tracers 68Ga, 64Cu, 89Zr and 44Sc. Dalton Trans 2018; 45:15702-15724. [PMID: 26865360 DOI: 10.1039/c5dt04706d] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A key part of the development of metal based Positron Emission Tomography probes is the chelation of the radiometal. In this review the recent developments in the chelation of four positron emitting radiometals, 68Ga, 64Cu, 89Zr and 44Sc, are explored. The factors that effect the chelation of each radio metal and the ideal ligand system will be discussed with regards to high in vivo stability, complexation conditions, conjugation to targeting motifs and complexation kinetics. A series of cyclic, cross-bridged and acyclic ligands will be discussed, such as CP256 which forms stable complexes with 68Ga under mild conditions and PCB-TE2A which has been shown to form a highly stable complex with 64Cu. 89Zr and 44Sc have seen significant development in recent years with a number of chelates being applied to each metal - eight coordinate di-macrocyclic terephthalamide ligands were found to rapidly produce more stable complexes with 89Zr than the widely used DFO.
Collapse
Affiliation(s)
- Thomas W Price
- School of Biological, Biomedical and Environmental Sciences, The University of Hull, HU6 7RX, UK. and Positron Emission Tomography Research Centre, The University of Hull, HU6 7RX, UK
| | - John Greenman
- School of Biological, Biomedical and Environmental Sciences, The University of Hull, HU6 7RX, UK.
| | - Graeme J Stasiuk
- School of Biological, Biomedical and Environmental Sciences, The University of Hull, HU6 7RX, UK. and Positron Emission Tomography Research Centre, The University of Hull, HU6 7RX, UK
| |
Collapse
|
16
|
Paúrová M, David T, Císařová I, Lubal P, Hermann P, Kotek J. Optimization of the selectivity and rate of copper radioisotope complexation: formation and dissociation kinetic studies of 1,4,8-trimethylcyclam-based ligands with different coordinating pendant arms. NEW J CHEM 2018. [DOI: 10.1039/c8nj00419f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Influence of coordinating pendant arm character on selectivity and rate of copper(ii) complexation was investigated to optimize ligands for radiomedicinal use.
Collapse
Affiliation(s)
- Monika Paúrová
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University
- Czech Republic
| | - Tomáš David
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University
- Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University
- Czech Republic
| | - Přemysl Lubal
- Department of Chemistry
- Faculty of Science
- Masaryk University
- Brno
- Czech Republic
| | - Petr Hermann
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University
- Czech Republic
| | - Jan Kotek
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University
- Czech Republic
| |
Collapse
|
17
|
Gillet R, Roux A, Brandel J, Huclier-Markai S, Camerel F, Jeannin O, Nonat AM, Charbonnière LJ. A Bispidol Chelator with a Phosphonate Pendant Arm: Synthesis, Cu(II) Complexation, and 64Cu Labeling. Inorg Chem 2017; 56:11738-11752. [DOI: 10.1021/acs.inorgchem.7b01731] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Raphaël Gillet
- Laboratoire d’Ingénierie
Moléculaire Appliquée à l’Analyse, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Amandine Roux
- Laboratoire d’Ingénierie
Moléculaire Appliquée à l’Analyse, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Jérémy Brandel
- Laboratoire de Reconnaissance et Procédés
de Séparation Moléculaire, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Sandrine Huclier-Markai
- GIP Arronax, 1 rue Aronnax, CS 10112, F-44817 Saint-Herblain, France
- Subatech Laboratory, UMR 6457, Ecole des Mines de Nantes, IN2P3/CNRS, Université de Nantes, 4 rue Alfred Kastler, F-44307 Nantes, France
| | - Franck Camerel
- Laboratoire Matière Condensée et Systèmes
Électroactifs, Institut des Sciences Chimiques de Rennes, UMR-CNRS 6226, 263 Avenue du Général Leclerc, CS
74205, F-35042 Rennes Cedex, France
| | - Olivier Jeannin
- Laboratoire Matière Condensée et Systèmes
Électroactifs, Institut des Sciences Chimiques de Rennes, UMR-CNRS 6226, 263 Avenue du Général Leclerc, CS
74205, F-35042 Rennes Cedex, France
| | - Aline M. Nonat
- Laboratoire d’Ingénierie
Moléculaire Appliquée à l’Analyse, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Loïc J. Charbonnière
- Laboratoire d’Ingénierie
Moléculaire Appliquée à l’Analyse, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| |
Collapse
|
18
|
New Insights in the Design of Bioactive Peptides and Chelating Agents for Imaging and Therapy in Oncology. Molecules 2017; 22:molecules22081282. [PMID: 28767081 PMCID: PMC6152110 DOI: 10.3390/molecules22081282] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/25/2017] [Indexed: 11/16/2022] Open
Abstract
Many synthetic peptides have been developed for diagnosis and therapy of human cancers based on their ability to target specific receptors on cancer cell surface or to penetrate the cell membrane. Chemical modifications of amino acid chains have significantly improved the biological activity, the stability and efficacy of peptide analogues currently employed as anticancer drugs or as molecular imaging tracers. The stability of somatostatin, integrins and bombesin analogues in the human body have been significantly increased by cyclization and/or insertion of non-natural amino acids in the peptide sequences. Moreover, the overall pharmacokinetic properties of such analogues and others (including cholecystokinin, vasoactive intestinal peptide and neurotensin analogues) have been improved by PEGylation and glycosylation. Furthermore, conjugation of those peptide analogues to new linkers and bifunctional chelators (such as AAZTA, TETA, TRAP, NOPO etc.), produced radiolabeled moieties with increased half life and higher binding affinity to the cognate receptors. This review describes the most important and recent chemical modifications introduced in the amino acid sequences as well as linkers and new bifunctional chelators which have significantly improved the specificity and sensitivity of peptides used in oncologic diagnosis and therapy.
Collapse
|
19
|
Nanomedicines for advanced cancer treatments: Transitioning towards responsive systems. Int J Pharm 2016; 515:132-164. [DOI: 10.1016/j.ijpharm.2016.10.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 12/14/2022]
|
20
|
Gai Y, Sun L, Hui W, Ouyang Q, Anderson CJ, Xiang G, Ma X, Zeng D. New Bifunctional Chelator p-SCN-PhPr-NE3TA for Copper-64: Synthesis, Peptidomimetic Conjugation, Radiolabeling, and Evaluation for PET Imaging. Inorg Chem 2016; 55:6892-901. [PMID: 27347690 DOI: 10.1021/acs.inorgchem.6b00395] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bifunctional chelators play an important role in developing metallic radionuclide-based radiopharmaceuticals. In this study, a new bifunctional ligand, p-SCN-PhPr-NE3TA, was synthesized and conjugated to a very late antigen-4 targeting peptidomimetic, LLP2A, for evaluating its application in (64)Cu-based positron emission tomography (PET) imaging. The new ligand exhibited strong selective coordination of Cu(II), leading to a robust Cu complex, even in the presence of 10-fold Fe(III). The LLP2A conjugate of p-SCN-PhPr-NE3TA was prepared and successfully labeled with (64)Cu under mild conditions. The conjugate (64)Cu-NE3TA-PEG4-LLP2A showed significantly higher specific activity, compared with (64)Cu-NOTA-PEG4-LLP2A, while maintaining comparable serum stability. Subsequent biodistribution studies and PET imaging in mice bearing B16F10 xenografts confirmed its favorable in vivo performance and high tumor uptake with low background, rendering p-SCN-PhPr-NE3TA a promising bifunctional chelator for (64)Cu-based radiopharmaceuticals.
Collapse
Affiliation(s)
- Yongkang Gai
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology , 13 Hangkong Road, Wuhan 430030, China.,Department of Radiology, University of Pittsburgh , Pittsburgh, Pennsylvania 15219, United States
| | - Lingyi Sun
- Department of Radiology, University of Pittsburgh , Pittsburgh, Pennsylvania 15219, United States
| | - Wenqi Hui
- College of Pharmacy, The Third Military Medical University , Chongqing 400038, China
| | - Qin Ouyang
- College of Pharmacy, The Third Military Medical University , Chongqing 400038, China
| | - Carolyn J Anderson
- Department of Radiology, University of Pittsburgh , Pittsburgh, Pennsylvania 15219, United States.,Departments of Pharmacology & Chemical Biology and Bioengineering, University of Pittsburgh , Pittsburgh, Pennsylvania 15219, United States
| | - Guangya Xiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology , 13 Hangkong Road, Wuhan 430030, China
| | - Xiang Ma
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology , 13 Hangkong Road, Wuhan 430030, China
| | - Dexing Zeng
- Department of Radiology, University of Pittsburgh , Pittsburgh, Pennsylvania 15219, United States
| |
Collapse
|
21
|
Satterlee AB, Huang L. Current and Future Theranostic Applications of the Lipid-Calcium-Phosphate Nanoparticle Platform. Theranostics 2016; 6:918-29. [PMID: 27217828 PMCID: PMC4876619 DOI: 10.7150/thno.14689] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/15/2016] [Indexed: 11/11/2022] Open
Abstract
Over the last four years, the Lipid-Calcium-Phosphate (LCP) nanoparticle platform has shown success in a wide range of treatment strategies, recently including theranostics. The high specific drug loading of radiometals into LCP, coupled with its ability to efficiently encapsulate many types of cytotoxic agents, allows a broad range of theranostic applications, many of which are yet unexplored. In addition to providing an overview of current medical imaging modalities, this review highlights the current theranostic applications for LCP using SPECT and PET, and discusses potential future uses of the platform by comparing it with both systemically and locally delivered clinical radiotherapy options as well as introducing its applications as an MRI contrast agent. Strengths and weaknesses of LCP and of nanoparticles in general are discussed, as well as caveats regarding the use of fluorescence to determine the accumulation or biodistribution of a probe.
Collapse
Affiliation(s)
- Andrew B. Satterlee
- 1. Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7571, USA
- 2. UNC and NCSU Joint Department of Biomedical Engineering, Chapel Hill, NC 27599
| | - Leaf Huang
- 1. Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7571, USA
- 2. UNC and NCSU Joint Department of Biomedical Engineering, Chapel Hill, NC 27599
| |
Collapse
|