1
|
Yang Y, Hong L, Bellaiche L, Xiang H. Toward Ultimate Memory with Single-Molecule Multiferroics. J Am Chem Soc 2023; 145:25357-25364. [PMID: 37948323 DOI: 10.1021/jacs.3c09294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The demand for high-density storage is urgent in the current era of data explosion. Recently, several single-molecule (-atom) magnets and ferroelectrics have been reported to be promising candidates for high-density storage. As another promising candidate, single-molecule multiferroics are not only small in size but also possess ferroelectric and magnetic orderings, which can sometimes be strongly coupled and used as data storage to realize the combination of electric writing and magnetic reading. However, they have been rarely proposed and have never been experimentally reported. Here, by building Hamiltonian models, we propose a new model of single-molecule multiferroics in which electric dipoles and magnetic moments are parallel and can rotate with the rotation of the single molecule. Furthermore, by performing spin-lattice dynamics simulations, we reveal the conditions (e.g., large enough single-ion anisotropy and an appropriate electric field) under which the new single-molecule multiferroic can arise. Based on this model, as well as first-principles calculations, a realistic example of Co(NH3)4N@SWCNT is constructed and numerically confirmed to demonstrate the feasibility of the new single-molecule multiferroic model. Our work not only sheds light on the discovery of single-molecule multiferroics but also provides a new guideline to design multifunctional materials for ultimate memory devices.
Collapse
Affiliation(s)
- Yali Yang
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
- Key Laboratory of Computational Physical Sciences (Ministry of Education), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, Shanghai 200030, China
| | - Liangliang Hong
- Key Laboratory of Computational Physical Sciences (Ministry of Education), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, Shanghai 200030, China
| | - Laurent Bellaiche
- Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Hongjun Xiang
- Key Laboratory of Computational Physical Sciences (Ministry of Education), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, Shanghai 200030, China
| |
Collapse
|
2
|
Comanescu C. Complex Metal Borohydrides: From Laboratory Oddities to Prime Candidates in Energy Storage Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2286. [PMID: 35329738 PMCID: PMC8949998 DOI: 10.3390/ma15062286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/26/2022] [Accepted: 03/11/2022] [Indexed: 01/27/2023]
Abstract
Despite being the lightest element in the periodic table, hydrogen poses many risks regarding its production, storage, and transport, but it is also the one element promising pollution-free energy for the planet, energy reliability, and sustainability. Development of such novel materials conveying a hydrogen source face stringent scrutiny from both a scientific and a safety point of view: they are required to have a high hydrogen wt.% storage capacity, must store hydrogen in a safe manner (i.e., by chemically binding it), and should exhibit controlled, and preferably rapid, absorption-desorption kinetics. Even the most advanced composites today face the difficult task of overcoming the harsh re-hydrogenation conditions (elevated temperature, high hydrogen pressure). Traditionally, the most utilized materials have been RMH (reactive metal hydrides) and complex metal borohydrides M(BH4)x (M: main group or transition metal; x: valence of M), often along with metal amides or various additives serving as catalysts (Pd2+, Ti4+ etc.). Through destabilization (kinetic or thermodynamic), M(BH4)x can effectively lower their dehydrogenation enthalpy, providing for a faster reaction occurring at a lower temperature onset. The present review summarizes the recent scientific results on various metal borohydrides, aiming to present the current state-of-the-art on such hydrogen storage materials, while trying to analyze the pros and cons of each material regarding its thermodynamic and kinetic behavior in hydrogenation studies.
Collapse
Affiliation(s)
- Cezar Comanescu
- National Institute of Materials Physics, 405A Atomiștilor St., 077125 Magurele, Romania
- Inorganic Chemistry Department, Politehnica University of Bucharest, 1 Polizu St., 011061 Bucharest, Romania
- Faculty of Physics, University of Bucharest, 405, Atomiștilor St., 077125 Magurele, Romania
| |
Collapse
|
3
|
Darii M, Beleaev ES, Kravtsov VC, Bourosh P, Chumakov Y, Hauser J, Decurtins S, Liu SX, Sultanova O, Baca SG. Crystalline multicomponent compounds involving hexaammine cobalt( iii) cations. NEW J CHEM 2022. [DOI: 10.1039/d2nj01655a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Among nine synthesized multicomponent compounds involving hexaammine cobalt(iii) cations and N-, N,O- and O-donor organic moieties, the compound [Co(NH3)6]Cl3·2(phen)·3H2O shows the best biological activity against plant pathogenic bacteria.
Collapse
Affiliation(s)
- Mariana Darii
- Institute of Applied Physics, Academiei 5, MD-2028 Chisinau, R. Moldova
| | | | | | - Paulina Bourosh
- Institute of Applied Physics, Academiei 5, MD-2028 Chisinau, R. Moldova
| | - Yurii Chumakov
- Institute of Applied Physics, Academiei 5, MD-2028 Chisinau, R. Moldova
| | - Jürg Hauser
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012-Bern, Switzerland
| | - Silvio Decurtins
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012-Bern, Switzerland
| | - Shi-Xia Liu
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012-Bern, Switzerland
| | - Olga Sultanova
- Practical Scientific Institute of Horticulture and Food Technology, Vierul 59, MD-2070 Chisinau, R. Moldova
| | - Svetlana G. Baca
- Institute of Applied Physics, Academiei 5, MD-2028 Chisinau, R. Moldova
| |
Collapse
|
4
|
Stennett CR, Fettinger JC, Power PP. Low-Coordinate Iron Chalcogenolates and Their Complexes with Diethyl Ether and Ammonia. Inorg Chem 2021; 60:6712-6720. [PMID: 33848423 DOI: 10.1021/acs.inorgchem.1c00539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Treatment of Fe{N(SiMe3)2}2 with 2 equiv of the appropriate phenol or thiol affords the dimers {Fe(OC6H2-2,6-But2-4-Me)2}2 (1) and {Fe(OC6H3-2,6-But2)2}2 (2) or the monomeric Fe{SC6H3-2,6-(C6H3-2,6-Pri2)2}2 (3) in moderate to excellent yields. Recrystallization of 1 and 2 from diethyl ether gives the corresponding three-coordinate ether complexes Fe(OC6H3-2,6-But2-4-Me)2(OEt2) (4) and Fe(OC6H3-2,6-But2)2(OEt2) (5). In contrast, no diethyl ether complex is formed by the dithiolate 3. The 1H NMR spectra of 4 and 5 show equilibria between the ether complexes and the base-free dimers. A comparison of these spectra with those of the dimeric 1 and 2 allows an unambiguous assignment of the paramagnetically shifted signals. Treatment of 1 with excess ammonia gives the tetrahedral diammine Fe(OC6H2-2,6-But2-4-Me)2(NH3)2 (6). Ammonia is strongly coordinated in 6, with no apparent loss of ammine ligand either in solution or upon heating under low pressure. In contrast, significantly weaker ammonia coordination is observed when dithiolate 3 is treated with excess ammonia, which gives the diammine Fe{SC6H3-2,6-(2,6-Pri2-C6H3)2}2(NH3)2 (7). Complex 7 readily loses ammonia either in solution or under reduced pressure to give the monoammine complex Fe{SC6H3-2,6-(2,6-Pri2-C6H3)2}2(NH3) (8). The weak binding of ammonia by iron thiolate 7 reflects the likely behavior of the proposed iron-sulfur active site in nitrogenases, where release of ammonia is required to close the catalytic cycle.
Collapse
Affiliation(s)
- Cary R Stennett
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - James C Fettinger
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Philip P Power
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
5
|
Grinderslev JB, Jensen TR. Trends in the Series of Ammine Rare-Earth-Metal Borohydrides: Relating Structural and Thermal Properties. Inorg Chem 2021; 60:2573-2589. [PMID: 33499595 DOI: 10.1021/acs.inorgchem.0c03464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ammine metal borohydrides display extreme structural and compositional diversity and show potential applications for solid-state hydrogen and ammonia storage and as solid-state electrolytes. Thirty-two new compounds are reported in this work, and trends in the full series of ammine rare-earth-metal borohydrides are discussed. The majority of the rare-earth metals (RE) form trivalent RE(BH4)3·xNH3 (x = 7-1) compounds, which possess an intriguing crystal chemistry changing with the number of ammonia ligands, varying from structures built from complex ions (x = 5-7), to molecular structures (x = 3, 4), one-dimensional chains (x = 2), and structures built from two-dimensional layers (x = 1). Divalent RE(BH4)2·xNH3 (x = 4, 2, 1) compounds are observed for RE2+ = Sm, Eu, Yb, with structures varying from molecular structures (x = 4) to two-dimensional layered (x = 2, 1) and three-dimensional structures (Yb(BH4)2·NH3). The crystal structure and composition of the compounds depend on the volume of the rare-earth ion. In all structures, NH3 coordinates to the metal, while BH4- has a more flexible coordination and is observed as a bridging and terminal ligand and as a counterion. RE(BH4)3·xNH3 (x = 7-5, 4) releases NH3 stepwise during thermal treatment, while mainly H2 is released for x ≤ 3. In contrast, only NH3 is released from RE(BH4)2·xNH3 due to the lower charge density on the RE2+ ion and higher stability of RE(BH4)2. The thermal stability of RE(BH4)3·xNH3 increase with increasing cation charge density for x = 5, 7, while it decreases for x = 4, 6. For x = 3, the thermal stability decreases with increasing charge density, due to the destabilization of the BH4- group, making it more reactive toward NH3. This research provides a large number of novel compounds and new insight into trends in the crystal chemistry of ammine metal borohydrides and reveals a correlation between the local metal coordination and the thermal stability.
Collapse
Affiliation(s)
- Jakob B Grinderslev
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Torben R Jensen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
6
|
Abstract
Ammine metal borohydrides show large compositional and structural diversity, and have been proposed as candidates for solid-state ammonia and hydrogen storage as well as fast cationic conductors. Here, we report the synthesis method of ammine barium borohydrides, Ba(BH4)2·xNH3 (x = 1, 2). The two new compounds were investigated with time-resolved temperature-varied in situ synchrotron radiation powder X-ray diffraction, thermal analysis, infrared spectroscopy and photographic analysis. The compound Ba(BH4)2·2NH3 crystallizes in an orthorhombic unit cell with space group symmetry Pnc2, and is isostructural to Sr(BH4)2·2NH3, forming octahedral [Ba(NH3)2(BH4)4] complexes, which are connected into a two-dimensional layered structure, where the layers are interconnected by dihydrogen bonds, N–Hδ+⋯−δH–B. A new structure type is observed for Ba(BH4)2·NH3, which crystallizes in an orthorhombic unit cell with space group symmetry P212121, forming a three-dimensional framework structure of [Ba(NH3)(BH4)6] complexes. The structure is built from distorted hexagonal chains, where NH3 groups form dihydrogen bonds to the nearby BH4−-groups within the chain. Ba(BH4)2·2NH3 is unstable at room temperature and releases NH3 in two subsequent endothermic reactions with maxima at 49 and 117 °C, eventually reforming Ba(BH4)2. We demonstrate that the thermal stability and composition of the gas release for the ammine alkaline earth metal borohydrides can be correlated to the charge density of the metal cation, but are also influenced by other effects.
Collapse
|
7
|
Higdon NJ, Barth AT, Kozlowski PT, Hadt RG. Spin-phonon coupling and dynamic zero-field splitting contributions to spin conversion processes in iron(II) complexes. J Chem Phys 2020; 152:204306. [PMID: 32486684 DOI: 10.1063/5.0006361] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Magnetization dynamics of transition metal complexes manifest in properties and phenomena of fundamental and applied interest [e.g., slow magnetic relaxation in single molecule magnets, quantum coherence in quantum bits (qubits), and intersystem crossing (ISC) rates in photophysics]. While spin-phonon coupling is recognized as an important determinant of these dynamics, additional fundamental studies are required to unravel the nature of the coupling and, thus, leverage it in molecular engineering approaches. To this end, we describe here a combined ligand field theory and multireference ab initio model to define spin-phonon coupling terms in S = 2 transition metal complexes and demonstrate how couplings originate from both the static and dynamic properties of ground and excited states. By extending concepts to spin conversion processes, ligand field dynamics manifest in the evolution of the excited state origins of zero-field splitting (ZFS) along specific normal mode potential energy surfaces. Dynamic ZFSs provide a powerful means to independently evaluate contributions from spin-allowed and/or spin-forbidden excited states to spin-phonon coupling terms. Furthermore, ratios between various intramolecular coupling terms for a given mode drive spin conversion processes in transition metal complexes and can be used to analyze the mechanisms of ISC. Variations in geometric structure strongly influence the relative intramolecular linear spin-phonon coupling terms and will define the overall spin state dynamics. While the findings of this study are of general importance for understanding magnetization dynamics, they also link the phenomenon of spin-phonon coupling across fields of single molecule magnetism, quantum materials/qubits, and transition metal photophysics.
Collapse
Affiliation(s)
- Nicholas J Higdon
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, USA
| | - Alexandra T Barth
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, USA
| | - Patryk T Kozlowski
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, USA
| | - Ryan G Hadt
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
8
|
Grinderslev JB, Ley MB, Lee YS, Jepsen LH, Jørgensen M, Cho YW, Skibsted J, Jensen TR. Ammine Lanthanum and Cerium Borohydrides, M(BH4)3·nNH3; Trends in Synthesis, Structures, and Thermal Properties. Inorg Chem 2020; 59:7768-7778. [DOI: 10.1021/acs.inorgchem.0c00817] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jakob B. Grinderslev
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Morten B. Ley
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Young-Su Lee
- Center for Energy Materials Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Lars H. Jepsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Mathias Jørgensen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Young Whan Cho
- Center for Energy Materials Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jørgen Skibsted
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Torben R. Jensen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
9
|
Richter B, Grinderslev JB, Møller KT, Paskevicius M, Jensen TR. From Metal Hydrides to Metal Borohydrides. Inorg Chem 2018; 57:10768-10780. [PMID: 30137973 DOI: 10.1021/acs.inorgchem.8b01398] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Commencing from metal hydrides, versatile synthesis, purification, and desolvation approaches are presented for a wide range of metal borohydrides and their solvates. An optimized and generalized synthesis method is provided for 11 different metal borohydrides, M(BH4) n, (M = Li, Na, Mg, Ca, Sr, Ba, Y, Nd, Sm, Gd, Yb), providing controlled access to more than 15 different polymorphs and in excess of 20 metal borohydride solvate complexes. Commercially unavailable metal hydrides (MH n, M = Sr, Ba, Y, Nd, Sm, Gd, Yb) are synthesized utilizing high pressure hydrogenation. For synthesis of metal borohydrides, all hydrides are mechanochemically activated prior to reaction with dimethylsulfide borane. A purification process is devised, alongside a complementary desolvation process for solvate complexes, yielding high purity products. An array of polymorphically pure metal borohydrides are synthesized in this manner, supporting the general applicability of this method. Additionally, new metal borohydrides, α-, α'- β-, γ-Yb(BH4)2, α-Nd(BH4)3 and new solvates Sr(BH4)2·1THF, Sm(BH4)2·1THF, Yb(BH4)2· xTHF, x = 1 or 2, Nd(BH4)3·1Me2S, Nd(BH4)3·1.5THF, Sm(BH4)3·1.5THF and Yb(BH4)3· xMe2S (" x" = unspecified), are presented here. Synthesis conditions are optimized individually for each metal, providing insight into reactivity and mechanistic concerns. The reaction follows a nucleophilic addition/hydride-transfer mechanism. Therefore, the reaction is most efficient for ionic and polar-covalent metal hydrides. The presented synthetic approaches are widely applicable, as demonstrated by permitting facile access to a large number of materials and by performing a scale-up synthesis of LiBH4.
Collapse
Affiliation(s)
- Bo Richter
- Center for Materials Crystallography, Interdisciplinary Nanoscience Center and Department of Chemistry , Aarhus University , Langelandsgade 140 , 8000 Aarhus C , Denmark
| | - Jakob B Grinderslev
- Center for Materials Crystallography, Interdisciplinary Nanoscience Center and Department of Chemistry , Aarhus University , Langelandsgade 140 , 8000 Aarhus C , Denmark
| | - Kasper T Møller
- Center for Materials Crystallography, Interdisciplinary Nanoscience Center and Department of Chemistry , Aarhus University , Langelandsgade 140 , 8000 Aarhus C , Denmark.,Department of Physics and Astronomy, Fuels and Energy Technology Institute , Curtin University , Wark Avenue , Bentley , Western Australia 6102 , Australia
| | - Mark Paskevicius
- Center for Materials Crystallography, Interdisciplinary Nanoscience Center and Department of Chemistry , Aarhus University , Langelandsgade 140 , 8000 Aarhus C , Denmark.,Department of Physics and Astronomy, Fuels and Energy Technology Institute , Curtin University , Wark Avenue , Bentley , Western Australia 6102 , Australia
| | - Torben R Jensen
- Center for Materials Crystallography, Interdisciplinary Nanoscience Center and Department of Chemistry , Aarhus University , Langelandsgade 140 , 8000 Aarhus C , Denmark
| |
Collapse
|
10
|
Jensen SRH, Paskevicius M, Hansen BRS, Jakobsen AS, Møller KT, White JL, Allendorf MD, Stavila V, Skibsted J, Jensen TR. Hydrogenation properties of lithium and sodium hydride – closo-borate, [B10H10]2− and [B12H12]2−, composites. Phys Chem Chem Phys 2018; 20:16266-16275. [DOI: 10.1039/c7cp07776a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hydrogen absorption properties of metal closo-borate/metal hydride composites are studied under high hydrogen pressures.
Collapse
|
11
|
Jørgensen M, Lee YS, Bjerring M, Jepsen LH, Akbey Ü, Cho YW, Jensen TR. Disorder induced polymorphic transitions in the high hydrogen density compound Sr(BH4)2(NH3BH3)2. Dalton Trans 2018; 47:16737-16746. [DOI: 10.1039/c8dt03654c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The presence of two stable configurations of the ammonia borane molecule at elevated temperature induces a polymorphic phase transition to lower symmetry.
Collapse
Affiliation(s)
- Mathias Jørgensen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry
- University of Aarhus
- DK-8000 Aarhus
- Denmark
| | - Young-Su Lee
- High Temperature Energy Materials Research Center
- Korea Institute of Science and Technology
- Seoul 02792
- Republic of Korea
| | - Morten Bjerring
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry
- University of Aarhus
- DK-8000 Aarhus
- Denmark
| | | | - Ümit Akbey
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry
- University of Aarhus
- DK-8000 Aarhus
- Denmark
| | - Young Whan Cho
- High Temperature Energy Materials Research Center
- Korea Institute of Science and Technology
- Seoul 02792
- Republic of Korea
| | - Torben R. Jensen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry
- University of Aarhus
- DK-8000 Aarhus
- Denmark
| |
Collapse
|
12
|
Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage. ENERGIES 2017. [DOI: 10.3390/en10101645] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Paskevicius M, Jepsen LH, Schouwink P, Černý R, Ravnsbæk DB, Filinchuk Y, Dornheim M, Besenbacher F, Jensen TR. Metal borohydrides and derivatives – synthesis, structure and properties. Chem Soc Rev 2017; 46:1565-1634. [DOI: 10.1039/c6cs00705h] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A comprehensive review of metal borohydrides from synthesis to application.
Collapse
Affiliation(s)
- Mark Paskevicius
- Center for Materials Crystallography
- Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry
- Aarhus University
- DK-8000 Aarhus C
- Denmark
| | - Lars H. Jepsen
- Center for Materials Crystallography
- Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry
- Aarhus University
- DK-8000 Aarhus C
- Denmark
| | - Pascal Schouwink
- Laboratory of Crystallography
- DQMP
- University of Geneva
- 1211 Geneva
- Switzerland
| | - Radovan Černý
- Laboratory of Crystallography
- DQMP
- University of Geneva
- 1211 Geneva
- Switzerland
| | - Dorthe B. Ravnsbæk
- Department of Physics
- Chemistry and Pharmacy
- University of Southern Denmark
- 5230 Odense M
- Denmark
| | - Yaroslav Filinchuk
- Institute of Condensed Matter and Nanosciences
- Université catholique de Louvain
- B-1348 Louvain-la-Neuve
- Belgium
| | - Martin Dornheim
- Helmholtz-Zentrum Geesthacht
- Department of Nanotechnology
- 21502 Geesthacht
- Germany
| | - Flemming Besenbacher
- Interdisciplinary Nanoscience Center (iNANO) and Department of Physics and Astronomy
- DK-8000 Aarhus C
- Denmark
| | - Torben R. Jensen
- Center for Materials Crystallography
- Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry
- Aarhus University
- DK-8000 Aarhus C
- Denmark
| |
Collapse
|
14
|
Roedern E, Jensen TR. Synthesis, Structures and Dehydrogenation Properties of Zinc Borohydride Ethylenediamine Complexes. ChemistrySelect 2016. [DOI: 10.1002/slct.201600077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Elsa Roedern
- iNANO and Department of Chemistry; Aarhus University; Langelandsgade 140 DK-8000 Aarhus C Denmark
| | - Torben R. Jensen
- iNANO and Department of Chemistry; Aarhus University; Langelandsgade 140 DK-8000 Aarhus C Denmark
| |
Collapse
|