1
|
Shiau AA, Lee HB, Oyala PH, Agapie T. Mn IV4O 4 Model of the S 3 Intermediate of the Oxygen-Evolving Complex: Effect of the Dianionic Disiloxide Ligand. Inorg Chem 2023; 62:1791-1796. [PMID: 35829634 PMCID: PMC11472716 DOI: 10.1021/acs.inorgchem.2c01612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Synthetic complexes provide useful models to study the interplay between the structure and spectroscopy of the different Sn-state intermediates of the oxygen-evolving complex (OEC) of photosystem II (PSII). Complexes containing the MnIV4 core corresponding to the S3 state, the last observable intermediate prior to dioxygen formation, remain very rare. Toward the development of synthetic strategies to stabilize highly oxidized tetranuclear complexes, ligands with increased anion charge were pursued. Herein, we report the synthesis, electrochemistry, SQUID magnetometry, and electron paramagnetic resonance spectroscopy of a stable MnIV4O4 cuboidal complex supported by a disiloxide ligand. The substitution of an anionic acetate or amidate ligand with a dianionic disiloxide ligand shifts the reduction potential of the MnIIIMnIV3/MnIV4 redox couple by up to ∼760 mV, improving stability. The S = 3 spin ground state of the siloxide-ligated MnIV4O4 complex matches the acetate and amidate variants, in corroboration with the MnIV4 assignment of the S3 state of the OEC.
Collapse
Affiliation(s)
- Angela A Shiau
- Department of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| | - Heui Beom Lee
- Department of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| | - Paul H Oyala
- Department of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| | - Theodor Agapie
- Department of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| |
Collapse
|
2
|
Alexandropoulos DI, Kong F, Lombardi F, Horton PN, Coles SJ, Bogani L. A manganese (II) dimer bearing the reduced derivatives of nitronyl nitroxides. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
3
|
Shylin SI, Pogrebetsky JL, Husak AO, Bykov D, Mokhir A, Hampel F, Shova S, Ozarowski A, Gumienna-Kontecka E, Fritsky IO. Expanding manganese(IV) aqueous chemistry: unusually stable water-soluble hexahydrazide clathrochelate complexes. Chem Commun (Camb) 2021; 57:11060-11063. [PMID: 34610631 DOI: 10.1039/d1cc04870h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mn cage complexes are rare, and the ones successfully isolated in the solid state are not stable in water and organic solvents. Herein, we present the first report of mononuclear Mn clathrochelates, in which the encapsulated metal exists in the oxidation state +4. The complexes are extremely stable in the crystalline state and in solutions and show rich redox chemistry.
Collapse
Affiliation(s)
- Sergii I Shylin
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64, Volodymyrska Str., 01601 Kiev, Ukraine. .,Department of Chemistry - Ångström Laboratory, Uppsala University, PO Box 523, 75120 Uppsala, Sweden
| | - James L Pogrebetsky
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64, Volodymyrska Str., 01601 Kiev, Ukraine.
| | - Alina O Husak
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64, Volodymyrska Str., 01601 Kiev, Ukraine. .,PBMR Labs Ukraine, Murmanska 1, 02094 Kiev, Ukraine
| | - Dmytro Bykov
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Andriy Mokhir
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Frank Hampel
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Sergiu Shova
- "Poni Petru" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| | | | - Igor O Fritsky
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64, Volodymyrska Str., 01601 Kiev, Ukraine. .,PBMR Labs Ukraine, Murmanska 1, 02094 Kiev, Ukraine
| |
Collapse
|
4
|
Kotrle K, Nemec I, Moncol J, Čižmár E, Herchel R. 3d-4f magnetic exchange interactions and anisotropy in a series of heterobimetallic vanadium(IV)-lanthanide(III) Schiff base complexes. Dalton Trans 2021; 50:13883-13893. [PMID: 34523627 DOI: 10.1039/d1dt01944a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A series of heterobimetallic LnIII-VIV compounds [Ln(VO)L(NO3)3(H2O)] (Ln = Gd(1), Tb(2), Dy(3), and Er(4)) assembled by a Schiff base ligand (H2L = N,N'-bis(1-hydroxy-2-benzylidene-6-methoxy)-1,7-diamino-4-azaheptane) were prepared and studied with experimental and theoretical methods. The single-crystal X-ray analysis revealed the change of the coordination number from 10 found in 1-3 to 9 confirmed in 4. The DC magnetic data were fit with several Hamiltonians to extract the exchange and anisotropy parameters of complexes 1-4. This investigation of magnetic properties was carried out using both DFT and CASSCF theoretical calculations. It was found out that exchange interactions in 1, 3 and 4 are antiferromagnetic, while 2 has ferromagnetic exchange interactions. Moreover, the AC susceptibility measurements revealed the field-induced slow relaxation of magnetization in complexes 2 and 3 which is complicated by the presence of three relaxation channels. Nevertheless, these compounds belong to the first TbIII-VIV and DyIII-VIV single-molecule magnets in this class of compounds.
Collapse
Affiliation(s)
- Kamil Kotrle
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic.
| | - Ivan Nemec
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic.
| | - Jan Moncol
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia
| | - Erik Čižmár
- Institute of Physics, Faculty of Science, P.J. Šafárik University in Košice, Park Angelinum 9, SK-041 54 Košice, Slovakia
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic.
| |
Collapse
|
5
|
Corry TA, O'Malley PJ. S 3 State Models of Nature's Water Oxidizing Complex: Analysis of Bonding and Magnetic Exchange Pathways, Assessment of Experimental Electron Paramagnetic Resonance Data, and Implications for the Water Oxidation Mechanism. J Phys Chem B 2021; 125:10097-10107. [PMID: 34463499 DOI: 10.1021/acs.jpcb.1c04459] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Broken symmetry density functional theory (BS-DFT) calculations on large models of Nature's water oxidizing complex (WOC) are used to investigate the electronic structure and associated magnetic interactions of this key intermediate state. The electronic origins of the ferromagnetic and antiferromagnetic couplings between neighboring Mn ions are investigated and illustrated by using corresponding orbital transformations. Protonation of the O4 and/or O6 atoms leads to large variation in the distribution of spin around the complex with associated changes in its magnetic resonance properties. Models for Sr2+ exchange and methanol addition indicate minor perturbations reflected in slightly altered spin projection coefficients for the Mn1 and Mn2 ions. These are shown to account for the observed changes observed experimentally via electron paramagnetic resonance methods and suggest a reinterpretation of the experimental findings. By comparison with experimental determinations, we show that the spin projections and resulting calculated 55Mn hyperfine couplings support the open cubane form of an oxo (O5)-hydroxo (O6) cluster in all cases with no need to invoke a closed cubane intermediate. The implications of these findings for the water oxidation mechanism are discussed.
Collapse
Affiliation(s)
- Thomas A Corry
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester M13 9PL, U.K
| | - Patrick J O'Malley
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester M13 9PL, U.K
| |
Collapse
|
6
|
Senft L, Moore JL, Franke A, Fisher KR, Scheitler A, Zahl A, Puchta R, Fehn D, Ison S, Sader S, Ivanović-Burmazović I, Goldsmith CR. Quinol-containing ligands enable high superoxide dismutase activity by modulating coordination number, charge, oxidation states and stability of manganese complexes throughout redox cycling. Chem Sci 2021; 12:10483-10500. [PMID: 34447541 PMCID: PMC8356818 DOI: 10.1039/d1sc02465e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/05/2021] [Indexed: 01/01/2023] Open
Abstract
Reactivity assays previously suggested that two quinol-containing MRI contrast agent sensors for H2O2, [Mn(H2qp1)(MeCN)]2+ and [Mn(H4qp2)Br2], could also catalytically degrade superoxide. Subsequently, [Zn(H2qp1)(OTf)]+ was found to use the redox activity of the H2qp1 ligand to catalyze the conversion of O2˙− to O2 and H2O2, raising the possibility that the organic ligand, rather than the metal, could serve as the redox partner for O2˙− in the manganese chemistry. Here, we use stopped-flow kinetics and cryospray-ionization mass spectrometry (CSI-MS) analysis of the direct reactions between the manganese-containing contrast agents and O2˙− to confirm the activity and elucidate the catalytic mechanism. The obtained data are consistent with the operation of multiple parallel catalytic cycles, with both the quinol groups and manganese cycling through different oxidation states during the reactions with superoxide. The choice of ligand impacts the overall charges of the intermediates and allows us to visualize complementary sets of intermediates within the catalytic cycles using CSI-MS. With the diquinolic H4qp2, we detect Mn(iii)-superoxo intermediates with both reduced and oxidized forms of the ligand, a Mn(iii)-hydroperoxo compound, and what is formally a Mn(iv)-oxo species with the monoquinolate/mono-para-quinone form of H4qp2. With the monoquinolic H2qp1, we observe a Mn(ii)-superoxo ↔ Mn(iii)-peroxo intermediate with the oxidized para-quinone form of the ligand. The observation of these species suggests inner-sphere mechanisms for O2˙− oxidation and reduction that include both the ligand and manganese as redox partners. The higher positive charges of the complexes with the reduced and oxidized forms of H2qp1 compared to those with related forms of H4qp2 result in higher catalytic activity (kcat ∼ 108 M−1 s−1 at pH 7.4) that rivals those of the most active superoxide dismutase (SOD) mimics. The manganese complex with H2qp1 is markedly more stable in water than other highly active non-porphyrin-based and even some Mn(ii) porphyrin-based SOD mimics. Manganese complexes with polydentate quinol-containing ligands are found to catalyze the degradation of superoxide through inner-sphere mechanisms. The redox activity of the ligand stabilizes higher-valent manganese species.![]()
Collapse
Affiliation(s)
- Laura Senft
- Department of Chemistry, Ludwig-Maximilian-University Butenandtstr. 5-13 D 81377 Munich Germany
| | - Jamonica L Moore
- Department of Chemistry and Biochemistry, Auburn University Auburn AL 36849 USA
| | - Alicja Franke
- Department of Chemistry, Ludwig-Maximilian-University Butenandtstr. 5-13 D 81377 Munich Germany
| | - Katherine R Fisher
- Department of Chemistry, Ludwig-Maximilian-University Butenandtstr. 5-13 D 81377 Munich Germany
| | - Andreas Scheitler
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg 91058 Erlangen Germany
| | - Achim Zahl
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg 91058 Erlangen Germany
| | - Ralph Puchta
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg 91058 Erlangen Germany
| | - Dominik Fehn
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg 91058 Erlangen Germany
| | - Sidney Ison
- Department of Chemistry and Biochemistry, Auburn University Auburn AL 36849 USA
| | - Safaa Sader
- Department of Chemistry and Biochemistry, Auburn University Auburn AL 36849 USA
| | | | | |
Collapse
|
7
|
Zahariou G, Ioannidis N, Sanakis Y, Pantazis DA. Arrested Substrate Binding Resolves Catalytic Intermediates in Higher-Plant Water Oxidation. Angew Chem Int Ed Engl 2021; 60:3156-3162. [PMID: 33030775 PMCID: PMC7898718 DOI: 10.1002/anie.202012304] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 12/05/2022]
Abstract
Among the intermediate catalytic steps of the water-oxidizing Mn4 CaO5 cluster of photosystem II (PSII), the final metastable S3 state is critically important because it binds one substrate and precedes O2 evolution. Herein, we combine X- and Q-band EPR experiments on native and methanol-treated PSII of Spinacia oleracea and show that methanol-treated PSII preparations of the S3 state correspond to a previously uncharacterized high-spin (S=6) species. This is confirmed as a major component also in intact photosynthetic membranes, coexisting with the previously known intermediate-spin conformation (S=3). The high-spin intermediate is assigned to a water-unbound form, with a MnIV3 subunit interacting ferromagnetically via anisotropic exchange with a coordinatively unsaturated MnIV ion. These results resolve and define the structural heterogeneity of the S3 state, providing constraints on the S3 to S4 transition, on substrate identity and delivery pathways, and on the mechanism of O-O bond formation.
Collapse
Affiliation(s)
- Georgia Zahariou
- Institute of Nanoscience & Nanotechnology, NCSR “Demokritos”Athens15310Greece
| | - Nikolaos Ioannidis
- Institute of Nanoscience & Nanotechnology, NCSR “Demokritos”Athens15310Greece
| | - Yiannis Sanakis
- Institute of Nanoscience & Nanotechnology, NCSR “Demokritos”Athens15310Greece
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|
8
|
Marchiori DA, Debus RJ, Britt RD. Pulse EPR Spectroscopic Characterization of the S 3 State of the Oxygen-Evolving Complex of Photosystem II Isolated from Synechocystis. Biochemistry 2020; 59:4864-4872. [PMID: 33319991 DOI: 10.1021/acs.biochem.0c00880] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The S3 state is the last semi-stable state in the water splitting reaction that is catalyzed by the Mn4O5Ca cluster that makes up the oxygen-evolving complex (OEC) of photosystem II (PSII). Recent high-field/frequency (95 GHz) electron paramagnetic resonance (EPR) studies of PSII isolated from the thermophilic cyanobacterium Thermosynechococcus elongatus have found broadened signals induced by chemical modification of the S3 state. These signals are ascribed to an S3 form that contains a five-coordinate MnIV center bridged to a cuboidal MnIV3O4Ca unit. High-resolution X-ray free-electron laser studies of the S3 state have observed the OEC with all-octahedrally coordinated MnIV in what is described as an open cuboid-like cluster. No five-coordinate MnIV centers have been reported in these S3 state structures. Here, we report high-field/frequency (130 GHz) pulse EPR of the S3 state in Synechocystis sp. PCC 6803 PSII as isolated in the presence of glycerol. The S3 state of PSII from Synechocystis exhibits multiple broadened forms (≈69% of the total signal) similar to those seen in the chemically modified S3 centers from T. elongatus. Field-dependent ELDOR-detected nuclear magnetic resonance resolves two classes of 55Mn nuclear spin transitions: one class with small hyperfine couplings (|A| ≈ 1-7 MHz) and another with larger hyperfine couplings (|A| ≈ 100 MHz). These results are consistent with an all-MnIV4 open cubane structure of the S3 state and suggest that the broadened S3 signals arise from a perturbation of Mn4A and/or Mn3B, possibly induced by the presence of glycerol in the as-isolated Synechocystis PSII.
Collapse
Affiliation(s)
- David A Marchiori
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Richard J Debus
- Department of Biochemistry, University of California at Riverside, Riverside, California 92521, United States
| | - R David Britt
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
9
|
Zahariou G, Ioannidis N, Sanakis Y, Pantazis DA. Arrested Substrate Binding Resolves Catalytic Intermediates in Higher‐Plant Water Oxidation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Georgia Zahariou
- Institute of Nanoscience & Nanotechnology, NCSR “Demokritos” Athens 15310 Greece
| | - Nikolaos Ioannidis
- Institute of Nanoscience & Nanotechnology, NCSR “Demokritos” Athens 15310 Greece
| | - Yiannis Sanakis
- Institute of Nanoscience & Nanotechnology, NCSR “Demokritos” Athens 15310 Greece
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
10
|
Taguchi S, Shen L, Han G, Umena Y, Shen JR, Noguchi T, Mino H. Formation of the High-Spin S 2 State Related to the Extrinsic Proteins in the Oxygen Evolving Complex of Photosystem II. J Phys Chem Lett 2020; 11:8908-8913. [PMID: 32990440 DOI: 10.1021/acs.jpclett.0c02411] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The high-spin S2 state was investigated with photosystem II (PSII) from spinach, Thermosynechococcus vulcanus, and Cyanidioschyzon merolae. In extrinsic protein-depleted PSII, high-spin electron paramagnetic resonance (EPR) signals were not detected in either species, whereas all species showed g ∼ 5 signals in the presence of a high concentration of Ca2+ instead of the multiline signal. In the intact and PsbP/Q-depleted PSII from spinach, the g = 4.1 EPR signal was detected. These results show that formation of the high-spin S2 state of the manganese cluster is regulated by the extrinsic proteins through a charge located near the Mn4 atom in the Mn4CaO5 cluster but is independent of the intrinsic proteins. The shift to the g ∼ 5 state is caused by tilting of the z-axis in the Mn4 coordinates through hydrogen bonds or external divalent cations. The structural modification may allow insertion of an oxygen atom during the S2-to-S3 transition.
Collapse
Affiliation(s)
- Shota Taguchi
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, 464-8602 Nagoya, Aichi, Japan
| | - Liangliang Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yasufumi Umena
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Takumi Noguchi
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, 464-8602 Nagoya, Aichi, Japan
| | - Hiroyuki Mino
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, 464-8602 Nagoya, Aichi, Japan
| |
Collapse
|
11
|
Premužić D, Hołyńska M, Ozarowski A, Pietzonka C, Roseborough A, Stoian SA. Model Dimeric Manganese(IV) Complexes Featuring Terminal Tris-hydroxotetraazaadamantane and Various Bridging Ligands. Inorg Chem 2020; 59:10768-10784. [PMID: 32687708 DOI: 10.1021/acs.inorgchem.0c01242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A series of model dinuclear manganese(IV) complexes of the general formula [(H3COH)(L')MnIV(μ-L)2MnIV(L')(HOCH3)] is presented. These compounds feature capping 4,6,10-trihydroxo-3,5,7-trimethyl-1,4,6,10-tetraazaadamantane ligands derived from a polydentate oxime compound (L'). The bridging ligands L include azide (1), methoxide (2), and oxalate (3) anions. The magnetic properties and high-field (HF) EPR spectra of 1-3 were studied in detail and revealed varying weak antiferromagnetic coupling and modest zero-field splitting (ZFS) of the local quartet spin sites. Our HF EPR studies provide insight into the dimer ZFS, including determination of the corresponding parameters by giant spin approach for methoxido-bridged complex 2. Furthermore, the physicochemical properties of 1-3 were studied using IR, UV-vis, and electrochemical (cyclic voltammetry) methods. Theoretical exchange coupling constants were obtained using broken-symmetry (BS) density functional theory (DFT). Computational estimates of the local quartet ground spins state ZFSs of 1-3 were obtained using coupled-perturbed (CP) DFT and complete active space self-consistent field (CASSCF) calculations with n-electron valence state perturbation theory (NEVPT2) corrections. We found that the CP DFT calculations which used the B3LYP functional and models derived experimental structures performed best in reproducing both the magnitude and the sign of the experimental D values. Moreover, our computational investigation of 1-3 suggests that we observe metals sites which have an increased +3 character and are supported by redox noninnocent 4,6,10-trihydroxo-3,5,7-trimethyl-1,4,6,10-tetraazaadamantane ligands. The latter conclusion is further corroborated by the observation that the free ligand can be readily oxidized to yield a NO-based radical.
Collapse
Affiliation(s)
- Dejan Premužić
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften(WZMW), Philipps-Universität Marburg Hans-Meerwein-Straße, Marburg D-35043, Germany
| | - Małgorzata Hołyńska
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften(WZMW), Philipps-Universität Marburg Hans-Meerwein-Straße, Marburg D-35043, Germany
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Clemens Pietzonka
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften(WZMW), Philipps-Universität Marburg Hans-Meerwein-Straße, Marburg D-35043, Germany
| | - Alexander Roseborough
- Department of Chemistry, University of Idaho, 875 Perimeter Drive, Moscow, Idaho 83844, United States
| | - Sebastian A Stoian
- Department of Chemistry, University of Idaho, 875 Perimeter Drive, Moscow, Idaho 83844, United States
| |
Collapse
|
12
|
Corry TA, O'Malley PJ. Molecular Identification of a High-Spin Deprotonated Intermediate during the S 2 to S 3 Transition of Nature's Water-Oxidizing Complex. J Am Chem Soc 2020; 142:10240-10243. [PMID: 32431144 DOI: 10.1021/jacs.0c01351] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The identity of a key intermediate in the S2 to S3 transition of nature's water-oxidizing complex (WOC) in Photosystem 2 is presented. Broken-symmetry density functional theory (BS-DFT) calculations and Heisenberg-Dirac-van Vleck (HDvV) spin ladder calculations show that an S2 state open cubane model of the WOC containing a μ-hydroxo O4 changes from an S = 5/2 form to an S = 7/2, form upon deprotonation of W1. Combined with X-band electron paramagnetic resonance (EPR) spectral analysis, this indicates that the g = 4.1 EPR signal corresponds to an S = 5/2 form of the WOC with W1 present as a water ligand to Mn4, while the g = 4.8/4.9 form observed at high pH values corresponds to an S = 7/2 form, with W1 as a hydroxo ligand. The latter is also likely to represent the form needed to progress to S3 in the functioning enzyme.
Collapse
Affiliation(s)
- Thomas A Corry
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester M13 9PL, U.K
| | - Patrick J O'Malley
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester M13 9PL, U.K
| |
Collapse
|
13
|
Lee HB, Marchiori DA, Chatterjee R, Oyala PH, Yano J, Britt RD, Agapie T. S = 3 Ground State for a Tetranuclear Mn IV4O 4 Complex Mimicking the S 3 State of the Oxygen-Evolving Complex. J Am Chem Soc 2020; 142:3753-3761. [PMID: 32013412 DOI: 10.1021/jacs.9b10371] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The S3 state is currently the last observable intermediate prior to O-O bond formation at the oxygen-evolving complex (OEC) of Photosystem II, and its electronic structure has been assigned to a homovalent MnIV4 core with an S = 3 ground state. While structural interpretations based on the EPR spectroscopic features of the S3 state provide valuable mechanistic insight, corresponding synthetic and spectroscopic studies on tetranuclear complexes mirroring the Mn oxidation states of the S3 state remain rare. Herein, we report the synthesis and characterization by XAS and multifrequency EPR spectroscopy of a MnIV4O4 cuboidal complex as a spectroscopic model of the S3 state. Results show that this MnIV4O4 complex has an S = 3 ground state with isotropic 55Mn hyperfine coupling constants of -75, -88, -91, and 66 MHz. These parameters are consistent with an αααβ spin topology approaching the trimer-monomer magnetic coupling model of pseudo-octahedral MnIV centers. Importantly, the spin ground state changes from S = 1/2 to S = 3 as the OEC is oxidized from the S2 state to the S3 state. This same spin state change is observed following oxidation of the previously reported MnIIIMnIV3O4 cuboidal complex to the MnIV4O4 complex described here. This sets a synthetic precedent for the observed low-spin to high-spin conversion in the OEC.
Collapse
Affiliation(s)
- Heui Beom Lee
- Department of Chemistry and Chemical Engineering , California Institute of Technology , 1200 East California Boulevard MC 127-72 , Pasadena , California 91125 , United States
| | - David A Marchiori
- Department of Chemistry , University of California Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Ruchira Chatterjee
- Molecular Biophysics and Integrated Bioimaging Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Paul H Oyala
- Department of Chemistry and Chemical Engineering , California Institute of Technology , 1200 East California Boulevard MC 127-72 , Pasadena , California 91125 , United States
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - R David Britt
- Department of Chemistry , University of California Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Theodor Agapie
- Department of Chemistry and Chemical Engineering , California Institute of Technology , 1200 East California Boulevard MC 127-72 , Pasadena , California 91125 , United States
| |
Collapse
|
14
|
Ferromagnetically-coupled, triangular, [Bu4N]2[CuII3(μ3-Br)2(μ-4-O2N-pz)3Br3] complex revisited: The effect of coordinated halides on spin relaxation properties. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Krzystek J, Schnegg A, Aliabadi A, Holldack K, Stoian SA, Ozarowski A, Hicks SD, Abu-Omar MM, Thomas KE, Ghosh A, Caulfield KP, Tonzetich ZJ, Telser J. Advanced Paramagnetic Resonance Studies on Manganese and Iron Corroles with a Formal d 4 Electron Count. Inorg Chem 2020; 59:1075-1090. [PMID: 31909979 DOI: 10.1021/acs.inorgchem.9b02635] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metallocorroles wherein the metal ion is MnIII and formally FeIV are studied here using field- and frequency-domain electron paramagnetic resonance techniques. The MnIII corrole, Mn(tpfc) (tpfc = 5,10,15-tris(pentafluorophenyl)corrole trianion), exhibits the following S = 2 zero-field splitting (zfs) parameters: D = -2.67(1) cm-1, |E| = 0.023(5) cm-1. This result and those for other MnIII tetrapyrroles indicate that when D ≈ - 2.5 ± 0.5 cm-1 for 4- or 5-coordinate and D ≈ - 3.5 ± 0.5 cm-1 for 6-coordinate complexes, the ground state description is [MnIII(Cor3-)]0 or [MnIII(P2-)]+ (Cor = corrole, P = porphyrin). The situation for formally FeIV corroles is more complicated, and it has been shown that for Fe(Cor)X, when X = Ph (phenyl), the ground state is a spin triplet best described by [FeIV(Cor3-)]+, but when X = halide, the ground state corresponds to [FeIII(Cor•2-)]+, wherein an intermediate spin (S = 3/2) FeIII is antiferromagnetically coupled to a corrole radical dianion (S = 1/2) to also give an S = 1 ground state. These two valence isomers can be distinguished by their zfs parameters, as determined here for Fe(tpc)X, X = Ph, Cl (tpc = 5,10,15-triphenylcorrole trianion). The complex with axial phenyl gives D = 21.1(2) cm-1, while that with axial chloride gives D = 14.6(1) cm-1. The D value for Fe(tpc)Ph is in rough agreement with the range of values reported for other FeIV complexes. In contrast, the D value for Fe(tpc)Cl is inconsistent with an FeIV description and represents a different type of iron center. Computational studies corroborate the zfs for the two types of iron corrole complexes. Thus, the zfs of metallocorroles can be diagnostic as to the electronic structure of a formally high oxidation state metallocorrole, and by extension to metalloporphyrins, although such studies have yet to be performed.
Collapse
Affiliation(s)
- J Krzystek
- National High Magnetic Field Laboratory , Florida State University , Tallahassee , Florida 32310 , United States
| | - Alexander Schnegg
- EPR Research Group , Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36 , D-45470 Mülheim Ruhr , Germany.,Berlin Joint EPR Laboratory , Helmholtz-Zentrum Berlin , Kekulestraße 5 , D-12489 Berlin , Germany
| | - Azar Aliabadi
- Berlin Joint EPR Laboratory , Helmholtz-Zentrum Berlin , Kekulestraße 5 , D-12489 Berlin , Germany
| | - Karsten Holldack
- Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung am Elektronenspeicherring BESSY II , Albert-Einstein-Straße 15 , D-12489 Berlin , Germany
| | - Sebastian A Stoian
- Department of Chemistry , University of Idaho , Moscow , Idaho 83844 , United States
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory , Florida State University , Tallahassee , Florida 32310 , United States
| | - Scott D Hicks
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Mahdi M Abu-Omar
- Departments of Chemistry and Biochemistry , University of California , Santa Barbara , California 93106-9510 , United States
| | - Kolle E Thomas
- Department of Chemistry , UiT-The Arctic University of Norway , N-9037 Tromsø , Norway
| | - Abhik Ghosh
- Department of Chemistry , UiT-The Arctic University of Norway , N-9037 Tromsø , Norway
| | - Kenneth P Caulfield
- Department of Chemistry , University of Texas at San Antonio (UTSA) , One UTSA Circle , San Antonio , Texas 78249 , United States
| | - Zachary J Tonzetich
- Department of Chemistry , University of Texas at San Antonio (UTSA) , One UTSA Circle , San Antonio , Texas 78249 , United States
| | - Joshua Telser
- Department of Biological, Physical, and Health Sciences , Roosevelt University , Chicago , Illinois 60605 , United States
| |
Collapse
|
16
|
Biswas S, Mitra A, Banerjee S, Singh R, Das A, Paine TK, Bandyopadhyay P, Paul S, Biswas AN. A High Spin Mn(IV)-Oxo Complex Generated via Stepwise Proton and Electron Transfer from Mn(III)–Hydroxo Precursor: Characterization and C–H Bond Cleavage Reactivity. Inorg Chem 2019; 58:9713-9722. [DOI: 10.1021/acs.inorgchem.9b00579] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sachidulal Biswas
- Department of Chemistry, National Institute of Technology Sikkim, Ravangla, South Sikkim 737139, India
| | - Amritaa Mitra
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Siliguri 734013, India
| | - Sridhar Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Reena Singh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Abhishek Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Tapan Kanti Paine
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Pinaki Bandyopadhyay
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Siliguri 734013, India
| | - Satadal Paul
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Achintesh N. Biswas
- Department of Chemistry, National Institute of Technology Sikkim, Ravangla, South Sikkim 737139, India
| |
Collapse
|
17
|
Shova S, Vlad A, Cazacu M, Krzystek J, Ozarowski A, Malček M, Bucinsky L, Rapta P, Cano J, Telser J, Arion VB. Dinuclear manganese(iii) complexes with bioinspired coordination and variable linkers showing weak exchange effects: a synthetic, structural, spectroscopic and computation study. Dalton Trans 2019; 48:5909-5922. [DOI: 10.1039/c8dt04596h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-resolution HFEPR indicates weak exchange interactions between MnIII ions in agreement with DFT calculations.
Collapse
Affiliation(s)
- Sergiu Shova
- Inorganic Polymers Department
- “Petru Poni” Institute of Macromolecular Chemistry
- Iasi 700487
- Romania
| | - Angelica Vlad
- Inorganic Polymers Department
- “Petru Poni” Institute of Macromolecular Chemistry
- Iasi 700487
- Romania
| | - Maria Cazacu
- Inorganic Polymers Department
- “Petru Poni” Institute of Macromolecular Chemistry
- Iasi 700487
- Romania
| | - J. Krzystek
- National High Magnetic Field Laboratory
- Florida State University
- Tallahassee
- USA
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory
- Florida State University
- Tallahassee
- USA
| | - Michal Malček
- Institute of Physical Chemistry and Chemical Physics
- Slovak University of Technology in Bratislava
- 81237 Bratislava
- Slovak Republic
| | - Lukas Bucinsky
- Institute of Physical Chemistry and Chemical Physics
- Slovak University of Technology in Bratislava
- 81237 Bratislava
- Slovak Republic
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics
- Slovak University of Technology in Bratislava
- 81237 Bratislava
- Slovak Republic
| | - Joan Cano
- Institut de Ciència Molecular
- Universitat de València
- 46980 Paterna
- Spain
| | - Joshua Telser
- Department of Biological
- Physical and Health Sciences
- Roosevelt University
- Chicago
- USA
| | - Vladimir B. Arion
- Institute of Inorganic Chemistry of the University of Vienna
- A1090 Vienna
- Austria
| |
Collapse
|
18
|
Wang L, Zlatar M, Vlahović F, Demeshko S, Philouze C, Molton F, Gennari M, Meyer F, Duboc C, Gruden M. Experimental and Theoretical Identification of the Origin of Magnetic Anisotropy in Intermediate Spin Iron(III) Complexes. Chemistry 2018; 24:5091-5094. [PMID: 29447424 PMCID: PMC5969241 DOI: 10.1002/chem.201705989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Indexed: 11/24/2022]
Abstract
The complexes [FeLN2S2X] [in which LN2S2=2,2′‐(2,2′‐bipryridine‐6,6′‐diyl)bis(1,1′‐diphenylethanethiolate) and X=Cl, Br and I], characterized crystallographically earlier and here (Fe(L)Br), reveal a square pyramidal coordinated FeIII ion. Unusually, all three complexes have intermediate spin ground states. Susceptibility measurements, powder cw X‐ and Q‐band EPR spectra, and zero‐field powder Mössbauer spectra show that all complexes display distinct magnetic anisotropy, which has been rationalized by DFT calculations.
Collapse
Affiliation(s)
- Lianke Wang
- University of Grenoble Alpes, DCM, CNRS UMR 5250, Grenoble, France
| | - Matija Zlatar
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Serbia
| | - Filip Vlahović
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000, Belgrade, Serbia
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstr. 4, 37077, Göttingen, Germany
| | | | - Florian Molton
- University of Grenoble Alpes, DCM, CNRS UMR 5250, Grenoble, France
| | - Marcello Gennari
- University of Grenoble Alpes, DCM, CNRS UMR 5250, Grenoble, France
| | - Franc Meyer
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstr. 4, 37077, Göttingen, Germany
| | - Carole Duboc
- University of Grenoble Alpes, DCM, CNRS UMR 5250, Grenoble, France
| | - Maja Gruden
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000, Belgrade, Serbia
| |
Collapse
|
19
|
Cantú Reinhard FG, Barman P, Mukherjee G, Kumar J, Kumar D, Kumar D, Sastri CV, de Visser SP. Keto-Enol Tautomerization Triggers an Electrophilic Aldehyde Deformylation Reaction by a Nonheme Manganese(III)-Peroxo Complex. J Am Chem Soc 2017; 139:18328-18338. [PMID: 29148746 DOI: 10.1021/jacs.7b10033] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oxygen atom transfer by high-valent enzymatic intermediates remains an enigma in chemical catalysis. In particular, manganese is an important first-row metal involved in key biochemical processes, including the biosynthesis of molecular oxygen (through the photosystem II complex) and biodegradation of toxic superoxide to hydrogen peroxide by superoxide dismutase. Biomimetic models of these biological systems have been developed to gain understanding on the structure and properties of short-lived intermediates but also with the aim to create environmentally benign oxidants. In this work, we report a combined spectroscopy, kinetics and computational study on aldehyde deformylation by two side-on manganese(III)-peroxo complexes with bispidine ligands. Both manganese(III)-peroxo complexes are characterized by UV-vis and mass spectrometry techniques, and their reactivity patterns with aldehydes was investigated. We find a novel mechanism for the reaction that is initiated by a hydrogen atom abstraction reaction, which enables a keto-enol tautomerization in the substrate. This is an essential step in the mechanism that makes an electrophilic attack on the olefin bond possible as the attack on the aldehyde carbonyl is too high in energy. Kinetics studies determine a large kinetic isotope effect for the replacement of the transferring hydrogen atom by deuterium, while replacing the transferring hydrogen atom by a methyl group makes the substrate inactive and hence confirm the hypothesized mechanism. Our new mechanism is confirmed with density functional theory modeling on the full mechanism and rationalized through valence bond and thermochemical cycles. Our unprecedented new mechanism may have relevance to biological and biomimetic chemistry processes in general and gives insight into the reactivity patterns of metal-peroxo and metal-hydroperoxo intermediates in general.
Collapse
Affiliation(s)
- Fabián G Cantú Reinhard
- The Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Prasenjit Barman
- Department of Chemistry, Indian Institute of Technology Guwahati 781039, Assam, India
| | - Gourab Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati 781039, Assam, India
| | - Jitendra Kumar
- Department of Applied Physics, School for Physical Sciences, Babasaheb Bhimrao Ambedkar University , Lucknow 226025, UP, India
| | - Deep Kumar
- Department of Applied Physics, School for Physical Sciences, Babasaheb Bhimrao Ambedkar University , Lucknow 226025, UP, India
| | - Devesh Kumar
- Department of Applied Physics, School for Physical Sciences, Babasaheb Bhimrao Ambedkar University , Lucknow 226025, UP, India
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati 781039, Assam, India
| | - Sam P de Visser
- The Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
20
|
Buvaylo EA, Kokozay VN, Vassilyeva OY, Skelton BW, Ozarowski A, Titiš J, Vranovičová B, Boča R. Field-Assisted Slow Magnetic Relaxation in a Six-Coordinate Co(II)-Co(III) Complex with Large Negative Anisotropy. Inorg Chem 2017; 56:6999-7009. [PMID: 28556666 DOI: 10.1021/acs.inorgchem.7b00605] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction of Co(CH3COO)2·4H2O with the Schiff base ligand LH4 derived from o-vanillin and tris(hydroxymethyl)aminomethane produces the dinuclear mixed-valence complex [CoIICoIII(LH2)2(CH3COO)(H2O)](H2O)3 (1), which has been investigated using IR spectroscopy, X-ray crystallography, temperature-dependent magnetic susceptibility, magnetization, HFEPR spectroscopy, and ac susceptibility measurements at various frequencies, temperatures, and external magnetic fields. The structure of 1 consists of neutral molecules in which two cobalt ions with distorted octahedral geometries, CoIIO6 and CoIIIN2O4, are bridged by two deprotonated -CH2O- groups of the two LH22- ligands. 1 completes a series with Cl, Br, NO3, and NCS anions published before by different authors. Low-temperature HFEPR measurements reveal that the ground electronic state of the Co(II) center in 1 is a highly anisotropic Kramers doublet; the effective g values of 7.18, 2.97, and 1.96 are frequency-independent over the frequency ranges 200-630, 200-406, and 200-300 GHz for the highest, intermediate, and lowest geff values, respectively. The two lower values were not seen at higher frequencies because the magnetic field was not high enough. Temperature-dependent magnetic susceptibility and field-dependent magnetization data confirm high magnetic anisotropy of the easy axis type. Complex 1 behaves as a single-ion magnet under a small applied external field and demonstrates two relaxation modes that strongly depend on the applied static dc field. The observation of multiple relaxation pathways clearly distinguishes 1 from the Cl and Br analogues.
Collapse
Affiliation(s)
- Elena A Buvaylo
- Department of Chemistry, Taras Shevchenko National University of Kyiv , 64/13 Volodymyrska str., Kyiv 01601, Ukraine
| | - Vladimir N Kokozay
- Department of Chemistry, Taras Shevchenko National University of Kyiv , 64/13 Volodymyrska str., Kyiv 01601, Ukraine
| | - Olga Yu Vassilyeva
- Department of Chemistry, Taras Shevchenko National University of Kyiv , 64/13 Volodymyrska str., Kyiv 01601, Ukraine
| | - Brian W Skelton
- School of Molecular Sciences, M310, University of Western Australia , Perth, WA 6009, Australia
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University , 1800 E. Paul Dirac Drive, Tallahassee, FL 32310, United States
| | - Ján Titiš
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius , 917 01 Trnava, Slovakia
| | - Beáta Vranovičová
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius , 917 01 Trnava, Slovakia
| | - Roman Boča
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius , 917 01 Trnava, Slovakia
| |
Collapse
|
21
|
Harris JP, Reber C, Colmer HE, Jackson TA, Forshaw AP, Smith JM, Kinney RA, Telser J. Near-infrared 2Eg → 4A2g and visible LMCT luminescence from a molecular bis-(tris(carbene)borate) manganese(IV) complex. CAN J CHEM 2017. [DOI: 10.1139/cjc-2016-0607] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The molecular bis-(tris(carbene)borate) manganese(IV) complex [{PhB(MeIm)3}2Mn](OTf)2 shows 2Eg → 4A2g luminescence at 828 nm in the solid state at 85 K; this wavelength is longer by approximately 100 nm than the wavelengths typically observed for manganese(IV) and chromium(III) doped solids and for molecular chromium(III) complexes. Weak luminescence is also observed from a LMCT excited state with an absorption maximum at 500 nm. This represents the first molecular manganese(IV) compound for which luminescence has been reported.
Collapse
Affiliation(s)
- Joe P. Harris
- Département de chimie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Christian Reber
- Département de chimie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Hannah E. Colmer
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | | | - Adam P. Forshaw
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA
| | - Jeremy M. Smith
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA
| | - R. Adam Kinney
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Joshua Telser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University, Chicago, IL 60605, USA
| |
Collapse
|
22
|
Tsapanou A, Gu Y, O'Shea DM, Yannakoulia M, Kosmidis M, Dardiotis E, Hadjigeorgiou G, Sakka P, Stern Y, Scarmeas N. Sleep quality and duration in relation to memory in the elderly: Initial results from the Hellenic Longitudinal Investigation of Aging and Diet. Neurobiol Learn Mem 2017; 141:217-225. [PMID: 28455107 DOI: 10.1016/j.nlm.2017.04.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/10/2017] [Accepted: 04/24/2017] [Indexed: 02/02/2023]
Abstract
BACKGROUND Sleep is crucial for cognition, particularly for memory, given its complex association with neurodegenerative processes. The aim of the present study was to examine the association between sleep quality as well as sleep duration and memory performance in a Greek elderly population. SETTING Cross-sectional design in the Hellenic Longitudinal Investigation of Aging and Diet (HELIAD), a population representative study of Greek elderly (65years or older). METHODS Data from 1589 participants free of sleep medication were included. Sleep quality was estimated by using the Sleep Scale from the Medical Outcomes Study. An extensive neuropsychological assessment examining memory was administered to each participant. Linear regression analyses were used to examine whether sleep quality (higher score, poor quality) and/or sleep duration were associated with memory expressed in the form of a z-score. Age, sex, education, and body mass index were included as covariates. The main analyses were conducted first on the total sample, then with the exclusion of demented participants, and finally with the exclusion of both demented and participants with Mild Cognitive Impairment (MCI). We then conducted further analyses on the non-demented, non-MCI group, initially stratified by Apolipoprotein E-ε4 gene. We further examined the role of co-morbidities, as well as the association between sleep duration groups and memory. We also explored any interaction effect between sex and sleep quality/duration on memory. We then examined the associations between components of sleep measures and memory scores. Lastly, we examined the associations between sleep quality/duration and verbal/non-verbal memory separately. RESULTS In the total sample, we noted significant associations between sleep duration and memory (B=-0.001, p≤0.0001), but not for sleep quality and memory (B=-0.038, p=0.121). After excluding the demented participants, the associations were significant for: sleep quality and memory (B=-0.054, p=0.023), and sleep duration and memory (B=-0.001, p≤0.0001). After excluding both the MCI and the demented subjects, the associations between sleep quality and memory (B=-0.065, p=0.006), and sleep duration and memory (B=-0.001, p=0.003) were still significant. The association between the sleep duration groups and memory function was also significant, such that poor memory performance was associated with the longer sleep duration group. The results remained significant even after controlling for the co-morbidities, as well as after adding in the model anxiety and depression as covariates. Associations between sleep quality and memory, and sleep duration and memory were present in the ApoE-ε4 non-carriers. The individual sleep questions that were probably shown to be driving the associations between sleep and memory were: time to fall asleep, sleep not quiet, getting enough sleep to feel rested upon waking in the morning, and getting the amount of sleep needed. Sleep duration was associated with both verbal and non-verbal memory, while sleep quality was only associated with verbal memory. CONCLUSION Poor sleep quality and longer sleep duration were linked to low memory performance, independent of demographic and clinical factors, in a large sample of cognitively healthy older Greek adults. Other parameters than sleep and memory measurements could play an important role on the association. Levels of melatonin, or circadian rhythms dysregulation might play a crucial role in the above associations.
Collapse
Affiliation(s)
- A Tsapanou
- Department of Social Medicine, Psychiatry and Neurology, National and Kapodistrian University of Athens, Athens, Greece; Cognitive Neuroscience Division, Department of Neurology and The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA.
| | - Y Gu
- Cognitive Neuroscience Division, Department of Neurology and The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - D M O'Shea
- Department of Clinical and Health Psychology, University of Florida, FL, USA
| | - M Yannakoulia
- Department of Nutrition and Diabetics, Harokopio University, Athens, Greece
| | - M Kosmidis
- Department of Psychology, Aristotle University of Thessaloniki, Greece
| | - E Dardiotis
- Department of Neurology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - G Hadjigeorgiou
- Department of Neurology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - P Sakka
- Athens Association of Alzheimer's Disease and Related Disorders, Athens, Greece
| | - Y Stern
- Cognitive Neuroscience Division, Department of Neurology and The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - N Scarmeas
- Department of Social Medicine, Psychiatry and Neurology, National and Kapodistrian University of Athens, Athens, Greece; Cognitive Neuroscience Division, Department of Neurology and The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
23
|
Nguyen AI, Suess DLM, Darago LE, Oyala PH, Levine DS, Ziegler MS, Britt RD, Tilley TD. Manganese-Cobalt Oxido Cubanes Relevant to Manganese-Doped Water Oxidation Catalysts. J Am Chem Soc 2017; 139:5579-5587. [PMID: 28347135 DOI: 10.1021/jacs.7b01792] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Incorporation of Mn into an established water oxidation catalyst based on a Co(III)4O4 cubane was achieved by a simple and efficient assembly of permanganate, cobalt(II) acetate, and pyridine to form the cubane oxo cluster MnCo3O4(OAc)5py3 (OAc = acetate, py = pyridine) (1-OAc) in good yield. This allows characterization of electronic and chemical properties for a manganese center in a cobalt oxide environment, and provides a molecular model for Mn-doped cobalt oxides. The electronic properties of the cubane are readily tuned by exchange of the OAc- ligand for Cl- (1-Cl), NO3- (1-NO3), and pyridine ([1-py]+). EPR spectroscopy, SQUID magnetometry, and DFT calculations thoroughly characterized the valence assignment of the cubane as [MnIVCoIII3]. These cubanes are redox-active, and calculations reveal that the Co ions behave as the reservoir for electrons, but their redox potentials are tuned by the choice of ligand at Mn. This MnCo3O4 cubane system represents a new class of easily prepared, versatile, and redox-active oxido clusters that should contribute to an understanding of mixed-metal, Mn-containing oxides.
Collapse
Affiliation(s)
- Andy I Nguyen
- Department of Chemistry, University of California at Berkeley , Berkeley, California 94720-1460, United States
| | - Daniel L M Suess
- Department of Chemistry, University of California at Davis , Davis, California 95616, United States
| | - Lucy E Darago
- Department of Chemistry, University of California at Berkeley , Berkeley, California 94720-1460, United States
| | - Paul H Oyala
- Department of Chemistry, University of California at Davis , Davis, California 95616, United States
| | - Daniel S Levine
- Department of Chemistry, University of California at Berkeley , Berkeley, California 94720-1460, United States
| | - Micah S Ziegler
- Department of Chemistry, University of California at Berkeley , Berkeley, California 94720-1460, United States
| | - R David Britt
- Department of Chemistry, University of California at Davis , Davis, California 95616, United States
| | - T Don Tilley
- Department of Chemistry, University of California at Berkeley , Berkeley, California 94720-1460, United States
| |
Collapse
|
24
|
Massie AA, Denler MC, Cardoso LT, Walker AN, Hossain MK, Day VW, Nordlander E, Jackson TA. Equatorial Ligand Perturbations Influence the Reactivity of Manganese(IV)‐Oxo Complexes. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | | | - M. Kamal Hossain
- Chemical Physics Department of Chemistry Lund University Box 124 22100 Lund Sweden
| | - Victor W. Day
- Department of Chemistry University of Kansas Lawrence KS USA
| | - Ebbe Nordlander
- Chemical Physics Department of Chemistry Lund University Box 124 22100 Lund Sweden
| | | |
Collapse
|
25
|
Massie AA, Denler MC, Cardoso LT, Walker AN, Hossain MK, Day VW, Nordlander E, Jackson TA. Equatorial Ligand Perturbations Influence the Reactivity of Manganese(IV)-Oxo Complexes. Angew Chem Int Ed Engl 2017; 56:4178-4182. [PMID: 28300349 DOI: 10.1002/anie.201612309] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/03/2017] [Indexed: 11/06/2022]
Abstract
Manganese(IV)-oxo complexes are often invoked as intermediates in Mn-catalyzed C-H bond activation reactions. While many synthetic MnIV -oxo species are mild oxidants, other members of this class can attack strong C-H bonds. The basis for these reactivity differences is not well understood. Here we describe a series of MnIV -oxo complexes with N5 pentadentate ligands that modulate the equatorial ligand field of the MnIV center, as assessed by electronic absorption, electron paramagnetic resonance, and Mn K-edge X-ray absorption methods. Kinetic experiments show dramatic rate variations in hydrogen-atom and oxygen-atom transfer reactions, with faster rates corresponding to weaker equatorial ligand fields. For these MnIV -oxo complexes, the rate enhancements are correlated with both 1) the energy of a low-lying 4 E excited state, which has been postulated to be involved in a two-state reactivity model, and 2) the MnIII/IV reduction potentials.
Collapse
Affiliation(s)
- Allyssa A Massie
- Department of Chemistry, University of Kansas, Lawrence, KS, USA
| | - Melissa C Denler
- Department of Chemistry, University of Kansas, Lawrence, KS, USA
| | | | - Ashlie N Walker
- Department of Chemistry, University of Kansas, Lawrence, KS, USA
| | - M Kamal Hossain
- Chemical Physics, Department of Chemistry, Lund University, Box 124, 22100, Lund, Sweden
| | - Victor W Day
- Department of Chemistry, University of Kansas, Lawrence, KS, USA
| | - Ebbe Nordlander
- Chemical Physics, Department of Chemistry, Lund University, Box 124, 22100, Lund, Sweden
| | | |
Collapse
|
26
|
Jin K, Seo H, Hayashi T, Balamurugan M, Jeong D, Go YK, Hong JS, Cho KH, Kakizaki H, Bonnet-Mercier N, Kim MG, Kim SH, Nakamura R, Nam KT. Mechanistic Investigation of Water Oxidation Catalyzed by Uniform, Assembled MnO Nanoparticles. J Am Chem Soc 2017; 139:2277-2285. [PMID: 28029792 DOI: 10.1021/jacs.6b10657] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The development of active water oxidation catalysts is critical to achieve high efficiency in overall water splitting. Recently, sub-10 nm-sized monodispersed partially oxidized manganese oxide nanoparticles were shown to exhibit not only superior catalytic performance for oxygen evolution, but also unique electrokinetics, as compared to their bulk counterparts. In the present work, the water-oxidizing mechanism of partially oxidized MnO nanoparticles was investigated using integrated in situ spectroscopic and electrokinetic analyses. We successfully demonstrated that, in contrast to previously reported manganese (Mn)-based catalysts, Mn(III) species are stably generated on the surface of MnO nanoparticles via a proton-coupled electron transfer pathway. Furthermore, we confirmed as to MnO nanoparticles that the one-electron oxidation step from Mn(II) to Mn(III) is no longer the rate-determining step for water oxidation and that Mn(IV)═O species are generated as reaction intermediates during catalysis.
Collapse
Affiliation(s)
- Kyoungsuk Jin
- Department of Materials Science and Engineering, Seoul National University , Seoul 151-742, Korea
| | - Hongmin Seo
- Department of Materials Science and Engineering, Seoul National University , Seoul 151-742, Korea
| | - Toru Hayashi
- Department of Applied Chemistry, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science (CSRS) , 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mani Balamurugan
- Department of Materials Science and Engineering, Seoul National University , Seoul 151-742, Korea
| | - Donghyuk Jeong
- Western Seoul Center, Korea Basic Science Institute (KBSI) , 150, Bukahyeon-ro, Seodaemun-gu, Seoul 120-140, Korea
| | - Yoo Kyung Go
- Western Seoul Center, Korea Basic Science Institute (KBSI) , 150, Bukahyeon-ro, Seodaemun-gu, Seoul 120-140, Korea
| | - Jung Sug Hong
- Department of Materials Science and Engineering, Seoul National University , Seoul 151-742, Korea
| | - Kang Hee Cho
- Department of Materials Science and Engineering, Seoul National University , Seoul 151-742, Korea
| | - Hirotaka Kakizaki
- Department of Applied Chemistry, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science (CSRS) , 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Nadège Bonnet-Mercier
- Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science (CSRS) , 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Min Gyu Kim
- Pohang Accelerator Laboratory, Pohang University of Science and Technology (POSTECH) , Pohang 790-784, Korea
| | - Sun Hee Kim
- Western Seoul Center, Korea Basic Science Institute (KBSI) , 150, Bukahyeon-ro, Seodaemun-gu, Seoul 120-140, Korea
| | - Ryuhei Nakamura
- Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science (CSRS) , 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University , Seoul 151-742, Korea
| |
Collapse
|
27
|
Faponle AS, de Visser SP. The Role of Nonheme Transition Metal-Oxo, -Peroxo, and -Superoxo Intermediates in Enzyme Catalysis and Reactions of Bioinspired Complexes. ADVANCES IN INORGANIC CHEMISTRY 2017. [DOI: 10.1016/bs.adioch.2017.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Ghassemi Tabrizi S, Arbuznikov AV, Kaupp M. Understanding Thermodynamic and Spectroscopic Properties of Tetragonal Mn12 Single-Molecule Magnets from Combined Density Functional Theory/Spin-Hamiltonian Calculations. J Phys Chem A 2016; 120:6864-79. [PMID: 27482933 DOI: 10.1021/acs.jpca.6b06896] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shadan Ghassemi Tabrizi
- Institut
für Chemie, Theoretische Chemie, Technische Universität Berlin, Sekr. C7, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Alexei V. Arbuznikov
- Institut
für Chemie, Theoretische Chemie, Technische Universität Berlin, Sekr. C7, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Martin Kaupp
- Institut
für Chemie, Theoretische Chemie, Technische Universität Berlin, Sekr. C7, Strasse des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
29
|
Barman P, Upadhyay P, Faponle AS, Kumar J, Nag SS, Kumar D, Sastri CV, de Visser SP. Deformylation Reaction by a Nonheme Manganese(III)-Peroxo Complex via Initial Hydrogen-Atom Abstraction. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604412] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Prasenjit Barman
- Department of Chemistry; Indian Institute of Technology Guwahati; Assam 781039 India
| | - Pranav Upadhyay
- Department of Applied Physics; School of Physical Sciences; Babasaheb Bhimrao Ambedkar University; Lucknow 226025 India
| | - Abayomi S. Faponle
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science; The University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Jitendra Kumar
- Department of Applied Physics; School of Physical Sciences; Babasaheb Bhimrao Ambedkar University; Lucknow 226025 India
| | - Sayanta Sekhar Nag
- Department of Chemistry; Indian Institute of Technology Guwahati; Assam 781039 India
| | - Devesh Kumar
- Department of Applied Physics; School of Physical Sciences; Babasaheb Bhimrao Ambedkar University; Lucknow 226025 India
| | - Chivukula V. Sastri
- Department of Chemistry; Indian Institute of Technology Guwahati; Assam 781039 India
| | - Sam P. de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science; The University of Manchester; 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
30
|
Barman P, Upadhyay P, Faponle AS, Kumar J, Nag SS, Kumar D, Sastri CV, de Visser SP. Deformylation Reaction by a Nonheme Manganese(III)-Peroxo Complex via Initial Hydrogen-Atom Abstraction. Angew Chem Int Ed Engl 2016; 55:11091-5. [DOI: 10.1002/anie.201604412] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/03/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Prasenjit Barman
- Department of Chemistry; Indian Institute of Technology Guwahati; Assam 781039 India
| | - Pranav Upadhyay
- Department of Applied Physics; School of Physical Sciences; Babasaheb Bhimrao Ambedkar University; Lucknow 226025 India
| | - Abayomi S. Faponle
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science; The University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Jitendra Kumar
- Department of Applied Physics; School of Physical Sciences; Babasaheb Bhimrao Ambedkar University; Lucknow 226025 India
| | - Sayanta Sekhar Nag
- Department of Chemistry; Indian Institute of Technology Guwahati; Assam 781039 India
| | - Devesh Kumar
- Department of Applied Physics; School of Physical Sciences; Babasaheb Bhimrao Ambedkar University; Lucknow 226025 India
| | - Chivukula V. Sastri
- Department of Chemistry; Indian Institute of Technology Guwahati; Assam 781039 India
| | - Sam P. de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science; The University of Manchester; 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
31
|
Leto DF, Massie AA, Colmer HE, Jackson TA. X-Band Electron Paramagnetic Resonance Comparison of Mononuclear Mn(IV)-oxo and Mn(IV)-hydroxo Complexes and Quantum Chemical Investigation of Mn(IV) Zero-Field Splitting. Inorg Chem 2016; 55:3272-82. [PMID: 27002928 DOI: 10.1021/acs.inorgchem.5b02309] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
X-band electron paramagnetic resonance (EPR) spectroscopy was used to probe the ground-state electronic structures of mononuclear Mn(IV) complexes [Mn(IV)(OH)2(Me2EBC)](2+) and [Mn(IV)(O)(OH)(Me2EBC)](+). These compounds are known to effect C-H bond oxidation reactions by a hydrogen-atom transfer mechanism. They provide an ideal system for comparing Mn(IV)-hydroxo versus Mn(IV)-oxo motifs, as they differ by only a proton. Simulations of 5 K EPR data, along with analysis of variable-temperature EPR signal intensities, allowed for the estimation of ground-state zero-field splitting (ZFS) and (55)Mn hyperfine parameters for both complexes. From this analysis, it was concluded that the Mn(IV)-oxo complex [Mn(IV)(O)(OH)(Me2EBC)](+) has an axial ZFS parameter D (D = +1.2(0.4) cm(-1)) and rhombicity (E/D = 0.22(1)) perturbed relative to the Mn(IV)-hydroxo analogue [Mn(IV)(OH)2(Me2EBC)](2+) (|D| = 0.75(0.25) cm(-1); E/D = 0.15(2)), although the complexes have similar (55)Mn values (a = 7.7 and 7.5 mT, respectively). The ZFS parameters for [Mn(IV)(OH)2(Me2EBC)](2+) were compared with values obtained previously through variable-temperature, variable-field magnetic circular dichroism (VTVH MCD) experiments. While the VTVH MCD analysis can provide a reasonable estimate of the magnitude of D, the E/D values were poorly defined. Using the ZFS parameters reported for these complexes and five other mononuclear Mn(IV) complexes, we employed coupled-perturbed density functional theory (CP-DFT) and complete active space self-consistent field (CASSCF) calculations with second-order n-electron valence-state perturbation theory (NEVPT2) correction, to compare the ability of these two quantum chemical methods for reproducing experimental ZFS parameters for Mn(IV) centers. The CP-DFT approach was found to provide reasonably acceptable values for D, whereas the CASSCF/NEVPT2 method fared worse, considerably overestimating the magnitude of D in several cases. Both methods were poor in reproducing experimental E/D values. Overall, this work adds to the limited investigations of Mn(IV) ground-state properties and provides an initial assessment for calculating Mn(IV) ZFS parameters with quantum chemical methods.
Collapse
Affiliation(s)
- Domenick F Leto
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States
| | - Allyssa A Massie
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States
| | - Hannah E Colmer
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States
| | - Timothy A Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States
| |
Collapse
|
32
|
Abstract
EPR spectroscopy combined with quantum chemistry for the investigation of the magnetic anisotropy of MnII, MnIII and MnIV.
Collapse
Affiliation(s)
- Carole Duboc
- University Grenoble-Alpes
- CNRS
- UMR 5250
- Département de Chimie Moléculaire
- 38041 Grenoble cedex 9
| |
Collapse
|