1
|
Ott JC, Bürgy D, Guan H, Gade LH. 3d Metal Complexes in T-shaped Geometry as a Gateway to Metalloradical Reactivity. Acc Chem Res 2022; 55:857-868. [PMID: 35164502 DOI: 10.1021/acs.accounts.1c00737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
ConspectusLow-valent, low-coordinate 3d metal complexes represent a class of extraordinarily reactive compounds that can act as reagents and catalysts for challenging bond-activation reactions. The pursuit of these electron-deficient metal complexes in low oxidation states demands ancillary ligands capable of providing not only energetic stabilization but also sufficiently high steric bulk at the metal center. From this perspective, pincer ligands are particularly advantageous, as their prearranged, meridional coordination mode scaffolds the active center while the substituents of the peripheral donor atoms provide effective steric shielding for the coordination sphere. In a T-shaped geometry, the transition metal complexes possess a precisely defined vacant coordination site, which, combined with the often observed high-spin electron configuration, exhibits unusually high selectivity of these compounds with respect to one-electron redox chemistry. In light of the intractable reaction pathways typically observed with related electronically unsaturated 3d transition metal complexes, the pincer coordination mode enables the isolation of low-valent compounds with more controlled and unique reactivity. We have thus investigated a series of T-shaped metal(I) complexes using three different types of pincer ligands, which may be regarded as "metalloradicals" due to their selectively exposed unpaired electrons.These compounds display remarkably high thermal stability and represent rarely observed "naked" monovalent metal species featuring both monomeric and dimeric structures. Extensive reactivity studies using various organic substrates highlight a strong tendency of these paramagnetic compounds to undergo one-electron oxidation, leading to the isolation of a plethora of metal(II) species with reduced organic ligands as unusual structural elements. The exploration of C2 symmetric T-shaped Ni(I) complexes as asymmetric catalysts also shows success in enantioselective hydrodehalogenation of geminal dihalogenides. In addition, this specific class of low-valent, low-coordinate complexes can be further diversified by introducing redox-active pincer ligands or building homobimetallic systems with two T-shaped units.This Account focuses on the discussion of selected examples of iron, cobalt, and nickel pincer complexes bearing a [P,N,P] or [N,N,N] donor set; however, their electronic structure and radical-type reactivity can be broadly extended to other pincer systems. The availability of various types of pincer ligands should allow fine-tuning of the reactivity of the T-shaped complexes. Given the unprecedented reactivity observed with these compounds, we expect the studies of T-shaped 3d metal complexes to be a fertile field for advancing base metal catalysis.
Collapse
Affiliation(s)
- Jonas C. Ott
- Anorganisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - David Bürgy
- Anorganisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Hairong Guan
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Lutz H. Gade
- Anorganisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Ott JC, Wadepohl H, Gade LH. Metalloradical Reactivity, Charge Transfer, and Atom Abstractions in a T-Shaped Iron(I) Complex. Inorg Chem 2021; 60:3927-3938. [DOI: 10.1021/acs.inorgchem.0c03724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jonas C. Ott
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, 69120 Heidelberg, Germany
| | - Hubert Wadepohl
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, 69120 Heidelberg, Germany
| | - Lutz H. Gade
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Ott JC, Isak D, Melder JJ, Wadepohl H, Gade LH. Single or Paired? Structure and Reactivity of PNP-Chromium(II) Hydrides. Inorg Chem 2020; 59:14526-14535. [PMID: 32931701 DOI: 10.1021/acs.inorgchem.0c02315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The preparation and reactivity of a range of novel paramagnetic chromium(II) complexes supported by a carbazole-based PNP pincer ligand is reported. Deprotonation of the ligand precursors R(PNP)H (1R) and subsequent reaction with chromium(II) chloride led to the formation of square-planar chlorido complexes R(PNP)CrCl (2R). Further reaction with various alkylating agents resulted in the isolation of chromium alkyl complexes R(PNP)CrR' (3R-R') which were then hydrogenated to yield two rare examples of paramagnetic chromium(II) hydrides 4iPr and 4tBu. Both compounds were characterized by X-ray diffraction and paramagnetic NMR spectroscopy supported by a comprehensive DFT-supported assignment of the resonances. While the di(tert-butyl)phosphino PNP substituted complex 4tBu was found to exhibit a monomeric square-planar molecular structure, its isopropyl-substituted analog 4iPr forms a dimer, also indicated by a strong antiferromagnetic coupling of the chromium centers. The pronounced reactivity of these compounds toward C═X double bonds was demonstrated by reaction with benzophenone, N,N'-dicyclohexylcarbodiimide, and carbon dioxide, which gave the corresponding insertion products. The alkoxido complex 5iPr, the amidinato complex 6iPr, and the formato compound 7tBu were also characterized by X-ray diffraction.
Collapse
Affiliation(s)
- Jonas C Ott
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, 69120 Heidelberg, Germany
| | - Daniel Isak
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, 69120 Heidelberg, Germany
| | - Julian J Melder
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, 69120 Heidelberg, Germany
| | - Hubert Wadepohl
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, 69120 Heidelberg, Germany
| | - Lutz H Gade
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Ott JC, Wadepohl H, Gade LH. Opening up the Valence Shell: A T-Shaped Iron(I) Metalloradical and Its Potential for Atom Abstraction. Angew Chem Int Ed Engl 2020; 59:9448-9452. [PMID: 32196900 PMCID: PMC7318345 DOI: 10.1002/anie.202003118] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Indexed: 11/06/2022]
Abstract
A thermally stable, T-shaped, d7 high-spin iron(I) complex was obtained by reduction of a PNP-supported ferrous chloride. Paramagnetic NMR spectroscopy combined with DFT modeling was used to analyze the electronic structure of the coordinatively highly unsaturated complex. The metalloradical character of the compound was demonstrated by the formation of a benzophenone ketyl radical complex upon addition of benzophenone. Furthermore, the compound displays a rich chemistry as an oxygen-atom abstractor from epoxides, yielding a dinuclear, diferrous [Fe2 O] complex.
Collapse
Affiliation(s)
- Jonas C. Ott
- Anorganisch-Chemisches InstitutUniversität HeidelbergIm Neuenheimer Feld 27669120HeidelbergGermany
| | - Hubert Wadepohl
- Anorganisch-Chemisches InstitutUniversität HeidelbergIm Neuenheimer Feld 27669120HeidelbergGermany
| | - Lutz H. Gade
- Anorganisch-Chemisches InstitutUniversität HeidelbergIm Neuenheimer Feld 27669120HeidelbergGermany
| |
Collapse
|
5
|
Hopkins EJ, Krajewski SM, Crossman AS, Maharaj FDR, Schwanz LT, Marshak MP. Group 4 Organometallics Supported by Sterically Hindered
β
‐Diketonates. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Emily J. Hopkins
- Department of Chemistry University of Colorado Boulder CO 80303 Boulder USA
| | | | - Aaron S. Crossman
- Department of Chemistry University of Colorado Boulder CO 80303 Boulder USA
| | | | - Logan T. Schwanz
- Department of Chemistry University of Colorado Boulder CO 80303 Boulder USA
| | - Michael P. Marshak
- Department of Chemistry University of Colorado Boulder CO 80303 Boulder USA
| |
Collapse
|
6
|
Merz LS, Ballmann J, Gade LH. Phosphines and
N
‐Heterocycles Joining Forces: an Emerging Structural Motif in PNP‐Pincer Chemistry. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000206] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lukas S. Merz
- Anorganisch‐Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Joachim Ballmann
- Anorganisch‐Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Lutz H. Gade
- Anorganisch‐Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
7
|
Fang F, Chang J, Kang J, Zhang J, Li S, Chen X. A Structure Comparison of Ni(II) Complexes Supported by PNCNP and POCOP Pincer Ligands. ChemistrySelect 2020. [DOI: 10.1002/slct.202001413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fei Fang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy MaterialsKey Laboratory of Green Chemical Media and ReactionsMinistry of EducationCollaborative Innovation Centre of Henan Province for Green Manufacturing of Fine ChemicalsSchool of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 China
| | - Jiarui Chang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy MaterialsKey Laboratory of Green Chemical Media and ReactionsMinistry of EducationCollaborative Innovation Centre of Henan Province for Green Manufacturing of Fine ChemicalsSchool of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 China
| | - Jiaxin Kang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy MaterialsKey Laboratory of Green Chemical Media and ReactionsMinistry of EducationCollaborative Innovation Centre of Henan Province for Green Manufacturing of Fine ChemicalsSchool of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 China
| | - Jie Zhang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy MaterialsKey Laboratory of Green Chemical Media and ReactionsMinistry of EducationCollaborative Innovation Centre of Henan Province for Green Manufacturing of Fine ChemicalsSchool of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 China
| | - Shujun Li
- Henan Key Laboratory of Boron Chemistry and Advanced Energy MaterialsKey Laboratory of Green Chemical Media and ReactionsMinistry of EducationCollaborative Innovation Centre of Henan Province for Green Manufacturing of Fine ChemicalsSchool of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 China
| | - Xuenian Chen
- Henan Key Laboratory of Boron Chemistry and Advanced Energy MaterialsKey Laboratory of Green Chemical Media and ReactionsMinistry of EducationCollaborative Innovation Centre of Henan Province for Green Manufacturing of Fine ChemicalsSchool of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 China
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou Henan 450001 China)
| |
Collapse
|
8
|
Ott JC, Wadepohl H, Gade LH. Öffnung der Valenzschale: Ein T‐förmiges Eisen(I)‐Metalloradikal und sein Potential als Atomabstraktor. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jonas C. Ott
- Anorganisch-Chemisches InstitutUniversität Heidelberg Im Neuenheimer Feld 276 69120 Heidelberg Deutschland
| | - Hubert Wadepohl
- Anorganisch-Chemisches InstitutUniversität Heidelberg Im Neuenheimer Feld 276 69120 Heidelberg Deutschland
| | - Lutz H. Gade
- Anorganisch-Chemisches InstitutUniversität Heidelberg Im Neuenheimer Feld 276 69120 Heidelberg Deutschland
| |
Collapse
|
9
|
Merz LS, Blasius CK, Wadepohl H, Gade LH. Square Planar Cobalt(II) Hydride versus T-Shaped Cobalt(I): Structural Characterization and Dihydrogen Activation with PNP–Cobalt Pincer Complexes. Inorg Chem 2019; 58:6102-6113. [DOI: 10.1021/acs.inorgchem.9b00384] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lukas S. Merz
- Anorganisch Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Clemens K. Blasius
- Anorganisch Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Hubert Wadepohl
- Anorganisch Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Lutz H. Gade
- Anorganisch Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| |
Collapse
|
10
|
Zhang J, Cao B, Ding Y, Chang J, Li S, Chen X. Syntheses and Structures of Group 10 Metal POCOP Pincer Complexes Bearing A Mercapto-o-
carborane Auxiliary Ligand. ChemistrySelect 2019. [DOI: 10.1002/slct.201803908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jie Zhang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials; Henan Normal University Xinxiang; Henan 453007 China
| | - Bula Cao
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials; Henan Normal University Xinxiang; Henan 453007 China
| | - Yazhou Ding
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials; Henan Normal University Xinxiang; Henan 453007 China
| | - Jiarui Chang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials; Henan Normal University Xinxiang; Henan 453007 China
| | - Shujun Li
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials; Henan Normal University Xinxiang; Henan 453007 China
| | - Xuenian Chen
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials; Henan Normal University Xinxiang; Henan 453007 China
| |
Collapse
|
11
|
Zhang J, Liu T, Wei C, Chang J, Ma QQ, Li S, Ma N, Chen X. The Reactivity of Mercapto Groups against Boron Hydrides in Pincer Ligated Nickel Mercapto Complexes. Chem Asian J 2018; 13:3231-3238. [PMID: 30129168 DOI: 10.1002/asia.201801050] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/17/2018] [Indexed: 01/24/2023]
Abstract
Several pincer ligated nickel mercapto complexes, [2,6-(R2 PCH2 )2 C6 H3 ]NiSH (R=tBu, 1 a; iPr, 1 b), [2,6-(R2 PO)2 C6 H3 ]NiSH (R=tBu, 2 a; iPr, 2 b) and [4-MeOCO-2,6-(tBu2 PO)2 C6 H2 ]NiSH (3 a), were synthesized and fully characterized. The reactivity of the mercapto groups against boron hydrides and organic bases was investigated. It was found that the mercapto groups are difficult to be deprotonated by boron hydrides or organic bases. The treatment of complex 2 a or 2 b with an excess amount of catecholborane (HBcat) afforded the corresponding pincer ligated nickel borohydride complexes and the HBcat degradation product. The treatment of complex 1 a, 2 a or 2 b with an excess amount of BH3 ⋅THF produced the corresponding nickel borohydride species and the S-bridged triborane species THF⋅BH2 -μ2 -S(B2 H5 ) (5). No reactions between these complexes and organic bases were observed. DFT calculations were carried out to understand this reactivity and get mechanistic insights into the reactions.
Collapse
Affiliation(s)
- Jie Zhang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Ting Liu
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Changgeng Wei
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Jiarui Chang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Qiang-Qiang Ma
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Shujun Li
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Nana Ma
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xuenian Chen
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
12
|
Heins SP, Morris WD, Cundari TR, MacMillan SN, Lobkovsky EB, Livezey NM, Wolczanski PT. Complexes of [(dadi)Ti(L/X)]m That Reveal Redox Non-Innocence and a Stepwise Carbene Insertion into a Carbon–Carbon Bond. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Spencer P. Heins
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Wesley D. Morris
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Thomas R. Cundari
- Department of Chemistry, CASCaM, University of North Texas, Denton, Texas 76201, United States
| | - Samantha N. MacMillan
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Emil B. Lobkovsky
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Nicholas M. Livezey
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Peter T. Wolczanski
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
13
|
Hartmann D, Wadepohl H, Gade LH. Synthesis and Structural Characterization of Group 10 Metal Complexes Bearing an Amidodiphosphine Pincer Ligand. Z Anorg Allg Chem 2018. [DOI: 10.1002/zaac.201800173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Deborah Hartmann
- Anorganisch-Chemisches Institut; Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Hubert Wadepohl
- Anorganisch-Chemisches Institut; Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Lutz H. Gade
- Anorganisch-Chemisches Institut; Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
14
|
Merz LS, Wadepohl H, Clot E, Gade LH. Dehydrogenative coupling of 4-substituted pyridines mediated by a zirconium(ii) synthon: reaction pathways and dead ends. Chem Sci 2018; 9:5223-5232. [PMID: 29997877 PMCID: PMC6001252 DOI: 10.1039/c8sc01025k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/15/2018] [Indexed: 01/02/2023] Open
Abstract
The mechanism of the reductive homocoupling of pyridine derivatives mediated by the ZrII synthon [(PNP)Zr(η6-toluene)Cl] (1) has been investigated. Selective transformation into three different types of product complexes has been observed, depending on the N-heterocyclic substrate employed: the bipyridyl complexes 3-R (R = Me, Et, t Bu, Bn, Ph, CHCHPh), which are the homocoupling products, the η2-((4-dimethylamino)pyridyl) complex 4 as well as the bis(isoquinolinyl) complex 5. By deuterium labelling experiments the participation of the ligand backbone in the pyridine coupling reaction via potential cyclometallation steps was ruled out. Based on DFT modelling of the possible reaction sequences a reaction mechanism for the coupling sequence could be identified. The latter is initiated by a reductive syn C-C coupling rather than based on an initial C-H activation of the pyridine substrate.
Collapse
Affiliation(s)
- Lukas S Merz
- Anorganisch Chemisches Institut , Universität Heidelberg , Im Neuenheimer Feld 270 , 69120 Heidelberg , Germany .
| | - Hubert Wadepohl
- Anorganisch Chemisches Institut , Universität Heidelberg , Im Neuenheimer Feld 270 , 69120 Heidelberg , Germany .
| | - Eric Clot
- Institut Charles Gerhardt Montpellier , UMR 5253 CNRS-UM-ENSCM , Université de Montpellier , Place Eugène Bataillon, Bât 15, cc1501 , 34095 Montpellier Cedex 5 , France .
| | - Lutz H Gade
- Anorganisch Chemisches Institut , Universität Heidelberg , Im Neuenheimer Feld 270 , 69120 Heidelberg , Germany .
| |
Collapse
|
15
|
Ott JC, Blasius CK, Wadepohl H, Gade LH. Synthesis, Characterization, and Reactivity of a High-Spin Iron(II) Hydrido Complex Supported by a PNP Pincer Ligand and Its Application as a Homogenous Catalyst for the Hydrogenation of Alkenes. Inorg Chem 2018; 57:3183-3191. [DOI: 10.1021/acs.inorgchem.7b03227] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jonas C. Ott
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, 69120 Heidelberg, Germany
| | - Clemens K. Blasius
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, 69120 Heidelberg, Germany
| | - Hubert Wadepohl
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, 69120 Heidelberg, Germany
| | - Lutz. H. Gade
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, 69120 Heidelberg, Germany
| |
Collapse
|
16
|
Wolczanski PT. Activation of Carbon–Hydrogen Bonds via 1,2-RH-Addition/-Elimination to Early Transition Metal Imides. Organometallics 2018. [DOI: 10.1021/acs.organomet.7b00753] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peter T. Wolczanski
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
17
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2016. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Higuchi J, Kuriyama S, Eizawa A, Arashiba K, Nakajima K, Nishibayashi Y. Preparation and reactivity of iron complexes bearing anionic carbazole-based PNP-type pincer ligands toward catalytic nitrogen fixation. Dalton Trans 2018; 47:1117-1121. [DOI: 10.1039/c7dt04327a] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Newly prepared iron complexes bearing carbazole-based PNP-type pincer ligands are found to work as catalysts toward nitrogen fixation.
Collapse
Affiliation(s)
- Junichi Higuchi
- Department of Systems Innovation
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Shogo Kuriyama
- Department of Systems Innovation
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Aya Eizawa
- Department of Systems Innovation
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Kazuya Arashiba
- Department of Systems Innovation
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Kazunari Nakajima
- Department of Systems Innovation
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Yoshiaki Nishibayashi
- Department of Systems Innovation
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| |
Collapse
|
19
|
Ahn JM, Peters JC, Fu GC. Design of a Photoredox Catalyst that Enables the Direct Synthesis of Carbamate-Protected Primary Amines via Photoinduced, Copper-Catalyzed N-Alkylation Reactions of Unactivated Secondary Halides. J Am Chem Soc 2017; 139:18101-18106. [PMID: 29200268 DOI: 10.1021/jacs.7b10907] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Despite the long history of SN2 reactions between nitrogen nucleophiles and alkyl electrophiles, many such substitution reactions remain out of reach. In recent years, efforts to develop transition-metal catalysts to address this deficiency have begun to emerge. In this report, we address the challenge of coupling a carbamate nucleophile with an unactivated secondary alkyl electrophile to generate a substituted carbamate, a process that has not been achieved effectively in the absence of a catalyst; the product carbamates can serve as useful intermediates in organic synthesis as well as bioactive compounds in their own right. Through the design and synthesis of a new copper-based photoredox catalyst, bearing a tridentate carbazolide/bisphosphine ligand, that can be activated upon irradiation by blue-LED lamps, we can achieve the coupling of a range of primary carbamates with unactivated secondary alkyl bromides at room temperature. Our mechanistic observations are consistent with the new copper complex serving its intended role as a photoredox catalyst, working in conjunction with a second copper complex that mediates C-N bond formation in an out-of-cage process.
Collapse
Affiliation(s)
- Jun Myun Ahn
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Jonas C Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Gregory C Fu
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| |
Collapse
|
20
|
Sietzen M, Batke S, Antoni PW, Wadepohl H, Ballmann J. Benzylene-linked [PNP] scaffolds and their cyclometalated zirconium and hafnium complexes. Dalton Trans 2017; 46:5816-5834. [PMID: 28401977 DOI: 10.1039/c7dt00413c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The benzylene-linked [PNP] scaffolds HN(CH2-o-C6H4PPh2)2 ([A]H) and HN(C6H4-o-CH2PPh2)2 ([B]H) have been used for the synthesis of zirconium and hafnium complexes. For both ligands, the dimethylamides [A]M(NMe2)3 ([A]1-M) and [B]M(NMe2)3 ([B]1-M) were prepared and converted to the iodides [A]MI3 ([A]2-M) and [B]MI3 ([B]2-M) (M = Zr, Hf). Starting from these iodides, the corresponding benzyl derivatives [A]MBn3 ([A]3-M) and [B]MBn3 ([B]3-M) (M = Zr, Hf) were obtained via reaction with Bn2Mg(OEt2)2. For zirconium, the benzylic ligand positions in [A]3-Zr and [B]3-Zr were found to cyclometalate readily, which led to the corresponding κ4-[PCNP]ZrBn2 complexes [A]4-Zr and [B]4-Zr. As these complexes failed to hydrogenate cleanly, cyclometalated derivatives with only one alkyl substituent were targeted and the mixed benzyl chlorides κ4-[PCNP]MBnCl ([B]5-M, M = Zr, Hf) were obtained in the case of ligand [B]. Upon hydrogenation of [B]5-Zr, the η6-tolyl complex [B]Zr(η6-C7H8)Cl ([B]6-Zr) was generated cleanly, but the corresponding hafnium complex [B]5-Hf was found to decompose unselectively in the presence of H2. Using a closely related carbazole-based [PNP] ligand, Gade and co-workers have shown recently that zirconium η6-arene complexes similar to [B]6-Zr may serve as zirconium(ii) synthons, namely when reacted with 2,6-Dipp-NC (L) or pyridine (py). Both these substrates were shown to react cleanly with [B]6-Zr, which led to the formation of the bis-isocyanide complex [B]ZrCl(L)2 ([B]7-Zr) and the 2,2'-bipyridine derivative [B]ZrCl(bipy) ([B]8-Zr), respectively. Upon reaction of [B]Zr(η6-C7H8)Cl ([B]6-Zr) with NaBEt3H, the cyclometalated derivative κ4-[PCNP]Zr(η6-C7H8) ([B]9-Zr) was isolated. In an attempt to synthesise terminal hydrides, complexes [A]MI3 ([A]2-M) were treated with KBEt3H, which led to the isolation of the cyclometalated hydrido complexes κ4-[PCNP]M(H)(κ3-Et3BH) ([A]10-M; M = Zr, Hf) featuring a κ3-bound triethyl borohydride moiety.
Collapse
Affiliation(s)
- Malte Sietzen
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 276, 69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
21
|
Batke S, Sietzen M, Merz L, Wadepohl H, Ballmann J. Closely Related Benzylene-Linked Diamidophosphine Scaffolds and Their Zirconium and Hafnium Complexes: How Small Changes of the Ligand Result in Different Complex Stabilities and Reactivities. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00384] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sonja Batke
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 276, 69120 Heidelberg, Germany
| | - Malte Sietzen
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 276, 69120 Heidelberg, Germany
| | - Lukas Merz
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 276, 69120 Heidelberg, Germany
| | - Hubert Wadepohl
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 276, 69120 Heidelberg, Germany
| | - Joachim Ballmann
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 276, 69120 Heidelberg, Germany
| |
Collapse
|
22
|
Plundrich GT, Wadepohl H, Clot E, Gade LH. η(6) -Arene-Zirconium-PNP-Pincer Complexes: Mechanism of Their Hydrogenolytic Formation and Their Reactivity as Zirconium(II) Synthons. Chemistry 2016; 22:9283-92. [PMID: 27258989 DOI: 10.1002/chem.201601213] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Indexed: 11/08/2022]
Abstract
The cyclometalated monobenzyl complexes [(Cbzdiphos(R) -CH)ZrBnX] 1 (iPr) Cl and 1 (Ph) I reacted with dihydrogen (10 bar) to yield the η(6) -toluene complexes [(Cbzdiphos(R) )Zr(η(6) -tol)X] 2 (iPr) Cl and 2 (Ph) I (cbzdiphos=1,8-bis(phosphino)-3,6-di-tert-butyl-9H-carbazole). The arene complexes were also found to be directly accessible from the triiodide [(Cbzdiphos(Ph) )ZrI3 ] through an in situ reaction with a dibenzylmagnesium reagent and subsequent hydrogenolysis, as exemplified for the η(6) -mesitylene complex [(Cbzdiphos(Ph) )Zr(η(6) -mes)I] (3 (Ph) I). The tolyl-ring in 2 (iPr) Cl adopts a puckered arrangement (fold angle 23.3°) indicating significant arene-1,4-diido character. Deuterium labeling experiments were consistent with an intramolecular reaction sequence after the initial hydrogenolysis of a Zr-C bond by a σ-bond metathesis. A DFT study of the reaction sequence indicates that hydrogenolysis by σ-bond metathesis first occurs at the cyclometalated ancillary ligand giving a hydrido-benzyl intermediate, which subsequently reductively eliminates toluene that then coordinates to the Zr atom as the reduced arene ligand. Complex 2 (Ph) I was reacted with 2,6-diisopropylphenyl isocyanide giving the deep blue, diamagnetic Zr(II) -diisocyanide complex [(Cbzdiphos(Ph) )Zr(CNDipp)2 I] (4 (Ph) I). DFT modeling of 4 (Ph) I demonstrated that the HOMO of the complex is primarily located as a "lone pair on zirconium", with some degree of back-bonding into the C≡N π* bond, and the complex is thus most appropriately described as a zirconium(II) species. Reaction of 2 (Ph) I with trimethylsilylazide (N3 TMS) and 2 (iPr) Cl with 1-azidoadamantane (N3 Ad) resulted in the formation of the imido complexes [(Cbzdiphos(R) )Zr=NR'(X)] 5 (iPr) Cl-NAd and 5 (Ph) I-NTMS, respectively. Reaction of 2 (iPr) Cl with azobenzene led to N-N bond scission giving 6 (iPr) Cl, in which one of the NPh-fragments is coupled with the carbazole nitrogen to form a central η(2) -bonded hydrazide(-1), whereas the other NPh-fragment binds to zirconium acting as an imido-ligand. Finally, addition of pyridine to 2 (iPr) Cl yielded the dark purple complex [(Cbzdiphos(iPr) )Zr(bpy)Cl] (7 (iPr) Cl) through a combination of CH-activation and C-C-coupling. The structural data and UV/Vis spectroscopic properties of 7 (iPr) Cl indicate that the bpy (bipyridine) may be regarded as a (dianionic) diamido-type ligand.
Collapse
Affiliation(s)
- Gudrun T Plundrich
- Anorganisch Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Hubert Wadepohl
- Anorganisch Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Eric Clot
- Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM-ENSCM, Université de Montpellier, cc 1501, Place Eugène Bataillon, 34095, Montpellier Cedex 5, France.
| | - Lutz H Gade
- Anorganisch Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.
| |
Collapse
|