1
|
Katogi Y, Okamoto A, Hada M, Fujii H. Characterization and Reactivity of an Incredibly Reactive Intermediate in the Protonation Reaction of Dioxo-Manganese(V) Porphyrin with Acid. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
2
|
Omura K, Aiba Y, Suzuki K, Ariyasu S, Sugimoto H, Shoji O. A P450 Harboring Manganese Protoporphyrin IX Generates a Manganese Analogue of Compound I by Activating Dioxygen. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Keita Omura
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yuichiro Aiba
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Kazuto Suzuki
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Shinya Ariyasu
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Hiroshi Sugimoto
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Core Research for Evolutional Science and Technology (Japan), Science and Technology Agency, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Osami Shoji
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- Core Research for Evolutional Science and Technology (Japan), Science and Technology Agency, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
3
|
Hakey BM, Leary DC, Martinez JC, Darmon JM, Akhmedov NG, Petersen JL, Milsmann C. Carbene Transfer from a Pyridine Dipyrrolide Iron–Carbene Complex: Reversible Migration of a Diphenylcarbene Ligand into an Iron–Nitrogen Bond. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brett M. Hakey
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Dylan C. Leary
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Jordan C. Martinez
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Jonathan M. Darmon
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Novruz G. Akhmedov
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Jeffrey L. Petersen
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Carsten Milsmann
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
4
|
Nandy A, Duan C, Goffinet C, Kulik HJ. New Strategies for Direct Methane-to-Methanol Conversion from Active Learning Exploration of 16 Million Catalysts. JACS AU 2022; 2:1200-1213. [PMID: 35647589 PMCID: PMC9135396 DOI: 10.1021/jacsau.2c00176] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 05/03/2023]
Abstract
Despite decades of effort, no earth-abundant homogeneous catalysts have been discovered that can selectively oxidize methane to methanol. We exploit active learning to simultaneously optimize methane activation and methanol release calculated with machine learning-accelerated density functional theory in a space of 16 M candidate catalysts including novel macrocycles. By constructing macrocycles from fragments inspired by synthesized compounds, we ensure synthetic realism in our computational search. Our large-scale search reveals that low-spin Fe(II) compounds paired with strong-field (e.g., P or S-coordinating) ligands have among the best energetic tradeoffs between hydrogen atom transfer (HAT) and methanol release. This observation contrasts with prior efforts that have focused on high-spin Fe(II) with weak-field ligands. By decoupling equatorial and axial ligand effects, we determine that negatively charged axial ligands are critical for more rapid release of methanol and that higher-valency metals [i.e., M(III) vs M(II)] are likely to be rate-limited by slow methanol release. With full characterization of barrier heights, we confirm that optimizing for HAT does not lead to large oxo formation barriers. Energetic span analysis reveals designs for an intermediate-spin Mn(II) catalyst and a low-spin Fe(II) catalyst that are predicted to have good turnover frequencies. Our active learning approach to optimize two distinct reaction energies with efficient global optimization is expected to be beneficial for the search of large catalyst spaces where no prior designs have been identified and where linear scaling relationships between reaction energies or barriers may be limited or unknown.
Collapse
Affiliation(s)
- Aditya Nandy
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Chenru Duan
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Conrad Goffinet
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Vitillo JG, Cramer CJ, Gagliardi L. Multireference Methods are Realistic and Useful Tools for Modeling Catalysis. Isr J Chem 2022. [DOI: 10.1002/ijch.202100136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jenny G. Vitillo
- Department of Science and High Technology and INSTM Università degli Studi dell'Insubria Via Valleggio 9 I-22100 Como Italy
| | - Christopher J. Cramer
- Underwriters Laboratories Inc. 333 Pfingsten Road Northbrook Illinois 60602 United States
| | - Laura Gagliardi
- Department of Chemistry Pritzker School of Molecular Engineering James Franck Institute University of Chicago Chicago Illinois 60637 United States
| |
Collapse
|
6
|
Delcey MG, Lindblad R, Timm M, Bülow C, Zamudio-Bayer V, von Issendorff B, Lau JT, Lundberg M. Soft x-ray signatures of ionic manganese-oxo systems, including a high-spin manganese(V) complex. Phys Chem Chem Phys 2022; 24:3598-3610. [DOI: 10.1039/d1cp03667j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Manganese-oxo species catalyze key reactions, including C–H bond activation or dioxygen formation in natural photosynthesis. To better understand relevant reaction intermediates, we characterize electronic states and geometric structures of [MnOn]+...
Collapse
|
7
|
Moreau LM, Lapsheva E, Amaro-Estrada JI, Gau MR, Carroll PJ, Manor BC, Qiao Y, Yang Q, Lukens WW, Sokaras D, Schelter EJ, Maron L, Booth CH. Electronic structure studies reveal 4f/5d mixing and its effect on bonding characteristics in Ce-imido and -oxo complexes. Chem Sci 2022; 13:1759-1773. [PMID: 35282640 PMCID: PMC8827158 DOI: 10.1039/d1sc06623d] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/06/2022] [Indexed: 11/23/2022] Open
Abstract
This study presents the role of 5d orbitals in the bonding, and electronic and magnetic structure of Ce imido and oxo complexes synthesized with a tris(hydroxylaminato) [((2-tBuNO)C6H4CH2)3N]3− (TriNOx3−) ligand framework, including the reported synthesis and characterization of two new alkali metal-capped Ce oxo species. X-ray spectroscopy measurements reveal that the imido and oxo materials exhibit an intermediate valent ground state of the Ce, displaying hallmark features in the Ce LIII absorption of partial f-orbital occupancy that are relatively constant for all measured compounds. These spectra feature a double peak consistent with other formal Ce(iv) compounds. Magnetic susceptibility measurements reveal enhanced levels of temperature-independent paramagnetism (TIP). In contrast to systems with direct bonding to an aromatic ligand, no clear correlation between the level of TIP and f-orbital occupancy is observed. CASSCF calculations defy a conventional van Vleck explanation of the TIP, indicating a single-reference ground state with no low-lying triplet excited state, despite accurately predicting the measured values of f-orbital occupancy. The calculations do, however, predict strong 4f/5d hybridization. In fact, within these complexes, despite having similar f-orbital occupancies and therefore levels of 4f/5d hybridization, the d-state distributions vary depending on the bonding motif (Ce
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
O vs. CeN) of the complex, and can also be fine-tuned based on varying alkali metal cation capping species. This system therefore provides a platform for understanding the characteristic nature of Ce multiple bonds and potential impact that the associated d-state distribution may have on resulting reactivity. Ce(iv) complexes with multiple bonds display similar f0 fractions, but different f/d hybridization, 5d-orbital energies, and TIP levels.![]()
Collapse
Affiliation(s)
- Liane M. Moreau
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ekaterina Lapsheva
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Michael R. Gau
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patrick J. Carroll
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian C. Manor
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yusen Qiao
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Qiaomu Yang
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wayne W. Lukens
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Eric J. Schelter
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laurent Maron
- LPCNO, UMR 5215, CNRS, INSA, UPS, Université de Toulouse, 31000 Toulouse, France
| | - Corwin H. Booth
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
8
|
Hakey BM, Leary DC, Xiong J, Harris CF, Darmon JM, Petersen JL, Berry JF, Guo Y, Milsmann C. High Magnetic Anisotropy of a Square-Planar Iron-Carbene Complex. Inorg Chem 2021; 60:18575-18588. [PMID: 34431660 PMCID: PMC9106389 DOI: 10.1021/acs.inorgchem.1c01860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Among Earth-abundant catalyst systems, iron-carbene intermediates that perform C-C bond forming reactions such as cyclopropanation of olefins and C-H functionalization via carbene insertion are rare. Detailed descriptions of the possible electronic structures for iron-carbene bonds are imperative to obtain better mechanistic insights and enable rational catalyst design. Here, we report the first square-planar iron-carbene complex (MesPDPPh)Fe(CPh2), where [MesPDPPh]2- is the doubly deprotonated form of [2,6-bis(5-(2,4,6-trimethylphenyl)-3-phenyl-1H-pyrrol-2-yl)pyridine]. The compound was prepared via reaction of the disubstituted diazoalkane N2CPh2 with (MesPDPPh)Fe(thf) and represents a rare example of a structurally characterized, paramagnetic iron-carbene complex. Temperature-dependent magnetic susceptibility measurements and applied-field Mössbauer spectroscopic studies revealed an orbitally near-degenerate S = 1 ground state with large unquenched orbital angular momentum resulting in high magnetic anisotropy. Spin-Hamiltonian analysis indicated that this S = 1 spin system has uniaxial magnetic properties arising from a ground MS = ±1 non-Kramers doublet that is well-separated from the MS = 0 sublevel due to very large axial zero-field splitting (D = -195 cm-1, E/D = 0.02 estimated from magnetic susceptibility data). This remarkable electronic structure gives rise to a very large, positive magnetic hyperfine field of more than +60 T for the 57Fe nucleus along the easy magnetization axis observed by Mössbauer spectroscopy. Computational analysis with complete active space self-consistent field (CASSCF) calculations provides a detailed electronic structure analysis and confirms that (MesPDPPh)Fe(CPh2) exhibits a multiconfigurational ground state. The majority contribution originates from a configuration best described as a singlet carbene coordinated to an intermediate-spin FeII center with a (dxy)2{(dxz),(dz2)}3(dyz)1(dx2-y2)0 configuration featuring near-degenerate dxz and dz2 orbitals.
Collapse
Affiliation(s)
- Brett M Hakey
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Dylan C Leary
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Jin Xiong
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Caleb F Harris
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jonathan M Darmon
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Jeffrey L Petersen
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - John F Berry
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Carsten Milsmann
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
9
|
Jeong W, Gaggioli CA, Gagliardi L. Active Learning Configuration Interaction for Excited-State Calculations of Polycyclic Aromatic Hydrocarbons. J Chem Theory Comput 2021; 17:7518-7530. [PMID: 34787422 PMCID: PMC8675132 DOI: 10.1021/acs.jctc.1c00769] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Indexed: 11/30/2022]
Abstract
We present the active learning configuration interaction (ALCI) method for multiconfigurational calculations based on large active spaces. ALCI leverages the use of an active learning procedure to find important electronic configurations among the full configurational space generated within an active space. We tested it for the calculation of singlet-singlet excited states of acenes and pyrene using different machine learning algorithms. The ALCI method yields excitation energies within 0.2-0.3 eV from those obtained by traditional complete active-space configuration interaction (CASCI) calculations (affordable for active spaces up to 16 electrons in 16 orbitals) by including only a small fraction of the CASCI configuration space in the calculations. For larger active spaces (we tested up to 26 electrons in 26 orbitals), not affordable with traditional CI methods, ALCI captures the trends of experimental excitation energies. Overall, ALCI provides satisfactory approximations to large active-space wave functions with up to 10 orders of magnitude fewer determinants for the systems presented here. These ALCI wave functions are promising and affordable starting points for the subsequent second-order perturbation theory or pair-density functional theory calculations.
Collapse
Affiliation(s)
- WooSeok Jeong
- Department
of Chemistry, Nanoporous Materials Genome Center, Chemical Theory
Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carlo Alberto Gaggioli
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Laura Gagliardi
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Argonne
National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
10
|
Ma Z, Nakatani N, Hada M. Insights into the electronic structure and mechanism of norcarane hydroxylation by OxoMn(V) porphyrin complexes: A density functional theory study. J Comput Chem 2021; 42:1920-1928. [PMID: 34448235 DOI: 10.1002/jcc.26715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 11/05/2022]
Abstract
Norcarane hydroxylation by neutral [PorMn(V)O-L] (L═OH- , F- ) and cationic [PorMn(V)O-L]+ (L═H2 O, imidazole) oxoMn(V) porphyrin complex models has been investigated by density functional theory calculations to better understand the reaction mechanism and electronic structure. We found that the energy barriers of norcarane hydroxylation by cationic oxoMn(V) porphyrin complexes are lower than those by neutral oxoMn(V) porphyrin complexes. This indicates that cationic oxoMn(V) porphyrin complexes enhance norcarane hydroxylation compared with neutral oxoMn(V) porphyrin complexes. According to electronic structure analysis, in the C─H activation step, electron transfer occurs through initial interaction between the σCH and rich-oxygen π(Mn═O) orbitals to form real donor orbitals, followed by transfer to the acceptor π*(Mn═O) orbitals. Moreover, single electron shifts from norcarane (CH) to Mn atom during C─H activation. The positive charge of the cationic complex stabilizes the acceptor orbital more than the donor orbital, reducing the energy gap between these orbitals, thus lowering the reaction barrier.
Collapse
Affiliation(s)
- Zhifeng Ma
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Japan
| | - Naoki Nakatani
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Japan
| | - Masahiko Hada
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Japan
| |
Collapse
|
11
|
Fodor MA, Szabó P, Lendvay G, Horváth O. Characterization of the UV-Visible absorption spectra of manganese(III) porphyrins with time-dependent density functional theory calculations. Z PHYS CHEM 2021. [DOI: 10.1515/zpch-2020-1787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Abstract
Mn(III) porphyrins display a unique UV–Vis spectrum: compared to the free-base and other metalloporphyrins, a strong red shift of the Soret-band and several extra bands can be observed in their spectra. To understand this behavior, we have recorded the UV–Vis spectra of differently substituted water-soluble Mn(III) porphyrins and conducted extensive theoretical investigations using time-dependent density functional theory. The calculated optical transitions, using the O3LYP functional, agree well with the measured absorption bands. According to the spectral interpretation, the Soret-band involves a mixture of L–L and ligand-to-metal charge transfer excitations, while the Q-bands and the higher-energy bands in the UV region correspond to pure LMCT as well as to ligand to metal-ligand mixed orbital excitations. The impact of the explicit and implicit water solvent on the spectral features is also discussed.
Collapse
Affiliation(s)
- Melinda A. Fodor
- Center for Natural Sciences, Department of General and Inorganic Chemistry , University of Pannonia , Egyetem u. 10 , H-8200 , Veszprém , Hungary
| | - Péter Szabó
- Department of Physics and Material Science , University of Luxembourg , L-1511 , Luxembourg City , Luxembourg
| | - György Lendvay
- Center for Natural Sciences, Department of General and Inorganic Chemistry , University of Pannonia , Egyetem u. 10 , H-8200 , Veszprém , Hungary
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences , Magyar tudósok körútja 2 , H-1117 , Budapest , Hungary
| | - Ottó Horváth
- Center for Natural Sciences, Department of General and Inorganic Chemistry , University of Pannonia , Egyetem u. 10 , H-8200 , Veszprém , Hungary
| |
Collapse
|
12
|
Hakey BM, Leary DC, Rodriguez JG, Martinez JC, Vaughan NB, Darmon JM, Akhmedov NG, Petersen JL, Dolinar BS, Milsmann C. Effects of 2,6‐Dichlorophenyl Substituents on the Coordination Chemistry of Pyridine Dipyrrolide Iron Complexes. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Brett M. Hakey
- C. Eugene Bennett Department of Chemistry West Virginia University Morgantown, West Virginia USA
| | - Dylan C. Leary
- C. Eugene Bennett Department of Chemistry West Virginia University Morgantown, West Virginia USA
| | - Jose G. Rodriguez
- C. Eugene Bennett Department of Chemistry West Virginia University Morgantown, West Virginia USA
| | - Jordan C. Martinez
- C. Eugene Bennett Department of Chemistry West Virginia University Morgantown, West Virginia USA
| | - Nicholas B. Vaughan
- C. Eugene Bennett Department of Chemistry West Virginia University Morgantown, West Virginia USA
| | | | - Novruz G. Akhmedov
- C. Eugene Bennett Department of Chemistry West Virginia University Morgantown, West Virginia USA
| | - Jeffrey L. Petersen
- C. Eugene Bennett Department of Chemistry West Virginia University Morgantown, West Virginia USA
| | - Brian S. Dolinar
- C. Eugene Bennett Department of Chemistry West Virginia University Morgantown, West Virginia USA
| | - Carsten Milsmann
- C. Eugene Bennett Department of Chemistry West Virginia University Morgantown, West Virginia USA
| |
Collapse
|
13
|
Bím D, Alexandrova AN. Local Electric Fields as a Natural Switch of Heme-Iron Protein Reactivity. ACS Catal 2021; 11:6534-6546. [PMID: 34413991 DOI: 10.1021/acscatal.1c00687] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Heme-iron oxidoreductases operating through the high-valent FeIVO intermediates perform crucial and complicated transformations, such as oxidations of unreactive saturated hydrocarbons. These enzymes share the same Fe coordination, only differing by the axial ligation, e.g., Cys in P450 oxygenases, Tyr in catalases, and His in peroxidases. By examining ~200 heme-iron proteins, we show that the protein hosts exert highly specific intramolecular electric fields on the active sites, and there is a strong correlation between the direction and magnitude of this field and the protein function. In all heme proteins, the field is preferentially aligned with the Fe-O bond ( Fz ). The Cys-ligated P450 oxygenases have the highest average Fz of 28.5 MV cm-1, i.e., most enhancing the oxyl-radical character of the oxo group, and consistent with the ability of these proteins to activate strong C-H bonds. In contrast, in Tyr-ligated proteins, the average Fz is only 3.0 MV cm-1, apparently suppressing single-electron off-pathway oxidations, and in His-ligated proteins, Fz is -8.7 MV cm-1. The operational field range is given by the trade-off between the low reactivity of the FeIVO Compound I at the more negative Fz , and the low selectivity at the more positive Fz . Consequently, a heme-iron site placed in the field characteristic of another heme-iron protein class loses its canonical function, and gains an adverse one. Thus, electric fields produced by the protein scaffolds, together with the nature of the axial ligand, control all heme-iron chemistry.
Collapse
Affiliation(s)
- Daniel Bím
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Anastassia N. Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United States
| |
Collapse
|
14
|
Ottenbacher RV, Bryliakova AA, Shashkov MV, Talsi EP, Bryliakov KP. To Rebound or...Rebound? Evidence for the “Alternative Rebound” Mechanism in C–H Oxidations by the Systems Nonheme Mn Complex/H 2O 2/Carboxylic Acid. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00811] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Roman V. Ottenbacher
- Novosibirsk State University, Pirogova 1, Novosibirsk 630090, Russian Federation
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russian Federation
| | - Anna A. Bryliakova
- Novosibirsk State University, Pirogova 1, Novosibirsk 630090, Russian Federation
| | - Mikhail V. Shashkov
- Novosibirsk State University, Pirogova 1, Novosibirsk 630090, Russian Federation
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russian Federation
| | - Evgenii P. Talsi
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russian Federation
| | - Konstantin P. Bryliakov
- Novosibirsk State University, Pirogova 1, Novosibirsk 630090, Russian Federation
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russian Federation
| |
Collapse
|
15
|
Khokhlov D, Belov A. Ab Initio Study of Low-Lying Excited States of Carotenoid-Derived Polyenes. J Phys Chem A 2020; 124:5790-5803. [PMID: 32573233 DOI: 10.1021/acs.jpca.0c01678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Knowledge about excited states of carotenoids is essential for understanding photophysical processes underlying photosynthesis. However, due to the presence of a large number of optically dark states, experimental study of the excited-state manifold is limited to a significant extent. In this paper, we apply high-level ab initio quantum chemical methods to study the low-lying excited states of polyenes containing from 8 to 13 conjugated double bonds, which serve as a model for natural carotenoids. Vertical and adiabatic excitation energies from the ground 1Ag- state to the excited 2Ag-, 1Bu+, and 1Bu- states were evaluated by means of density matrix renormalization group (DMRG) with NEVPT2 perturbative correction. The energies of all excited states are highly sensitive to nuclear geometry, especially the 2Ag- state. Thus, the 2Ag- and 1Bu+ states interchange their relative positions upon geometry relaxation, while the vertical excitation energy to the 2Ag- state is rather high. At the same time, the 1Bu- state energy is shown to be higher than other studied excited states at any geometry. With relaxed geometries of the excited states, absorption and transient absorption spectra were calculated within the Franck-Condon approximation bridging the gap between experimental spectroscopic data and computational results.
Collapse
Affiliation(s)
- Daniil Khokhlov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Aleksandr Belov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
16
|
Ricciarelli D, Belpassi L, Harvey JN, Belanzoni P. Spin-Forbidden Reactivity of Transition Metal Oxo Species: Exploring the Potential Energy Surfaces. Chemistry 2020; 26:3080-3089. [PMID: 31846105 DOI: 10.1002/chem.201904314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Indexed: 11/06/2022]
Abstract
Spin-forbidden reactions are frequently encountered when transition metal oxo species are involved, particularly in oxygen transfer reactivity. The computational study of such reactions is challenging, because reactants and products are located on different spin potential energy surfaces (PESs). One possible approach to describe these reactions is the so-called minimum energy crossing point (MECP) between the diabatic reactants and products PESs. Alternatively, inclusion of spin-orbit coupling (SOC) effects allows to locate a saddle point on a single adiabatic PES (TS SOC). The TS SOC approach is rarely applied because of its high computational cost. Recently evidence for a TS SOC impact on significantly lowering the activation barrier in dioxygen addition to a carbene-gold(I)-hydride complex reaction (Chem. Sci. 2016, 7, 7034-7039) or even on predicting a qualitatively different reaction mechanism in mercury methylation by cobalt corrinoid (Angew. Chem. Int. Ed. 2016, 55, 11503-11506) has been put forward. Using MECP and TS SOC approaches a systematic analysis is provided here of three prototypical transition metal oxo spin-forbidden processes to investigate their implications on reactivity. Cycloaddition of ethylene to chromyl chloride (CrO2 Cl2 +C2 H4 ), iron oxide cation insertion into the hydrogen molecule (FeO+ +H2 ) and H-abstraction from toluene by a MnV -oxo-porphyrin cation (MnOP(H2 O)+ +C6 H5 CH3 ) are case studies. For all these processes the MECP and TS SOC results are compared, which show that the spin-forbidden reactivity of transition metal oxo species can be safely described by a MECP approach, at least for the first-row transition metals investigated here, where the spin-orbit coupling is relatively weak. However, for the Mn-oxo reactivity, the MECP and TS SOC have been found to be crucial for a correct description of the reaction mechanism. In particular, the TS SOC approach allows to straightforwardly explore detailed features of the adiabatic potential energy surface which in principle could affect the overall reaction rate in cases where the involved diabatic PESs are tricky.
Collapse
Affiliation(s)
- Damiano Ricciarelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123, Perugia, Italy
| | - Leonardo Belpassi
- CNR Institute of Chemical Science and Technologies "Giulio Natta" (CNR-SCITEC), via Elce di Sotto 8, 06123, Perugia, Italy.,Consortium for Computational Molecular and Materials Sciences (CMS)2, via Elce di Sotto 8, 06123, Perugia, Italy
| | - Jeremy N Harvey
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Paola Belanzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123, Perugia, Italy.,CNR Institute of Chemical Science and Technologies "Giulio Natta" (CNR-SCITEC), via Elce di Sotto 8, 06123, Perugia, Italy.,Consortium for Computational Molecular and Materials Sciences (CMS)2, via Elce di Sotto 8, 06123, Perugia, Italy
| |
Collapse
|
17
|
Jeong W, Stoneburner SJ, King D, Li R, Walker A, Lindh R, Gagliardi L. Automation of Active Space Selection for Multireference Methods via Machine Learning on Chemical Bond Dissociation. J Chem Theory Comput 2020; 16:2389-2399. [DOI: 10.1021/acs.jctc.9b01297] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- WooSeok Jeong
- Department of Chemistry, Nanoporous Materials Genome Center, Minnesota Supercomputing Institute, and Chemical Theory Center, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Samuel J. Stoneburner
- Department of Chemistry, Nanoporous Materials Genome Center, Minnesota Supercomputing Institute, and Chemical Theory Center, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Daniel King
- Department of Chemistry, Nanoporous Materials Genome Center, Minnesota Supercomputing Institute, and Chemical Theory Center, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Ruye Li
- Department of Chemistry, Nanoporous Materials Genome Center, Minnesota Supercomputing Institute, and Chemical Theory Center, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Andrew Walker
- Department of Computer Science and Engineering, University of Minnesota, 200 Union Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Roland Lindh
- Department of Chemistry—BMC, and Uppsala Center for Computational Chemistry—UC3, Uppsala University, 751 23 Uppsala, Sweden
| | - Laura Gagliardi
- Department of Chemistry, Nanoporous Materials Genome Center, Minnesota Supercomputing Institute, and Chemical Theory Center, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
18
|
Li XX, Guo M, Qiu B, Cho KB, Sun W, Nam W. High-Spin Mn(V)-Oxo Intermediate in Nonheme Manganese Complex-Catalyzed Alkane Hydroxylation Reaction: Experimental and Theoretical Approach. Inorg Chem 2019; 58:14842-14852. [PMID: 31621303 DOI: 10.1021/acs.inorgchem.9b02543] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mononuclear nonheme manganese complexes are highly efficient catalysts in the catalytic oxidation of hydrocarbons by hydrogen peroxide in the presence of carboxylic acids. Although high-valent Mn(V)-oxo complexes have been proposed as the active oxidants that afford high regio-, stereo-, and enantioselectivities in the catalytic oxidation reactions, the importance of the spin state (e.g., S = 0 or 1) of the proposed Mn(V)-oxo species is an area that requires further study. In the present study, we have theoretically demonstrated that a mononuclear nonheme Mn(V)-oxo species with an S = 1 ground spin state is the active oxidant that effects the stereo- and enantioselective alkane hydroxylation reaction; it is noted that synthetic octahedral Mn(V)-oxo complexes, characterized spectroscopically and/or structurally, possess an S = 0 spin state and are sluggish oxidants. In an experimental approach, we have investigated the catalytic hydroxylation of alkanes by a mononuclear nonheme Mn(II) complex, [(S-PMB)MnII]2+, and H2O2 in the presence of carboxylic acids; alcohol is the major product with high stereo- and enantioselectivities. A synthetic Mn(IV)-oxo complex, [(S-PMB)MnIV(O)]2+, is inactive in C-H bond activation reactions, ruling out the Mn(IV)-oxo species as an active oxidant. DFT calculations have shown that a Mn(V)-oxo species with an S = 1 spin state, [(S-PMB)MnV(O)(OAc)]2+, is highly reactive and capable of oxygenating the C-H bond via oxygen rebound mechanism; we propose that the triplet spin state of the Mn(V)-oxo species results from the consequence of breaking the equatorial symmetry due to the binding of an equatorial oxygen from an acetate ligand. Thus, the present study reports that, different from the previously reported S = 0 Mn(V)-oxo species, Mn(V)-oxo species with a triplet ground spin state are highly reactive oxidants that are responsible for the regio-, stereo-, and enantioselectivities in the catalytic hydroxylation of alkanes by mononuclear nonheme manganese complexes and terminal oxidants.
Collapse
Affiliation(s)
- Xiao-Xi Li
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | - Mian Guo
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | - Bin Qiu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, and Suzhou Research Institute of LICP , Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences , Lanzhou 730000 , China
| | - Kyung-Bin Cho
- Department of Chemistry , Jeonbuk National University , Jeonju 54896 , Korea
| | - Wei Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, and Suzhou Research Institute of LICP , Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences , Lanzhou 730000 , China
| | - Wonwoo Nam
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, and Suzhou Research Institute of LICP , Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences , Lanzhou 730000 , China
| |
Collapse
|
19
|
Rice DB, Massie AA, Jackson TA. Experimental and Multireference ab Initio Investigations of Hydrogen-Atom-Transfer Reactivity of a Mononuclear MnIV-oxo Complex. Inorg Chem 2019; 58:13902-13916. [DOI: 10.1021/acs.inorgchem.9b01761] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Derek B. Rice
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Allyssa A. Massie
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Timothy A. Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
20
|
Gaggioli CA, Stoneburner SJ, Cramer CJ, Gagliardi L. Beyond Density Functional Theory: The Multiconfigurational Approach To Model Heterogeneous Catalysis. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01775] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Carlo Alberto Gaggioli
- Department of Chemistry, Chemical Theory Center and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Samuel J. Stoneburner
- Department of Chemistry, Chemical Theory Center and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Christopher J. Cramer
- Department of Chemistry, Chemical Theory Center and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
21
|
Nandy A, Zhu J, Janet JP, Duan C, Getman RB, Kulik HJ. Machine Learning Accelerates the Discovery of Design Rules and Exceptions in Stable Metal–Oxo Intermediate Formation. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02165] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Jiazhou Zhu
- Department of Chemical & Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | | | | | - Rachel B. Getman
- Department of Chemical & Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | | |
Collapse
|
22
|
Computational Assessment of MLCT versus MC Stabilities in First‐to‐Third‐Row d
6
Pseudo‐Octahedral Transition Metal Complexes. J Comput Chem 2019; 40:2377-2390. [DOI: 10.1002/jcc.26014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 11/07/2022]
|
23
|
Ricciarelli D, Phung QM, Belpassi L, Harvey JN, Belanzoni P. Understanding the Reactivity of Mn-Oxo Porphyrins for Substrate Hydroxylation: Theoretical Predictions and Experimental Evidence Reconciled. Inorg Chem 2019; 58:7345-7356. [PMID: 31117625 DOI: 10.1021/acs.inorgchem.9b00476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Mn-oxo porphyrin (MnOP) mechanism for substrate hydroxylation is computationally studied with the aim to better understand reactivity in these systems. Theoretical studies suggest Mn(V)OP species to be very reactive intermediates with thermally accessible reaction barriers represented by low-spin/high-spin-crossover occurring in the Mn(V)OP oxidant, and kinetics for selected Mn(V)OP species indeed find high reactivity. On the other hand, MnOP complexes lead to modest yields in hydroxylation reactions of several different substrates, implying low rate constants and high reaction barriers. The resolution of this inconsistency is very important to understand the reactivity of Mn-oxo porphyrins and to improve the catalytic conditions. In this work we use the toluene hydroxylation by the Mn(V)OP(H2O)+ complex as a case study to gain deep insight into the reaction mechanism. Minimum energy crossing point (MECP) results on the H-abstraction process from toluene indicate a first crossover from a singlet to a triplet spin state of the Mn(V)OP(H2O)+ species with a thermally accessible barrier, followed by a very facile H-abstraction by the triplet complex. Issues concerning (i) the validation of the level of the density functional theory employed (BP86) to describe the singlet-triplet energy gap in the Mn(V)OP(H2O)+ system versus highly accurate DMRG-CASPT2/CC calculations, and (ii) the influence of the axial ligand (X = none, Cl-, CH3CN, OH-, and O2-) on MnOP reactivity, which models the different experimental conditions, are addressed. The ligand trans influence mainly controls the reactivity through the singlet-triplet energy gap modulation, with the porphyrin ruffling distortion also finely tuning it. Finally, a stepwise model for the H-abstraction process is proposed which allows a direct comparison between the calculated and experimentally measured Gibbs free activation energy barriers ( Zhang et al. J. Am. Chem. Soc. 2005 , 127 , 6573 - 6582 ). The low yields in catalysis are shown not to be due to low reactivity of Mn(V).
Collapse
Affiliation(s)
| | - Quan Manh Phung
- Department of Chemistry , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium.,Institute of Transformative Bio-Molecules (WPI-ITbM) , Nagoya University , Chikusa , Nagoya 464-8602 , Japan
| | - Leonardo Belpassi
- Consortium for Computational Molecular and Materials Sciences (CMS)2 , via Elce di Sotto 8 , 06123 Perugia , Italy
| | - Jeremy N Harvey
- Department of Chemistry , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Paola Belanzoni
- Consortium for Computational Molecular and Materials Sciences (CMS)2 , via Elce di Sotto 8 , 06123 Perugia , Italy
| |
Collapse
|
24
|
Phung QM, Pierloot K. Low-Lying Electromeric States in Chloro-Ligated Iron(IV)-Oxo Porphyrin as a Model for Compound I, Studied with Second-Order Perturbation Theory Based on Density Matrix Renormalization Group. J Chem Theory Comput 2019; 15:3033-3043. [PMID: 30995039 DOI: 10.1021/acs.jctc.9b00166] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Employing second-order perturbation theory based on the density matrix renormalization group (DMRG-CASPT2), this work aims at providing a quantitative description of the spin state energetics of a chloro-ligated iron(IV)-oxo porphyrin as a model for the cytochromes P450 active species, also known as compound I (Cpd I). We explored DMRG-CASPT2 to its full extent with an extensive active space (up to 31 active orbitals) as well as a large number of renormalized states m (up to 10000). Different flavors of DMRG-CASPT2, using either the costly exact 4-particle reduced density matrix (4-RDM) or the cheaper cumulant approximated 4-RDM (cu(4)), were analyzed. All flavors essentially converge to similar relative energies between different spin states. Including a correction for the protein environment, we found a quartet FeIVO ground state and, more importantly, a thermally accessible doublet FeVO excited state that might directly contribute to the reactivity of this iron-oxo species. Our results also showed that cheaper approaches, such as CASPT2 based on a smaller active space or the cumulant approximation DMRG-cu(4)-CASPT2, are capable of accurately describing the spin state energetics of this species.
Collapse
Affiliation(s)
- Quan Manh Phung
- Department of Chemistry , KU Leuven , Celestijnenlaan 200F , Leuven 3001 , Belgium.,Institute of Transformative Bio-Molecules (WPI-ITbM) , Nagoya University , Chikusa, Nagoya 464-8602 , Japan
| | - Kristine Pierloot
- Department of Chemistry , KU Leuven , Celestijnenlaan 200F , Leuven 3001 , Belgium
| |
Collapse
|
25
|
Matias TA, Rein FN, Rocha RC, Formiga ALB, Toma HE, Araki K. Effects of a strong π-accepting ancillary ligand on the water oxidation activity of weakly coupled binuclear ruthenium catalysts. Dalton Trans 2019; 48:3009-3017. [PMID: 30747931 DOI: 10.1039/c8dt04963g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Significant differences were found in the proton-coupled redox chemistry and catalytic behavior of the binuclear [{Ru(H2O)(bpz)}2(tpy2ph)](PF6)4 complex [bpz = 2,2'-bipyrazine; tpy2ph = 1,3-bis(4'-2,2':6',2''-terpyridin-4-yl)benzene] as compared with the structurally analogous derivative with 2,2'-bipyridine (bpy) instead of bpz. The differences were assigned to the stronger π-accepting character of bpz relative to bpy as the ancillary ligand. The expectation of a positive shift for the Ru-centered redox potentials was confirmed for the lower oxidation state species, but that trend was reversed in the formation of the high-valence catalytic active species as shown by a negative shift of 0.14 V for the potential of the [RuIV/V[double bond, length as m-dash]O] process. Moreover, DFT calculations indicated a significant decrease of about 15% on the spin density and oxyl character of the [RuV[double bond, length as m-dash]O]3+ fragment. The significantly lower kcat(O2) for the bpz system was attributed to these combined electronic effects.
Collapse
Affiliation(s)
- Tiago A Matias
- Department of Chemistry, Institute of Chemistry, University of São Paulo, Av. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil.
| | | | | | | | | | | |
Collapse
|
26
|
Roemelt M, Pantazis DA. Multireference Approaches to Spin‐State Energetics of Transition Metal Complexes Utilizing the Density Matrix Renormalization Group. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201800201] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Michael Roemelt
- Lehrstuhl für Theoretische ChemieRuhr‐Universität Bochum 44780 Bochum Germany
- Max‐Planck‐Institut für Kohlenforschung Kaiser‐Wilhelm‐Platz 1 45470 Mülheim an der Ruhr Germany
| | - Dimitrios A. Pantazis
- Max‐Planck‐Institut für Kohlenforschung Kaiser‐Wilhelm‐Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
27
|
Yu Y, Luo G, Yang J, Luo Y. Cobalt-catalysed unactivated C(sp 3)–H amination: two-state reactivity and multi-reference electronic character. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00239a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A remarkable two-state reactivity scenario and an unusual multi-reference character have been computationally found in Co-catalysed C(sp3)–H amination. In addition, the investigation on the additive, aminating reagent, metal center, and auxiliary ligand provides implications for development of new catalytic C–H functionalization systems.
Collapse
Affiliation(s)
- Yang Yu
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Gen Luo
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Jimin Yang
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Yi Luo
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| |
Collapse
|
28
|
Cheng J, Chen Q, Leng X, Ouyang Z, Wang Z, Ye S, Deng L. The Stabilization of Three-Coordinate Formal Mn(0) Complex with NHC and Alkene Ligation. Chem 2018. [DOI: 10.1016/j.chempr.2018.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Singh SK, Atanasov M, Neese F. Challenges in Multireference Perturbation Theory for the Calculations of the g-Tensor of First-Row Transition-Metal Complexes. J Chem Theory Comput 2018; 14:4662-4677. [DOI: 10.1021/acs.jctc.8b00513] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Saurabh Kumar Singh
- Department of Molecular Theory and Spectroscopy, Max-Planck Institute for Kohlenforschung, Kaiser Wilhelm-Platz-1, Mülheim an der Ruhr, Germany
| | - Mihail Atanasov
- Department of Molecular Theory and Spectroscopy, Max-Planck Institute for Kohlenforschung, Kaiser Wilhelm-Platz-1, Mülheim an der Ruhr, Germany
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Akad. Georgi Bontchev Street 11, 1113 Sofia, Bulgaria
| | - Frank Neese
- Department of Molecular Theory and Spectroscopy, Max-Planck Institute for Kohlenforschung, Kaiser Wilhelm-Platz-1, Mülheim an der Ruhr, Germany
| |
Collapse
|
30
|
Mondal B, Neese F, Bill E, Ye S. Electronic Structure Contributions of Non-Heme Oxo-Iron(V) Complexes to the Reactivity. J Am Chem Soc 2018; 140:9531-9544. [PMID: 29984578 DOI: 10.1021/jacs.8b04275] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxo-iron(V) species have been implicated in the catalytic cycle of the Rieske dioxygenase. Their synthetic analog, [FeV(O)(OC(O)CH3)(PyNMe3)]2+ (1, PyNMe3 = 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-3,6,9-trimethyl), derived from the O-O bond cleavage of its acetylperoxo iron(III) precursor, has been shown experimentally to perform regio- and stereoselective C-H and C═C bond functionalization. However, its structure-activity relation is poorly understood. Herein we present a detailed electronic-structure and spectroscopic analysis of complex 1 along with well-characterized oxo-iron(V) complexes, [FeV(O)(TAML)]- (2, TAML = tetraamido macrocyclic ligand), [FeV(O)(TMC)(NC(O)CH3)]+ (4, TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), and [FeV(O)(TMC)(NC(OH)CH3)]2+ (4-H+), using wave function-based multireference complete active-space self-consistent field calculations. Our results reveal that the x/ y anisotropy of the 57Fe A-matrix is not a reliable spectroscopic marker to identify oxo-iron(V) species and that the drastically different A x and A y values determined for complexes 1, 4, and 4-H+ have distinctive origins compared to complex 2, a genuine oxo-iron(V) species. Complex 1, in fact, has a dominant character of [FeIV(O···OC(O)CH3)2-•]2+, i.e., an SFe = 1 iron(IV) center antiferromagnetically coupled to an O-O σ* radical, where the O-O bond has not been completely broken. Complex 4 is best described as a triplet ferryl unit that strongly interacts with the trans acetylimidyl radical in an antiferromagnetic fashion, [FeIV(O)(•N═C(O-)CH3)]+. Complex 4-H+ features a similar electronic structure, [FeIV(O)(•N═C(OH)CH3)]2+. Owing to the remaining approximate half σ-bond in the O-O moiety, complex 1 can arrange two electron-accepting orbitals (α σ*O-O and β Fe-d xz) in such a way that both orbitals can simultaneously interact with the doubly occupied electron-donating orbitals (σC-H or πC-C). Hence, complex 1 can promote a concerted yet asynchronous two-electron oxidation of the C-H and C═C bonds, which nicely explains the stereospecificity observed for complex 1 and the related species.
Collapse
Affiliation(s)
- Bhaskar Mondal
- Max-Planck-Institut für Chemische Energiekonversion , D-45470 Mülheim an der Ruhr , Germany
| | - Frank Neese
- Max-Planck-Institut für Chemische Energiekonversion , D-45470 Mülheim an der Ruhr , Germany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion , D-45470 Mülheim an der Ruhr , Germany
| | - Shengfa Ye
- Max-Planck-Institut für Chemische Energiekonversion , D-45470 Mülheim an der Ruhr , Germany
| |
Collapse
|
31
|
Ashley DC, Jakubikova E. Ray-Dutt and Bailar Twists in Fe(II)-Tris(2,2′-bipyridine): Spin States, Sterics, and Fe–N Bond Strengths. Inorg Chem 2018; 57:5585-5596. [DOI: 10.1021/acs.inorgchem.8b00560] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Daniel C. Ashley
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Elena Jakubikova
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
32
|
Schilling M, Luber S. Computational Modeling of Cobalt-Based Water Oxidation: Current Status and Future Challenges. Front Chem 2018; 6:100. [PMID: 29721491 PMCID: PMC5915471 DOI: 10.3389/fchem.2018.00100] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022] Open
Abstract
A lot of effort is nowadays put into the development of novel water oxidation catalysts. In this context, mechanistic studies are crucial in order to elucidate the reaction mechanisms governing this complex process, new design paradigms and strategies how to improve the stability and efficiency of those catalysts. This review is focused on recent theoretical mechanistic studies in the field of homogeneous cobalt-based water oxidation catalysts. In the first part, computational methodologies and protocols are summarized and evaluated on the basis of their applicability toward real catalytic or smaller model systems, whereby special emphasis is laid on the choice of an appropriate model system. In the second part, an overview of mechanistic studies is presented, from which conceptual guidelines are drawn on how to approach novel studies of catalysts and how to further develop the field of computational modeling of water oxidation reactions.
Collapse
Affiliation(s)
- Mauro Schilling
- Department of Chemistry, University of Zürich, Zurich, Switzerland
| | - Sandra Luber
- Department of Chemistry, University of Zürich, Zurich, Switzerland
| |
Collapse
|
33
|
Phung QM, Domingo A, Pierloot K. Dinuclear Iron(II) Spin-Crossover Compounds: A Theoretical Study. Chemistry 2017; 24:5183-5190. [DOI: 10.1002/chem.201704441] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Quan Manh Phung
- Department of Chemistry; KU Leuven; Celestijnenlaan 200F Leuven 3001 Belgium
| | - Alex Domingo
- Department of Chemistry; KU Leuven; Celestijnenlaan 200F Leuven 3001 Belgium
| | - Kristine Pierloot
- Department of Chemistry; KU Leuven; Celestijnenlaan 200F Leuven 3001 Belgium
| |
Collapse
|
34
|
Baglia RA, Zaragoza JPT, Goldberg DP. Biomimetic Reactivity of Oxygen-Derived Manganese and Iron Porphyrinoid Complexes. Chem Rev 2017; 117:13320-13352. [PMID: 28991451 PMCID: PMC6058703 DOI: 10.1021/acs.chemrev.7b00180] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Heme proteins utilize the heme cofactor, an iron porphyrin, to perform a diverse range of reactions including dioxygen binding and transport, electron transfer, and oxidation/oxygenations. These reactions share several key metalloporphyrin intermediates, typically derived from dioxygen and its congeners such as hydrogen peroxide. These species are composed of metal-dioxygen, metal-superoxo, metal-peroxo, and metal-oxo adducts. A wide variety of synthetic metalloporphyrinoid complexes have been synthesized to generate and stabilize these intermediates. These complexes have been studied to determine the spectroscopic features, structures, and reactivities of such species in controlled and well-defined environments. In this Review, we summarize recent findings on the reactivity of these species with common porphyrinoid scaffolds employed for biomimetic studies. The proposed mechanisms of action are emphasized. This Review is organized by structural type of metal-oxygen intermediate and broken into subsections based on the metal (manganese and iron) and porphyrinoid ligand (porphyrin, corrole, and corrolazine).
Collapse
Affiliation(s)
- Regina A. Baglia
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Jan Paulo T. Zaragoza
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David P. Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
35
|
Kupper C, Mondal B, Serrano-Plana J, Klawitter I, Neese F, Costas M, Ye S, Meyer F. Nonclassical Single-State Reactivity of an Oxo-Iron(IV) Complex Confined to Triplet Pathways. J Am Chem Soc 2017; 139:8939-8949. [PMID: 28557448 DOI: 10.1021/jacs.7b03255] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
C-H bond activation mediated by oxo-iron (IV) species represents the key step of many heme and nonheme O2-activating enzymes. Of crucial interest is the effect of spin state of the FeIV(O) unit. Here we report the C-H activation kinetics and corresponding theoretical investigations of an exclusive tetracarbene ligated oxo-iron(IV) complex, [LNHCFeIV(O)(MeCN)]2+ (1). Kinetic traces using substrates with bond dissociation energies (BDEs) up to 80 kcal mol-1 show pseudo-first-order behavior and large but temperature-dependent kinetic isotope effects (KIE 32 at -40 °C). When compared with a topologically related oxo-iron(IV) complex bearing an equatorial N-donor ligand, [LTMCFeIV(O) (MeCN)]2+ (A), the tetracarbene complex 1 is significantly more reactive with second order rate constants k'2 that are 2-3 orders of magnitude higher. UV-vis experiments in tandem with cryospray mass spectrometry evidence that the reaction occurs via formation of a hydroxo-iron(III) complex (4) after the initial H atom transfer (HAT). An extensive computational study using a wave function based multireference approach, viz. complete active space self-consistent field (CASSCF) followed by N-electron valence perturbation theory up to second order (NEVPT2), provided insight into the HAT trajectories of 1 and A. Calculated free energy barriers for 1 reasonably agree with experimental values. Because the strongly donating equatorial tetracarbene pushes the Fe-dx2-y2 orbital above dz2, 1 features a dramatically large quintet-triplet gap of ∼18 kcal/mol compared to ∼2-3 kcal/mol computed for A. Consequently, the HAT process performed by 1 occurs on the triplet surface only, in contrast to complex A reported to feature two-state-reactivity with contributions from both triplet and quintet states. Despite this, the reactive FeIV(O) units in 1 and A undergo the same electronic-structure changes during HAT. Thus, the unique complex 1 represents a pure "triplet-only" ferryl model.
Collapse
Affiliation(s)
- Claudia Kupper
- Universität Göttingen , Institut für Anorganische Chemie, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Bhaskar Mondal
- Max-Planck Institut für Chemische Energiekonversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Joan Serrano-Plana
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Quimica, Universitat de Girona , Campus Montilivi, E17071 Girona, Catalonia, Spain
| | - Iris Klawitter
- Universität Göttingen , Institut für Anorganische Chemie, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Frank Neese
- Max-Planck Institut für Chemische Energiekonversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Quimica, Universitat de Girona , Campus Montilivi, E17071 Girona, Catalonia, Spain
| | - Shengfa Ye
- Max-Planck Institut für Chemische Energiekonversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Franc Meyer
- Universität Göttingen , Institut für Anorganische Chemie, Tammannstrasse 4, 37077 Göttingen, Germany
| |
Collapse
|
36
|
Ben Amor N, Soupart A, Heitz MC. Methodological CASPT2 study of the valence excited states of an iron-porphyrin complex. J Mol Model 2017; 23:53. [DOI: 10.1007/s00894-017-3226-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/12/2017] [Indexed: 10/20/2022]
|
37
|
Ashley DC, Baik MH. The Electronic Structure of [Mn(V)═O]: What is the Connection between Oxyl Radical Character, Physical Oxidation State, and Reactivity? ACS Catal 2016. [DOI: 10.1021/acscatal.6b01793] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel Charles Ashley
- Department
of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Mu-Hyun Baik
- Center
for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department
of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
38
|
Phung QM, Wouters S, Pierloot K. Cumulant Approximated Second-Order Perturbation Theory Based on the Density Matrix Renormalization Group for Transition Metal Complexes: A Benchmark Study. J Chem Theory Comput 2016; 12:4352-61. [DOI: 10.1021/acs.jctc.6b00714] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Quan Manh Phung
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Sebastian Wouters
- Center
for Molecular Modelling, Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium
| | - Kristine Pierloot
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
39
|
Theoretical study of the interaction between molecular oxygen and tetraaza macrocyclic manganese complexes. J Mol Model 2016; 22:217. [DOI: 10.1007/s00894-016-3097-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/08/2016] [Indexed: 11/26/2022]
|