1
|
Bodnar AK, Szewczyk SM, Sun Y, Chen Y, Huang AX, Newhouse TR. Comprehensive Mechanistic Analysis of Palladium- and Nickel-Catalyzed α,β-Dehydrogenation of Carbonyls via Organozinc Intermediates. J Org Chem 2024; 89:3123-3132. [PMID: 38377547 PMCID: PMC11000628 DOI: 10.1021/acs.joc.3c02572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Introducing degrees of unsaturation into small molecules is a central transformation in organic synthesis. A strategically useful category of this reaction type is the conversion of alkanes into alkenes for substrates with an adjacent electron-withdrawing group. An efficient strategy for this conversion has been deprotonation to form a stabilized organozinc intermediate that can be subjected to α,β-dehydrogenation through palladium or nickel catalysis. This general reactivity blueprint presents a window to uncover and understand the reactivity of Pd- and Ni-enolates. Within this context, it was determined that β-hydride elimination is slow and proceeds via concerted syn-elimination. One interesting finding is that β-hydride elimination can be preferred to a greater extent than C-C bond formation for Ni, more so than with Pd, which defies the generally assumed trends that β-hydride elimination is more facile with Pd than Ni. The discussion of these findings is informed by KIE experiments, DFT calculations, stoichiometric reactions, and rate studies. Additionally, this report details an in-depth analysis of a methodological manifold for practical dehydrogenation and should enable its application to challenges in organic synthesis.
Collapse
Affiliation(s)
- Alexandra K Bodnar
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Suzanne M Szewczyk
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Yang Sun
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Yifeng Chen
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Anson X Huang
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Timothy R Newhouse
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
2
|
Kayser AK, Wolczanski PT, Cundari TR, MacMillan SN, Bollmeyer MM. Benzimidazole-diamide (bida) Pincer Chromium Complexes: Structures and Reactivity. Inorg Chem 2023; 62:15450-15464. [PMID: 37707794 DOI: 10.1021/acs.inorgchem.3c01771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Serendipitous discovery of bida (i.e., N1-Ar-N2-((1-Ar-1-benzo[d]imidazol-2-yl)methyl)benzene-1,2-diamide; Ar = 2,6-iPr-C6H3), a potentially redox noninnocent, hemilabile pincer ligand with a methylene group that may facilitate proton/H atom reactivity, prompted its investigation. Chromium was chosen for study due to its multiple stable oxidation states. Disodium salt (bida)Na2(THF)n was prepared by thermal rearrangement of (dadi)Na2(THF)4 (i.e., (N,N'-di-2-(2,6-diisopropylphenylamine)phenylglyoxaldiimine)-Na2(THF)4). Salt metathesis of (bida)Na2(THF)n (generated in situ) with CrCl3(THF)3 or Cl3V═NAr (Ar = 2,6-iPr2C6H3) afforded (bida)CrCl(THF) (1-THF) and (bida)ClV═NAr, respectively. Substitutions provided (bida)CrCl(PMe2Ph) (1-PMe2Ph) and (bida)CrR(THF) (2-R, where R = Me, CH2CMe2Ph (Nph)). Oxidation of 1-THF with ArN3 (Ar = 2,6-iPr2C6H3) or AdN3 (Ad = 1-adamantyl) generated (bida)ClCr═NAr (3═NAr) and (bida)ClCr═NAd (3═NAd) and subsequent alkylation converted these to (bida)R'Cr═NR (R' = Me, R = Ad, Ar, 5═NR; R' = CH2CMe2Ph (Nph), R = Ad, Ar, 6═NR). In contrast, the addition of AdN3 to 2-Nph gave the insertion product (bida)Cr(κ2-N,N-ArN3Nph) (7). Addition of N-chlorosuccinimide to 1-THF produced (bia)CrCl2(THF) (8), where bia is the pincer derived via hydrogen atom loss from bida methylene. A similar HAT afforded (bia)ClCr(CNAr')2 (9, Ar' = 2,6-Me2C6H3) when 3═NAd was exposed to Ar'NC. An empirical equation of charge was applied to each bida species, whose metric parameters are unchanging despite formal oxidation state conversions from Cr(III) to Cr(V). Calculations and Mulliken spin density assessments reveal several situations in which antiferromagnetic (AF) coupling and admixtures of integer ground states (GSs) describe a complicated electronic structure.
Collapse
Affiliation(s)
- Ann K Kayser
- Department of Chemistry and Chemical Biology, Baker Laboratory Cornell University, Ithaca, New York 14853, United States
| | - Peter T Wolczanski
- Department of Chemistry and Chemical Biology, Baker Laboratory Cornell University, Ithaca, New York 14853, United States
| | - Thomas R Cundari
- Department of Chemistry, CASCam University of North Texas Denton, Denton, Texas 76201, United States
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology, Baker Laboratory Cornell University, Ithaca, New York 14853, United States
| | | |
Collapse
|
3
|
Pokhriyal D, Heins SP, Sifri RJ, Gentekos DT, Coleman RE, Wolczanski PT, Cundari TR, Fors BP, Lancaster KM, MacMillan SN. Reversible C-C Bond Formation, Halide Abstraction, and Electromers in Complexes of Iron Containing Redox-Noninnocent Pyridine-imine Ligands. Inorg Chem 2021; 60:18662-18673. [PMID: 34889590 DOI: 10.1021/acs.inorgchem.1c01815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The exploration of pyridine-imine (PI) iron complexes that exhibit redox noninnocence (RNI) led to several interesting discoveries. The reduction of (PI)FeX2 species afforded disproportionation products such as (dmpPI)2FeX (dmp = 2,6-Me2-C6H3, X = Cl, Br; 8-X) and (dippPI)2FeX (dipp = 2,6-iPr2-C6H3, X = Cl, Br; 9-X), which were independently prepared by reductions of (PI)FeX2 in the presence of PI. The crystal structure of 8-Br possessed an asymmetric unit with two distinct electromers, species with different electronic GSs: a low-spin (S = 1/2) configuration derived from an intermediate-spin S = 1 core antiferromagnetically (AF) coupled to an S = 1/2 PI ligand, and an S = 3/2 center resulting from a high-spin S = 2 core AF-coupled to an S = 1/2 PI ligand. Calculations were used to energetically compare plausible ground states. Polydentate diazepane-PI (DHPI) ligands were applied to the synthesis of monomeric dihalides (DHPI)FeX2 (X = Cl, 1-Cl2; X = Br, 1-Br2); reduction generated the highly distorted bioctahedral dimers (DHPA)2Fe2X2 ((3-X)2) containing a C-C bond formed from imine coupling; the monomers 1-X2 could be regenerated upon Ph3CX oxidation. Dihalides and their reduced counterparts were subjected to various alkyl halides and methyl methacrylate (MMA), generating polymers with little to no molecular weight control, indicative of simple radical-initiated polymerization.
Collapse
Affiliation(s)
- Devika Pokhriyal
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York, 14853, United States
| | - Spencer P Heins
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York, 14853, United States
| | - Renee J Sifri
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York, 14853, United States
| | - Dillon T Gentekos
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York, 14853, United States
| | - Rachael E Coleman
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York, 14853, United States
| | - Peter T Wolczanski
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York, 14853, United States
| | - Thomas R Cundari
- Department of Chemistry, CASCaM, University of North Texas, Denton, Texas 76201, United States
| | - Brett P Fors
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York, 14853, United States
| | - Kyle M Lancaster
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York, 14853, United States
| | - Samantha N MacMillan
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York, 14853, United States
| |
Collapse
|
4
|
Heins SP, Zhang B, MacMillan SN, Cundari TR, Wolczanski PT. Oxidative Additions to Ti(IV) in [(dadi)4–]TiIV(THF) Involve Carbon–Carbon Bond Formation and Redox-Noninnocent Behavior. Organometallics 2019. [DOI: 10.1021/acs.organomet.8b00930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Spencer P. Heins
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Bufan Zhang
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Samantha N. MacMillan
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Thomas R. Cundari
- Department of Chemistry, CASCaM, University of North Texas, Denton, Texas 76201, United States
| | - Peter T. Wolczanski
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
5
|
|
6
|
Heins SP, Morris WD, Cundari TR, MacMillan SN, Lobkovsky EB, Livezey NM, Wolczanski PT. Complexes of [(dadi)Ti(L/X)]m That Reveal Redox Non-Innocence and a Stepwise Carbene Insertion into a Carbon–Carbon Bond. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Spencer P. Heins
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Wesley D. Morris
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Thomas R. Cundari
- Department of Chemistry, CASCaM, University of North Texas, Denton, Texas 76201, United States
| | - Samantha N. MacMillan
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Emil B. Lobkovsky
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Nicholas M. Livezey
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Peter T. Wolczanski
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
7
|
Folkertsma E, Benthem SH, Witteman L, van Slagmaat CAMR, Lutz M, Klein Gebbink RJM, Moret ME. Formation of exceptionally weak C-C bonds by metal-templated pinacol coupling. Dalton Trans 2018; 46:6177-6182. [PMID: 28440388 DOI: 10.1039/c7dt01130j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The ability of the bis(imidazolyl)ketone ligand BMdiPhIK (bis(1-methyl-4,5-diphenylimidazolyl)ketone) to function as a redox active ligand has been investigated. The reduction of [M(BMdiPhIK)Cl2] (M = Fe and Zn) complexes resulted in a pinacol-type coupling to form dinuclear complexes featuring very weak and abnormally elongated C-C bonds (1.729(5) and 1.708(3) Å for Fe and Zn, respectively). Oxidation of these complexes using ferrocenium in the presence of Cl- ions regenerated the original [M(BMdiPhIK)Cl2] complexes, showing the reversibility of the coupling process. This makes it a potentially interesting approach for the storage of electrons and application of the BMdiPhIK ligand as a redox active ligand.
Collapse
Affiliation(s)
- E Folkertsma
- Organic Chemistry & Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
8
|
Yuan S, Wang L, Huang C, Niu C, Xiang K, Xu C, Solan GA, Ma H, Sun WH. Azasilicon-bridged heterocyclic arylamines: syntheses, structures and photophysical properties. NEW J CHEM 2018. [DOI: 10.1039/c7nj03876c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The lithium κ1-enamides undergo intermolecular cyclization reactions affording bis-azasilicon-bridged heterocyclic arylamines, which were hydrolysed to the saturated 1,4-diimines, and alternatively proceeded a redox reaction to afford the conjugated 1,4-diimines.
Collapse
Affiliation(s)
- Shifang Yuan
- Institute of Applied Chemistry
- Shanxi University
- Taiyuan 030006
- China
- The School of Chemistry and Chemical Engineering
| | - Lijing Wang
- The School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Chuanbing Huang
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Chunxia Niu
- The School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
- Institute of Chemistry
| | - Kai Xiang
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Caihong Xu
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Gregory A. Solan
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
- Department of Chemistry
| | - Hongwei Ma
- Analysis and Testing Centre
- Beijing Institute of Technology
- Beijing 102488
- China
| | - Wen-Hua Sun
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|
9
|
Lin CY, Fettinger JC, Power PP. Reversible Complexation of Lewis Bases to Low-Coordinate Fe(II), Co(II), and Ni(II) Amides: Influence of the Metal, Donor Ligand, and Amide Substituent on Binding Constants. Inorg Chem 2017; 56:9892-9902. [DOI: 10.1021/acs.inorgchem.7b01387] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chun-Yi Lin
- Department of Chemistry, University of California at Davis, One Shields Avenue, Davis, California 95616, United States
| | - James C. Fettinger
- Department of Chemistry, University of California at Davis, One Shields Avenue, Davis, California 95616, United States
| | - Philip P. Power
- Department of Chemistry, University of California at Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
10
|
Sandoval JJ, Melero C, Palma P, Álvarez E, Rodríguez-Delgado A, Cámpora J. Oxygen-Induced Dimerization of Alkyl-Manganese(II) 2,6-Bisiminopyridine Complexes: Selective Synthesis of a New Ditopic NNN-Pincer Ligand. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00538] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- John J. Sandoval
- Instituto de Investigaciones
Químicas, CSIC − Universidad de Sevilla, c/Américo
Vespucio, 49, 41092 Sevilla, SPAIN
| | - Cristóbal Melero
- Instituto de Investigaciones
Químicas, CSIC − Universidad de Sevilla, c/Américo
Vespucio, 49, 41092 Sevilla, SPAIN
| | - Pilar Palma
- Instituto de Investigaciones
Químicas, CSIC − Universidad de Sevilla, c/Américo
Vespucio, 49, 41092 Sevilla, SPAIN
| | - Eleuterio Álvarez
- Instituto de Investigaciones
Químicas, CSIC − Universidad de Sevilla, c/Américo
Vespucio, 49, 41092 Sevilla, SPAIN
| | - Antonio Rodríguez-Delgado
- Instituto de Investigaciones
Químicas, CSIC − Universidad de Sevilla, c/Américo
Vespucio, 49, 41092 Sevilla, SPAIN
| | - Juan Cámpora
- Instituto de Investigaciones
Químicas, CSIC − Universidad de Sevilla, c/Américo
Vespucio, 49, 41092 Sevilla, SPAIN
| |
Collapse
|