1
|
Shaw EV, Chester AM, Robertson GP, Castillo-Blas C, Bennett TD. Synthetic and analytical considerations for the preparation of amorphous metal-organic frameworks. Chem Sci 2024; 15:10689-10712. [PMID: 39027308 PMCID: PMC11253190 DOI: 10.1039/d4sc01433b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Metal-organic frameworks (MOFs) are hybrid porous materials presenting several tuneable properties, allowing them to be utilised for a wide range of applications. To date, focus has been on the preparation of novel crystalline MOFs for specific applications. Recently, interest in amorphous MOFs (aMOFs), defined by their lack of correlated long-range order, is growing. This is due to their potential favourable properties compared to their crystalline equivalents, including increased defect concentration, improved processability and gas separation ability. Direct synthesis of these disordered materials presents an alternative method of preparation to post-synthetic amorphisation of a crystalline framework, potentially allowing for the preparation of aMOFs with varying compositions and structures, and very different properties to crystalline MOFs. This perspective summarises current literature on directly synthesised aMOFs, and proposes methods that could be utilised to modify existing syntheses for crystalline MOFs to form their amorphous counterparts. It outlines parameters that could discourage the ordering of crystalline MOFs, before examining the potential properties that could emerge. Methodologies of structural characterisation are discussed, in addition to the necessary analyses required to define a topologically amorphous structure.
Collapse
Affiliation(s)
- Emily V Shaw
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Ashleigh M Chester
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Georgina P Robertson
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Celia Castillo-Blas
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Thomas D Bennett
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| |
Collapse
|
2
|
Chuprin AS, Belova SA, Vologzhanina AV, Dorovatovskii PV, Voloshin YZ. Preparation, X-ray Characterization, and Reactivity of the Rod-like and Angular Germanium- and Titanium(IV)-Capped Iron(II) Bis-Clathrochelates and Their Mono- and Bis-Capped (Semi)clathrochelate Precursors. Inorg Chem 2024; 63:4299-4311. [PMID: 38364313 DOI: 10.1021/acs.inorgchem.3c04319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Transmetalation of the bis{triethylantimony(V)}-capped iron(II) tris-α-dioximate with n-butylboronic acid afforded the mixed antimony, boron cross-linked clathrochelate with single reactive antimony(V)-based apical fragment. This macrobicyclic precursor easily underwent the transmetalation reactions with germanium and titanium(IV) alkoxides to give the rod-like and angular FeII2MIV-trinuclear bis-clathrochelates. Those of the aforementioned diantimony(V)-capped complex with 3- and 4-carboxyphenylboronic acids afforded the monoboron-capped iron(II) semiclathrochelates, undergoing a double-cyclization (macrobicyclization) with germanium- and titanium(IV)-based capping agents. The reactions in the low-temperature range unexpectedly gave the stable 2:1 associates, formed by the bridging of two carboxyl-terminated macrobicyclic molecules of the mixed carboxylboron, triethylantimony-capped iron(II) clathrochelate with a triethylantimony(V)-based linker fragment. The obtained complexes were characterized using elemental analysis, MALDI-TOF, 1H and 13C{1H} NMR and UV-vis spectra, and single-crystal XRD experiments. The encapsulated iron(II) ion in their 3D-molecules is situated almost in the center of its FeN6-coordination polyhedron possessing a truncated trigonal-pyramidal geometry. Fe-N distances fall in the range 1.887(7)-1.945(4) Å characteristic of the low-spin iron(II) complexes. The cross-linking titanium and germanium(IV) ions in the corresponding bis-clathrochelate molecules form the octahedral MIVO6-coordination polyhedra, the MIV-O distances of which vary from 1.946(2) to 1.964(2) Å and from 1.879(7) to 1.907(6) Å, respectively.
Collapse
Affiliation(s)
- Alexander S Chuprin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova St., 119334 Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Prosp., 119991 Moscow, Russia
| | - Svetlana A Belova
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova St., 119334 Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Prosp., 119991 Moscow, Russia
| | - Anna V Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova St., 119334 Moscow, Russia
| | - Pavel V Dorovatovskii
- National Research Center Kurchatov Institute, 1 Kurchatova pl., 123098 Moscow, Russia
| | - Yan Z Voloshin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova St., 119334 Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Prosp., 119991 Moscow, Russia
| |
Collapse
|
3
|
Chuprin AS, Pavlov AA, Vologzhanina AV, Dorovatovskii PV, Makarenkov AV, Ol'shevskaya VA, Dudkin SV, Voloshin YZ. Multistep synthesis and X-ray structures of carboxyl-terminated hybrid iron(II) phthalocyaninatoclathrochelates and their postsynthetic transformation into polytopic carboranyl-containing derivatives. Dalton Trans 2023; 52:3884-3895. [PMID: 36877091 DOI: 10.1039/d3dt00076a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A multistep general synthetic strategy towards polytopic carboranyl-containing (semi)clathrochelate metal complexes, based on the template synthesis, transmetallation, amide condensation and 1,3-dipolar cycloaddition reactions, is developed. Their mono(semi)clathrochelate precursors with a single reactive group were obtained using a transmetallation of the triethylantimony-capped macrobicyclic precursor. The thus obtained carboxyl-terminated iron(II) semiclathrochelate underwent a macrobicyclization with zirconium(IV) phthalocyaninate to form the corresponding phthalocyaninatoclathrochelate. The direct one-pot template condensation of the suitable chelating and cross-linking ligand synthons on the Fe2+ ion as a matrix was also used for its preparation. Further amide condensation of the aforementioned semiclathrochelate and hybrid complexes with propargylamine in the presence of carbonyldiimidazole gave the (pseudo)cage derivatives with a terminal CC bond. Their "click" reaction with an appropriate carboranylmethyl azide afforded the ditopic carboranosemiclathrochelates and the tritopic carboranyl-containing phthalocyaninatoclathrochelates with a flexible spacer fragment between their polyhedral entities. The obtained new complexes were characterized using elemental analysis, MALDI-TOF mass spectrometry, multinuclear NMR, and UV-vis spectroscopy, and by single crystal X-ray diffraction experiments. Their FeN6-coordination polyhedra show a truncated trigonal-pyramidal geometry, while the cross-linking heptacoordinate Zr4+ or Hf4+ cations in the hybrid compounds form the MIVN4O3-coordination polyhedra with the geometry of a capped trigonal prism.
Collapse
Affiliation(s)
- Alexander S Chuprin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
| | - Alexander A Pavlov
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
- BMSTU Center of National Technological Initiative "Digital Material Science: New Material and Substances", Bauman Moscow State Technical University, 2nd Baumanskaya st. 5, 105005, Moscow, Russia
| | - Anna V Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
| | - Pavel V Dorovatovskii
- National Research Center Kurchatov Institute, 1 Kurchatova pl., 123098, Moscow, Russia
| | - Anton V Makarenkov
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
| | - Valentina A Ol'shevskaya
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
| | - Semyon V Dudkin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
| | - Yan Z Voloshin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| |
Collapse
|
4
|
Belov AS, Belova SA, Efimov NN, Zlobina VV, Novikov VV, Nelyubina YV, Zubavichus YV, Voloshin YZ, Pavlov AA. Synthesis, X-ray structure and magnetic properties of the apically functionalized monocapped cobalt(II) tris-pyridineoximates possessing SMM behaviour. Dalton Trans 2023; 52:2928-2932. [PMID: 36811361 DOI: 10.1039/d2dt04073e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The title cobalt(II) pseudoclathrochelate complexes possess an intermediate trigonal prismatic-trigonal antiprismatic geometry. As follows from PPMS data, they exhibit an SMM behaviour with Orbach relaxation barriers of approximately 90 K. Paramagnetic NMR experiments confirmed a persistence of these magnetic characteristics in solution. Therefore, a straightforward apical functionalization of this 3D molecular platform for its targeted delivery to a given biosystem can be performed without substantial changes.
Collapse
Affiliation(s)
- Alexander S Belov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia. .,Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia
| | - Svetlana A Belova
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia. .,Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia
| | - Nikolay N Efimov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia.
| | - Veronika V Zlobina
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia
| | - Valentin V Novikov
- Moscow Institute of Physics and Technology, National Research University, Institutsliy per. 9, Dolgoprudny, 141700 Moscow Region, Russia.,BMSTU Center of National Technological Initiative "Digital Material Science: New Material and Substances", Bauman Moscow State Technical University, 2nd Baumanskaya st. 5, 105005, Moscow, Russia
| | - Yulya V Nelyubina
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.,BMSTU Center of National Technological Initiative "Digital Material Science: New Material and Substances", Bauman Moscow State Technical University, 2nd Baumanskaya st. 5, 105005, Moscow, Russia
| | - Yan V Zubavichus
- Synchrotron Radiation Facility SKIF, G.K. Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences, 1 Nikolskii pr., 630559 Koltsovo, Russia
| | - Yan Z Voloshin
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia. .,Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia
| | - Alexander A Pavlov
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.,BMSTU Center of National Technological Initiative "Digital Material Science: New Material and Substances", Bauman Moscow State Technical University, 2nd Baumanskaya st. 5, 105005, Moscow, Russia.,National Research University Higher School of Economics, 101000 Moscow, Russia
| |
Collapse
|
5
|
Belov AS, Novikov VV, Vologzhanina AV, Pavlov AA, Bogomyakov AS, Zubavichus YV, Svetogorov RD, Zelinskii GE, Voloshin YZ. Synthesis, crystal polymorphism and spin crossover behavior of adamantylboron-capped cobalt(II) hexachloroclathrochelate and its transformation into the Co IIICo IICo III-bis-macrobicyclic derivative. Dalton Trans 2023; 52:347-359. [PMID: 36511081 DOI: 10.1039/d2dt03300c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Fast crystallization of the monoclathrochelate cobalt(II) intracomplex [Co(Cl2Gm)3(BAd)2] (where Cl2Gm2- is a dichloroglyoxime dianion and BAd is an adamantylboron capping group, 1), initially obtained by the direct template condensation of the corresponding chelating α-dioximate and cross-linking ligand synthons on the Co2+ ion as a matrix, from benzene or dichloromethane afforded its structural triclinic and hexagonal polymorphs. Its prolonged recrystallization from dichloromethane under air atmosphere and sunlight irradiation unexpectedly gave the crystals of the CoIIICoIICoIII-trinuclear dodecachloro-bis-clathrochelate intracomplex [[CoIII(Cl2Gm)3(BAd)]2CoII] (2), the molecule of which consists of two macrobicyclic frameworks with encapsulated low-spin (LS) Co3+ ions, which are cross-linked by a μ3-bridging Co2+ ion as a bifunctional Lewis-acidic center. The most plausible pathway of such a 1 → 2 transformation is based on the photoinitiated radical oxidation of dichloromethane with air oxygen giving the reactive species. Cobalt(II) monoclathrochelate 1 was found to undergo a temperature-induced spin crossover (SCO) both in its solutions and in the solid state. In spite of the conformational rigidity of the corresponding quasiaromatic diboron-capped tris-α-dioximate framework, the main parameters of this SCO transition (i.e., its completeness and gradual character) are strongly affected by the nature of the used solvent (in the case of its solutions) and by the structural polymorphism of its crystals (in the solid state). In the latter case, the LS state (S = 1/2) of this complex is more thermally stable and, therefore, the cobalt(II)-centered 1/2 → 3/2 SCO is more gradual than that in solutions.
Collapse
Affiliation(s)
- Alexander S Belov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia. .,Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia
| | - Valentin V Novikov
- Moscow Institute of Physics and Technology, 141700 Moscow Region, Russia
| | - Anna V Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia
| | - Alexander A Pavlov
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.,National Research University Higher School of Economics, 101000 Moscow, Russia
| | - Artem S Bogomyakov
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Yan V Zubavichus
- Synchrotron Radiation Facility SKIF, G.K. Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences, 1 Nikolskii pr., 630559 Koltsovo, Russia
| | | | - Genrikh E Zelinskii
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia. .,Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia
| | - Yan Z Voloshin
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia. .,Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia
| |
Collapse
|
6
|
Denisov GL, Belov AS, Lebed’ EG, Nelyubina YV. Spin State of Iron(II) Clathrochelate in the Cocrystallization Products with 2-Aminopyridine and 2-Hydroxypyridine. RUSS J COORD CHEM+ 2022. [DOI: 10.1134/s1070328422700099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Agafonov MA, Alexandrov EV, Artyukhova NA, Bekmukhamedov GE, Blatov VA, Butova VV, Gayfulin YM, Garibyan AA, Gafurov ZN, Gorbunova YG, Gordeeva LG, Gruzdev MS, Gusev AN, Denisov GL, Dybtsev DN, Enakieva YY, Kagilev AA, Kantyukov AO, Kiskin MA, Kovalenko KA, Kolker AM, Kolokolov DI, Litvinova YM, Lysova AA, Maksimchuk NV, Mironov YV, Nelyubina YV, Novikov VV, Ovcharenko VI, Piskunov AV, Polyukhov DM, Polyakov VA, Ponomareva VG, Poryvaev AS, Romanenko GV, Soldatov AV, Solovyeva MV, Stepanov AG, Terekhova IV, Trofimova OY, Fedin VP, Fedin MV, Kholdeeva OA, Tsivadze AY, Chervonova UV, Cherevko AI, Shul′gin VF, Shutova ES, Yakhvarov DG. METAL-ORGANIC FRAMEWORKS IN RUSSIA: FROM THE SYNTHESIS AND STRUCTURE TO FUNCTIONAL PROPERTIES AND MATERIALS. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622050018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Limarev IP, Zelinskii GE, Belova SA, Dorovatovskii PV, Vologzhanina AV, Lebed EG, Voloshin YZ. Monoribbed‐functionalized macrobicyclic iron(
II
) complexes decorated with terminal reactive and vector groups: synthetic strategy towards, chemical transformations and structural characterization. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ilya P. Limarev
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st. 119991 Moscow Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr. 119991 Moscow Russia
| | - Genrikh E. Zelinskii
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st. 119991 Moscow Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr. 119991 Moscow Russia
| | - Svetlana A. Belova
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st. 119991 Moscow Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr. 119991 Moscow Russia
| | | | - Anna V. Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st. 119991 Moscow Russia
| | - Ekaterina G. Lebed
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st. 119991 Moscow Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr. 119991 Moscow Russia
| | - Yan Z. Voloshin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st. 119991 Moscow Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr. 119991 Moscow Russia
| |
Collapse
|
9
|
Gong W, Xie Y, Pham TD, Shetty S, Son FA, Idrees KB, Chen Z, Xie H, Liu Y, Snurr RQ, Chen B, Alameddine B, Cui Y, Farha OK. Creating Optimal Pockets in a Clathrochelate-Based Metal-Organic Framework for Gas Adsorption and Separation: Experimental and Computational Studies. J Am Chem Soc 2022; 144:3737-3745. [PMID: 35179374 DOI: 10.1021/jacs.2c00011] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The rational design and synthesis of robust metal-organic frameworks (MOFs) based on novel organic building blocks are fundamental aspects of reticular chemistry. Beyond simply fabricating new organic linkers, however, it is important to elucidate structure-property relationships at the molecular level to develop high-performing materials. In this work, we successfully targeted a highly porous and robust cage-type MOF (NU-200) with an nbo-derived fof topology through the deliberate assembly of a cyclohexane-functionalized iron(II)-clathrochelate-based meta-benzenedicarboxylate linker with a Cu2(CO2)4 secondary building unit (SBU). NU-200 exhibited an outstanding adsorption capacity of xenon and a high ideal adsorbed solution theory (IAST) predicted selectivity for a 20/80 v/v mixture of xenon (Xe)/krypton (Kr) at 298 K and 1.0 bar. Our extensive computational simulations with grand canonical Monte Carlo (GCMC) and density functional theory (DFT) on NU-200 indicated that the MOF's hierarchical bowl-shaped nanopockets surrounded by custom-designed cyclohexyl groups─instead of the conventionally believed open metal sites (OMSs)─played a crucial role in reinforcing Xe-binding affinity. The optimally sized pockets firmly trapped Xe through numerous supramolecular interactions including Xe···H, Xe···O, and Xe···π. Additionally, we validated the unique pocket confinement effect by experimentally and computationally employing the similarly sized probe, sulfur dioxide (SO2), which provided significant insights into the molecular underpinnings of the high uptake of SO2 (11.7 mmol g-1), especially at a low pressure of 0.1 bar (8.5 mmol g-1). This work therefore can facilitate the judicious design of organic building blocks, producing MOFs featuring tailor-made pockets to boost gas adsorption and separation performances.
Collapse
Affiliation(s)
- Wei Gong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.,Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Yi Xie
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| | - Thang Duc Pham
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Suchetha Shetty
- Functional Materials Group, Gulf University for Science and Technology, Hawally 32093, Kuwait
| | - Florencia A Son
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Karam B Idrees
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Zhijie Chen
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Haomiao Xie
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Randall Q Snurr
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| | - Bassam Alameddine
- Functional Materials Group, Gulf University for Science and Technology, Hawally 32093, Kuwait
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
10
|
Almáši M, Király N, Zeleňák V, Vilková M, Bourrelly S. Zinc(ii) and cadmium(ii) amorphous metal-organic frameworks (aMOFs): study of activation process and high-pressure adsorption of greenhouse gases. RSC Adv 2021; 11:20137-20150. [PMID: 35479897 PMCID: PMC9033798 DOI: 10.1039/d1ra02938j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/29/2021] [Indexed: 01/05/2023] Open
Abstract
Two novel amorphous metal-organic frameworks (aMOFs) with chemical composition {[Zn2(MTA)]·4H2O·3DMF} n (UPJS-13) and {[Cd2(MTA)]·5H2O·4DMF} n (UPJS-14) built from Zn(ii) and Cd(ii) ions and extended tetrahedral tetraazo-tetracarboxylic acid (H4MTA) as a linker were prepared and characterised. Nitrogen adsorption measurements were performed on as-synthesized (AS), ethanol exchanged (EX) and freeze-dried (FD) materials at different activation temperatures of 60, 80, 100, 120, 150 and 200 °C to obtain the best textural properties. The largest surface areas of 830 m2 g-1 for UPJS-13 (FD) and 1057 m2 g-1 for UPJS-14 (FD) were calculated from the nitrogen adsorption isotherms for freeze-dried materials activated at mild activation temperature (80 °C). Subsequently, the prepared compounds were tested as adsorbents of greenhouse gases, carbon dioxide and methane, measured at high pressures. The maximal adsorption capacities were 30.01 wt% CO2 and 4.84 wt% CH4 for UPJS-13 (FD) and 24.56 wt% CO2 and 6.38 wt% CH4 for UPJS-14 (FD) at 20 bar and 30 °C.
Collapse
Affiliation(s)
- Miroslav Almáši
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University Moyzesova 11 SK-041 54 Košice Slovak Republic
| | - Nikolas Király
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University Moyzesova 11 SK-041 54 Košice Slovak Republic
| | - Vladimír Zeleňák
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University Moyzesova 11 SK-041 54 Košice Slovak Republic
| | - Mária Vilková
- NMR Laboratory, Faculty of Science, P. J. Šafárik University Moyzesova 11 SK-041 01 Košice Slovak Republic
| | - Sandrine Bourrelly
- Aix-Marseille University, CNRS, MADIREL Marseille Cedex 20 F-133 97 France
| |
Collapse
|
11
|
Xia Q, Zhang J, Chen X, Cheng C, Chu D, Tang X, Li H, Cui Y. Synthesis, structure and property of boron-based metal–organic materials. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213783] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Pachisia S, Gupta R. Architectural and catalytic aspects of designer materials built using metalloligands of pyridine-2,6-dicarboxamide based ligands. Dalton Trans 2020; 49:14731-14748. [PMID: 33084678 DOI: 10.1039/d0dt03058a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This perspective presents the design, synthesis and crystal structures of a large number of architectures constructed using assorted metalloligands of pyridine-2,6-dicarboxamide based ligands. The metalloligands offered various appended functional groups, whereas design strategies included varying both their position and number. A combination of these parameters resulted in the development of assorted architectures including discrete trinuclear and tetranuclear complexes as well as 1D/2D/3D coordination polymers. The metalloligand strategy not only assisted in the construction of ordered crystalline materials with varied dimensionalities but also judiciously allowed the incorporation of Lewis acidic and redox-active secondary metals in the resultant architectures. As a result, such designer architectures illustrated their noteworthy role both as homogenous and heterogeneous catalysts in different organic transformation reactions.
Collapse
Affiliation(s)
- Sanya Pachisia
- Department of Chemistry, University of Delhi, Delhi - 110007, India.
| | | |
Collapse
|
13
|
Planes OM, Jansze SM, Scopelliti R, Fadaei-Tirani F, Severin K. Two-Step Synthesis of Linear and Bent Dicarboxylic Acid Metalloligands with Lengths of up to 3 nm. Inorg Chem 2020; 59:14544-14548. [PMID: 32962338 DOI: 10.1021/acs.inorgchem.0c02358] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanometer-sized polycarboxylate ligands are interesting building blocks for metallasupramolecular chemistry, but access to these compounds is often limited by complicated synthetic pathways. Here, we describe a simple two-step protocol, which allows preparing linear and bent dicarboxylate ligands with lengths of up to 3 nm from commercially available compounds. The ligands are prepared by iron-templated polycondensation reactions involving arylboronic acids and nioxime. The final products contain two iron clathrochelate complexes and two terminal carboxyphenylene groups. To demonstrate that the new ligands are suitable for the construction of more complex molecular nanostructures, we have prepared a Cu-based metal-organic polyhedron, which represents the largest M4L4 cage described so far.
Collapse
Affiliation(s)
- Ophélie M Planes
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Suzanne M Jansze
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
14
|
Belov AS, Voloshin YZ, Pavlov AA, Nelyubina YV, Belova SA, Zubavichus YV, Avdeeva VV, Efimov NN, Malinina EA, Zhizhin KY, Kuznetsov NT. Solvent-Induced Encapsulation of Cobalt(II) Ion by a Boron-Capped tris-Pyrazoloximate. Inorg Chem 2020; 59:5845-5853. [PMID: 31984742 DOI: 10.1021/acs.inorgchem.9b03335] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Boron-cross-linked cobalt(II) pseudoclathrochelate was obtained by the template reaction of 2-acetylpyrazoloxime, phenylboronic acid, and a new DMF cobalt(II) solvato complex with a decachloro-closo-decaborate dianion. As confirmed by single-crystal X-ray diffraction, this complex crystallizes with two symmetry-independent cobalt(II) pseudoclathrochelate cations, one decachloro-closo-decaborate dianion, one benzene, one dichloromethane solvent molecule, and two molecules of DMF. The latter act as pseudocapping fragments to the monocapped tris-pyrazoloximate ligands by forming N-H···O hydrogen bonds with their pyrazole groups. The CoIIN6-coordination polyhedra adopt a nearly ideal TP geometry with distortion angles φ equal to 1.22(16) and 2.58(17)° for two symmetry-independent pseudoclathrochelate cations, both containing the encapsulated cobalt(II) ion in its high-spin state (Co-N 2.115(4)-2.198(3) Å). Magnetic properties of this complex were studied both by dc-magnetometry and by solution-state NMR spectroscopy to reveal a high magnetic anisotropy, thus suggesting a large magnetic susceptibility tensor anisotropy (25.8 × 10-32 m3 at 298 K) and a large negative zero-field splitting energy (-85 cm-1). The results of magnetometry studies in the ac magnetic field suggest a single molecule magnet behavior of this TP complex with an effective magnetization reversal barrier of approximately 130 cm-1. Its pseudocapping DMF molecules that form H-bonds with tris-pyrazoloximate fragments are easy to substitute by strong H-bond acceptors, such as chloride ions and di- and tetramethylureas, thus affecting the magnetic properties of a whole pseudomacrobicyclic paramagnetic system.
Collapse
Affiliation(s)
- Alexander S Belov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova st., Moscow, 119991, Russia
| | - Yan Z Voloshin
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova st., Moscow, 119991, Russia.,Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky prosp., Moscow, 119991, Russia
| | - Alexander A Pavlov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova st., Moscow, 119991, Russia
| | - Yulia V Nelyubina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova st., Moscow, 119991, Russia.,Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky prosp., Moscow, 119991, Russia
| | - Svetlana A Belova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova st., Moscow, 119991, Russia
| | - Yan V Zubavichus
- National Research Centre "Kurchatov Institute", 1 Kurchatova pl., Moscow, 123182, Russia.,Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences, 5 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Varvara V Avdeeva
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky prosp., Moscow, 119991, Russia
| | - Nikolay N Efimov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky prosp., Moscow, 119991, Russia
| | - Elena A Malinina
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky prosp., Moscow, 119991, Russia
| | - Konstantin Yu Zhizhin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky prosp., Moscow, 119991, Russia
| | - Nikolay T Kuznetsov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky prosp., Moscow, 119991, Russia
| |
Collapse
|
15
|
Yu H, Song R, Kong Y, Cao T, Chen Y. Synthesis, crystal structure and spectral properties of a copper(II) complex with flavonoxylacetate ligand. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1755035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Hui Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| | - Rong Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| | - Yangyang Kong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| | - Ting Cao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| | - Yun Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| |
Collapse
|
16
|
Woodhouse SS, De Silva DNT, Jameson GB, Cutler DJ, Sanz S, Brechin EK, Davies CG, Jameson GNL, Plieger PG. New salicylaldoximato-borate ligands resulting from anion hydrolysis and their respective copper and iron complexes. Dalton Trans 2019; 48:11872-11881. [PMID: 31309211 DOI: 10.1039/c9dt01968e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Anion hydrolysis reactions between salicylaldoximato ligands (L'-L''') and copper and iron BF4- metal salts, have resulted in the formation of new salicylaldoximato borate containing transition metal complexes: [Fe2(L' + 2H)2](BF4)2(MeOH)4 (C1), [Fe3(L'' + 4H)(OH)2(Py)2](BF4)2(H2O)2(Py)2 (C2), and [Cu2(L''' + H)2Cl2] (C3). Each of the complexes have been structurally characterised, revealing the indirect role boron plays in the formation of these complexes. For complexes C1 and C2, Mössbauer spectroscopy confirmed the existence of Fe(iii) oxidation states. SQUID magnetometry measurements were performed on complexes C2 and C3, revealing the presence of two competing exchange pathways between the three Fe(iii) centres in C2, with antiferromagnetic exchange dominating. For C3 weak antiferromagnetic exchange dominated between the two Cu(ii) centres.
Collapse
Affiliation(s)
- Sidney S Woodhouse
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | - D Nirosha T De Silva
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | - Geoffrey B Jameson
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | - Daniel J Cutler
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Sergio Sanz
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Euan K Brechin
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Casey G Davies
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Guy N L Jameson
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Paul G Plieger
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| |
Collapse
|
17
|
Bila JL, Pijeat J, Ramorini A, Fadaei-Tirani F, Scopelliti R, Baudat E, Severin K. Porous networks based on iron(ii) clathrochelate complexes. Dalton Trans 2019; 48:4582-4588. [PMID: 30882828 DOI: 10.1039/c9dt00546c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microporous networks based on boronate ester-capped iron(ii) clathrochelate complexes are described. The networks were obtained by covalent cross-linking of tetrabrominated clathrochelate complexes via Suzuki-Miyaura polycross-coupling reactions with diboronic acids, or by Sonogashira-Hagihara polycross-coupling of clathrochelate complexes with terminal alkyne functions and 1,3,5-tribromobenzene. The networks display permanent porosity with apparent Brunauer-Emmett-Teller surface areas of up to SABET = 593 m2 g-1. A clathrochelate complex based on an enantiopure dioximato ligand was used to prepare chiral networks. One of these networks was shown to preferentially absorb d-tryptophan over l-tryptophan.
Collapse
Affiliation(s)
- José L Bila
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
18
|
Jansze SM, Severin K. Clathrochelate Metalloligands in Supramolecular Chemistry and Materials Science. Acc Chem Res 2018; 51:2139-2147. [PMID: 30156828 DOI: 10.1021/acs.accounts.8b00306] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The term "clathrochelate" describes a complex in which a coordinatively saturated metal ion is surrounded by a macropolycyclic ligand. First examples of clathrochelate complexes were reported 50 years ago. Meanwhile, the synthesis and reactivity of clathrochelates have been investigated in detail, and numerous applications have been explored. In this Account, we summarize work on the utilization of transition metal clathrochelates as metalloligands in supramolecular chemistry and materials science, with special focus on results from our group. First, we discuss the chemistry of boron-capped clathrochelates. These complexes are facile to synthesize by metal-templated condensation reactions. The synthesis is modular, and it is straightforward to implement structural variations. Importantly, it is possible to attach functional groups such as amines, pyridines, or carboxylic acids to the ligand periphery. Other noteworthy features of boron-capped clathrochelates are high thermodynamic and kinetic stability, tunable redox potential, and good solubility. Next, we show that clathrochelate-based metalloligands can be used to build molecularly defined metal-ligand assemblies of nanoscale dimensions. Different molecular architectures are described, including coordination cages with unusual gyrobifastigium or square orthobicupola-like structures. Metalloligands containing multiple clathrochelate complexes are particularly well suited to build large metal-ligand assemblies (>3 nm) with minimal synthetic efforts. Boron-capped clathrochelates have also been investigated in the context of materials chemistry. Linear or cross-linked clathrochelate polymers were found to display permanent porosity. Furthermore, such polymers were used to prepare conducting films on electrodes. Clathrochelate metalloligands are well suited to prepare metal-organic frameworks (MOFs). The high stability of clathrochelates ensures compatibility with harsh reaction conditions, and it mitigates potential problems such as exchange reactions. Boron-capped clathrochelates can be decorated with functional groups in lateral and apical position, and it is possible to use these complexes as multiconnected nodes in polymeric structures. Overall, we hope to convey the utility of clathrochelate complexes in supramolecular chemistry and materials science. The work published thus far gives a first glimpse of the potential of these compounds, but there are other directions, which are waiting to be explored. For example, it will be interesting to study the properties of nanostructures based on chiral clathrochelate complexes. Furthermore, the redox and magnetic properties of clathrochelates may give rise to novel functional materials. Given that clathrochelates are straightforward to prepare, we hope that others will join the efforts to explore the supramolecular and materials chemistry of these interesting molecular building blocks.
Collapse
Affiliation(s)
- Suzanne M. Jansze
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
19
|
Qin Z, Han F, Ge C, Zhang R, Zhang Y, Zhang X. Template synthesis of boron-capped cage metal complexes and assembly of supramolecular networks. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Bila JL, Marmier M, Zhurov KO, Scopelliti R, Živković I, Rønnow HM, Shaik NE, Sienkiewicz A, Fink C, Severin K. Homo- and Heterodinuclear Iron Clathrochelate Complexes with Functional Groups in the Ligand Periphery. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- José L. Bila
- École Polytechnique Fédérale de Lausanne (EPFL); Institut des Sciences et Ingénierie Chimiques; 1015 Lausanne Switzerland
| | - Mathieu Marmier
- École Polytechnique Fédérale de Lausanne (EPFL); Institut des Sciences et Ingénierie Chimiques; 1015 Lausanne Switzerland
| | - Konstantin O. Zhurov
- École Polytechnique Fédérale de Lausanne (EPFL); Institut des Sciences et Ingénierie Chimiques; 1015 Lausanne Switzerland
| | - Rosario Scopelliti
- École Polytechnique Fédérale de Lausanne (EPFL); Institut des Sciences et Ingénierie Chimiques; 1015 Lausanne Switzerland
| | | | | | | | | | - Cornel Fink
- École Polytechnique Fédérale de Lausanne (EPFL); Institut des Sciences et Ingénierie Chimiques; 1015 Lausanne Switzerland
| | - Kay Severin
- École Polytechnique Fédérale de Lausanne (EPFL); Institut des Sciences et Ingénierie Chimiques; 1015 Lausanne Switzerland
| |
Collapse
|
21
|
Casanova I, Durán ML, Viqueira J, Sousa-Pedrares A, Zani F, Real JA, García-Vázquez JA. Metal complexes of a novel heterocyclic benzimidazole ligand formed by rearrangement-cyclization of the corresponding Schiff base. Electrosynthesis, structural characterization and antimicrobial activity. Dalton Trans 2018; 47:4325-4340. [DOI: 10.1039/c8dt00532j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One-pot electrochemical synthesis of metal complexes containing a novel heterocyclic benzimidazole ligand is reported and characterized.
Collapse
Affiliation(s)
- I. Casanova
- Departamento de Química Inorgánica
- Universidad de Santiago de Compostela
- Santiago de Compostela
- Spain
| | - M. L. Durán
- Departamento de Química Inorgánica
- Universidad de Santiago de Compostela
- Santiago de Compostela
- Spain
| | - J. Viqueira
- Departamento de Química Inorgánica
- Universidad de Santiago de Compostela
- Santiago de Compostela
- Spain
| | - A. Sousa-Pedrares
- Departamento de Química Inorgánica
- Universidad de Santiago de Compostela
- Santiago de Compostela
- Spain
| | - F. Zani
- Departamento di Farmacia
- Parco Area delle Scienze
- 43124 Parma
- Italy
| | - J. A. Real
- Institut de Ciencia Molecular Departament de Química Inorgánica
- Universitat de Valencia
- Valencia
- Spain
| | - J. A. García-Vázquez
- Departamento de Química Inorgánica
- Universidad de Santiago de Compostela
- Santiago de Compostela
- Spain
| |
Collapse
|
22
|
Li JM, Li R, Li X. Construction of metal–organic frameworks (MOFs) and highly luminescent Eu(iii)-MOF for the detection of inorganic ions and antibiotics in aqueous medium. CrystEngComm 2018. [DOI: 10.1039/c8ce00915e] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A series of Ln(iii) complexes were synthesized. The highly luminescent chemically stable Eu-MOF shows multi-responsive luminescence sensing functions.
Collapse
Affiliation(s)
- Jing-Ming Li
- Department of Chemistry
- Capital Normal University
- Beijing
- China
- Department of Chemistry and Beijing Key Laboratory for Optical Materials and Photonic Devices
| | - Rui Li
- Department of Chemistry
- Capital Normal University
- Beijing
- China
- Department of Chemistry and Beijing Key Laboratory for Optical Materials and Photonic Devices
| | - Xia Li
- Department of Chemistry
- Capital Normal University
- Beijing
- China
- Department of Chemistry and Beijing Key Laboratory for Optical Materials and Photonic Devices
| |
Collapse
|
23
|
|
24
|
Zelinskii GE, Belov AS, Chuprin AS, Pavlov AA, Vologzhanina AV, Lebed EG, Bugaenko MG, Voloshin YZ. Clathrochelate iron(II) tris-nioximates with non-equivalent capping groups and their precursors: synthetic strategies, X-ray structure, and reactivity. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1348602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Genrikh E. Zelinskii
- Laboratory for aliphatic organoboron compounds, Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander S. Belov
- Laboratory for aliphatic organoboron compounds, Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander S. Chuprin
- Laboratory for aliphatic organoboron compounds, Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Moscow, Russia
- Laboratory for coordination chemistry of transition elements, Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander A. Pavlov
- Laboratory for Nuclear Magnetic Resonance, Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Moscow, Russia
| | - Anna V. Vologzhanina
- Laboratory for X-Ray Diffraction Studies, Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina G. Lebed
- Laboratory for aliphatic organoboron compounds, Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Moscow, Russia
| | - Margarita G. Bugaenko
- Laboratory for Macromolecular Chemistry, Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Moscow, Russia
| | - Yan Z. Voloshin
- Laboratory for aliphatic organoboron compounds, Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Moscow, Russia
- Laboratory for coordination chemistry of transition elements, Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
25
|
Cecot G, Marmier M, Geremia S, De Zorzi R, Vologzhanina AV, Pattison P, Solari E, Fadaei Tirani F, Scopelliti R, Severin K. The Intricate Structural Chemistry of M II2nL n-Type Assemblies. J Am Chem Soc 2017; 139:8371-8381. [PMID: 28603972 DOI: 10.1021/jacs.7b04861] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The reaction of cis-blocked, square-planar MII complexes with tetratopic N-donor ligands is known to give metallasupramolecular assemblies of the formula M2nLn. These assemblies typically adopt barrel-like structures, with the ligands paneling the sides of the barrels. However, alternative structures are possible, as demonstrated by the recent discovery of a Pt8L4 cage with unusual gyrobifastigium-like geometry. To date, the factors that govern the assembly of MII2nLn complexes are not well understood. Herein, we provide a geometric analysis of M2nLn complexes, and we discuss how size and geometry of the ligand is expected to influence the self-assembly process. The theoretical analysis is complemented by experimental studies using different cis-blocked PtII complexes and metalloligands with four divergent pyridyl groups. Mononuclear metalloligands gave mainly assemblies of type Pt8L4, which adopt barrel- or gyrobifastigium-like structures. Larger assemblies can also form, as evidenced by the crystallographic characterization of a Pt10L5 complex and a Pt16L8 complex. The former adopts a pentagonal barrel structure, whereas the latter displays a barrel structure with a distorted square orthobicupola geometry. The Pt16L8 complex has a molecular weight of more than 23 kDa and a diameter of 4.5 nm, making it the largest, structurally characterized M2nLn complex described to date. A dinuclear metalloligand was employed for the targeted synthesis of pentagonal Pt10L5 barrels, which are formed in nearly quantitative yields.
Collapse
Affiliation(s)
| | | | - Silvano Geremia
- Centro di Eccellenza in Biocristallografia, Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste , 34127 Trieste, Italy
| | - Rita De Zorzi
- Centro di Eccellenza in Biocristallografia, Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste , 34127 Trieste, Italy
| | - Anna V Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences , 119991 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
26
|
Li L, Craze AR, Fanna DJ, Brock AJ, Clegg JK, Lindoy LF, Aldrich-Wright JR, Reynolds JK, Li F. Synthesis and characterisation of two Cu(I) metalloligands based on tetradentate tripodal ligands. Polyhedron 2017. [DOI: 10.1016/j.poly.2016.08.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Jansze SM, Wise MD, Vologzhanina AV, Scopelliti R, Severin K. Pd II2L 4-type coordination cages up to three nanometers in size. Chem Sci 2017; 8:1901-1908. [PMID: 28567267 PMCID: PMC5444114 DOI: 10.1039/c6sc04732g] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 11/09/2016] [Indexed: 12/25/2022] Open
Abstract
The utilization of large ligands in coordination-based self-assembly represents an attractive strategy for the construction of supramolecular assemblies more than two nanometers in size. However, the implementation of this strategy is hampered by the fact that the preparation of such ligands often requires substantial synthetic effort. Herein, we describe a simple one-step protocol, which allows large bipyridyl ligands with a bent shape to be synthesized from easily accessible and/or commercially available starting materials. The ligands were used to construct PdII2L4-type coordination cages of unprecedented size. Furthermore, we provide evidence that these cages may be stabilized by close intramolecular packing of lipophilic ligand side chains. Packing effects of this kind are frequently encountered in protein assemblies, but they are seldom used as a design element in metallasupramolecular chemistry.
Collapse
Affiliation(s)
- Suzanne M Jansze
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| | - Matthew D Wise
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| | - Anna V Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences , 119991 Moscow , Russia
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| |
Collapse
|
28
|
Yang HY, Li YZ, Shi WJ, Hou L, Wang YY, Zhu Z. A new layer-stacked porous framework showing sorption selectivity for CO2 and luminescence. Dalton Trans 2017; 46:11722-11727. [PMID: 28828437 DOI: 10.1039/c7dt02496g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Luminescent Zn-MOF based stacked layers were assembled, featuring multiple CO2-binding sites and selective CO2 adsorption over CH4.
Collapse
Affiliation(s)
- Hong-Yun Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education
- Shaanxi Key Laboratory of Physico-Inorganic Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710069
| | - Yong-Zhi Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education
- Shaanxi Key Laboratory of Physico-Inorganic Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710069
| | - Wen-Juan Shi
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education
- Shaanxi Key Laboratory of Physico-Inorganic Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710069
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education
- Shaanxi Key Laboratory of Physico-Inorganic Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710069
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education
- Shaanxi Key Laboratory of Physico-Inorganic Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710069
| | - Zhonghua Zhu
- School of Chemical Engineering
- The University of Queensland
- Brisbane 4072
- Australia
| |
Collapse
|
29
|
Template synthesis and X-ray structure of the tris-glyoximate iron(II) clathrochelates with terminal reactive groups. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Marmier M, Cecot G, Curchod BFE, Pattison P, Solari E, Scopelliti R, Severin K. Surface functionalization of dinuclear clathrochelates via Pd-catalyzed cross-coupling reactions: facile synthesis of polypyridyl metalloligands. Dalton Trans 2016; 45:8422-7. [DOI: 10.1039/c6dt01288d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Clathrochelates can be decorated with pyridyl groups by cross-coupling reactions. They represent interesting ligands for supramolecular chemistry and materials science.
Collapse
Affiliation(s)
- Mathieu Marmier
- Institut des Sciences et Ingénierie Chimiques
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| | - Giacomo Cecot
- Institut des Sciences et Ingénierie Chimiques
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| | - Basile F. E. Curchod
- Institut des Sciences et Ingénierie Chimiques
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| | - Philip Pattison
- Laboratory of Crystallography
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
- Swiss-Norwegian Beam Lines at ESRF
| | - Euro Solari
- Institut des Sciences et Ingénierie Chimiques
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| |
Collapse
|
31
|
Cecot G, Alameddine B, Prior S, Zorzi RD, Geremia S, Scopelliti R, Fadaei FT, Solari E, Severin K. Large heterometallic coordination cages with gyrobifastigium-like geometry. Chem Commun (Camb) 2016; 52:11243-11246. [DOI: 10.1039/c6cc06066h] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Large coordination cages with unusual gyrobifastigium-like geometry were obtained by combining cis-blocked PtII or PdII complexes with clathrochelate-based metalloligands.
Collapse
Affiliation(s)
- Giacomo Cecot
- Institut des Sciences et Ingénierie Chimiques
- École Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| | - Bassam Alameddine
- Department of Mathematics and Natural Sciences
- Gulf University of Science & Technology (GUST)
- Kuwait
| | - Stéphanie Prior
- Institut des Sciences et Ingénierie Chimiques
- École Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| | - Rita De Zorzi
- Centro di Eccellenza in Biocristallografia
- Dipartimento di Scienze Chimiche e Farmaceutiche
- Università di Trieste
- Trieste
- Italy
| | - Silvano Geremia
- Centro di Eccellenza in Biocristallografia
- Dipartimento di Scienze Chimiche e Farmaceutiche
- Università di Trieste
- Trieste
- Italy
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques
- École Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| | - Farzaneh T. Fadaei
- Institut des Sciences et Ingénierie Chimiques
- École Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| | - Euro Solari
- Institut des Sciences et Ingénierie Chimiques
- École Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques
- École Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| |
Collapse
|
32
|
Hu L, Lin XM, Lin J, Zhang RQ, Zhang DL, Cai YP. Structural diversity of Mn(ii), Zn(ii) and Pb(ii) coordination polymers constructed from isomeric pyridylbenzoate N-oxide ligands: structures and electrochemical properties. CrystEngComm 2016. [DOI: 10.1039/c6ce02071b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Marmier M, Cecot G, Vologzhanina AV, Bila JL, Zivkovic I, Ronnow HM, Nafradi B, Solari E, Pattison P, Scopelliti R, Severin K. Dinuclear clathrochelate complexes with pendent cyano groups as metalloligands. Dalton Trans 2016; 45:15507-15516. [DOI: 10.1039/c6dt02758j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dinuclear clathrochelate complexes can be decorated with two, three, four, or five cyano groups. These complexes represent versatile metalloligands for the construction of coordination polymers.
Collapse
Affiliation(s)
- Mathieu Marmier
- Institut des Sciences et Ingénierie Chimiques
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| | - Giacomo Cecot
- Institut des Sciences et Ingénierie Chimiques
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| | - Anna V. Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences
- 119991 Moscow
- Russia
| | - José L. Bila
- Institut des Sciences et Ingénierie Chimiques
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| | - Ivica Zivkovic
- Institute of Physics
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| | - Henrik M. Ronnow
- Institute of Physics
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| | - Balint Nafradi
- Institute of Physics
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| | - Euro Solari
- Institut des Sciences et Ingénierie Chimiques
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| | - Philip Pattison
- Institute of Physics
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
- Swiss-Norwegian Beam Lines at ESRF
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| |
Collapse
|