1
|
Saielli G. Through-space scalar spin-spin coupling: from rigid intramolecular cases to short-lived van der Waals complexes. Chemphyschem 2024; 25:e202300963. [PMID: 38215244 DOI: 10.1002/cphc.202300963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
We will discuss, with the help of few selected examples, how the concept of through-space scalar spin-spin coupling between non covalently bonded nuclei has evolved in recent years. We will first present systems where 'no covalent bond' actually means that the two atoms are separated by a large number of bonds; then we will see cases where it is referred to true van der Waals dimers, but with the two atoms somehow constrained in their positions; we will finish with the most recent examples of liquids and even gaseous mixtures with full translational degrees of freedom in a regime of intermolecular/interatomic fast exchange.
Collapse
Affiliation(s)
- Giacomo Saielli
- CNR Institute on Membrane Technology, Unit of Padova, Via Marzolo, 1, 35131, Padova, Italy
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131, Padova, Italy
| |
Collapse
|
2
|
Aman M, Dostál L, Růžička A, Růžičková Z, Jambor R. B-substituted group 1 phosphides: synthesis and reactivity. Dalton Trans 2023; 52:16870-16885. [PMID: 37916487 DOI: 10.1039/d3dt02568c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
1-Boryl-8-phosphinonaphthalenes 1-BCy2-8-PCl2-C10H6 (1) and 1-BCy2-8-PPhCl-C10H6 (2) were prepared and used as starting materials for the synthesis of B-substituted phosphides. The reduction of 1 and 2 by Mg provided neutral compounds [1-BCy-8-PCy-C10H6]2 (3) and [1-BCy2-8-PPh-C10H6]2 (4). Compound 3 represents the dimer of phosphinoborane 1-BCy-8-PCy-C10H6 while complex 4 is a rare example of a discrete B ← P coordinated diphosphine. The reduction of 2 by Na or K in THF yielded B-substituted group 1 phosphides [Na(THF)3]+[1-BCy2-8-PPh-C10H6]- (5) and {[K(THF)2]+[1-BCy2-8-PPh-C10H6]-}∞ (6), which structurally resembled bulky group 1 phosphides. Complex 5 showed easy activation of elemental chalcogens E (E = O, S, Se) to give B-substituted chalcogenophosphinites {[Na(THF)2]+[1-BCy2-8-P(E)Ph-C10H6]}2 (E = O (7), S (8), Se (9)) as the products of chalcogen insertion into the P-Na bond. Importantly no oxidation to dichalcogenophosphinates was observed. Compound 5 is tolerant of the CO polar bonds in organic substrates and the reactions of 5 with 2,3-butanedione or an acyl chloride provided {[Na(THF)2]+[1-BCy2-8-P{CHC(O)C(Me)O}Ph-C10H6]-}2 (10) and [1-BCy2-8-P{C(O)tBu}Ph-C10H6] (11). Finally, B-coordinated phosphatetrylenes [1-BCy2-8-P(SnL)Ph-C10H6] (12) and [1-BCy2-8-P(PbL)Ph-C10H6] (13) (L is {2,6-(Me2NCH2)C6H3}-) were also prepared by substitution reactions of 5.
Collapse
Affiliation(s)
- Michal Aman
- Department of General and Inorganic Chemistry, University of Pardubice, 532 10 Pardubice, Czech Republic.
| | - Libor Dostál
- Department of General and Inorganic Chemistry, University of Pardubice, 532 10 Pardubice, Czech Republic.
| | - Aleš Růžička
- Department of General and Inorganic Chemistry, University of Pardubice, 532 10 Pardubice, Czech Republic.
| | - Zdenka Růžičková
- Department of General and Inorganic Chemistry, University of Pardubice, 532 10 Pardubice, Czech Republic.
| | - Roman Jambor
- Department of General and Inorganic Chemistry, University of Pardubice, 532 10 Pardubice, Czech Republic.
| |
Collapse
|
3
|
Daniels CL, Gi E, Atterberry BA, Blome-Fernández R, Rossini AJ, Vela J. Phosphine Ligand Binding and Catalytic Activity of Group 10-14 Heterobimetallic Complexes. Inorg Chem 2022; 61:6888-6897. [PMID: 35481778 DOI: 10.1021/acs.inorgchem.2c00229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heterobimetallic complexes have attracted much interest due to their broad range of structures and reactivities as well as unique catalytic abilities. Additionally, these complexes can be utilized as single-source precursors for the synthesis of binary intermetallic compounds. An example is the family of bis(pyridine-2-thiolato)dichloro-germanium and tin complexes of group 10 metals (Pd and Pt). The reactivity of these heterobimetallic complexes is highly tunable through substitution of the group 14 element and the neutral ligand bound to the transition metal. Here, we study the binding energies of three different phosphorous-based ligands, PR3 (R = Bu, Ph, and OPh) by density functional theory and restricted Hartree-Fock methods. The PR3 ligand-binding energies follow the trend of PBu3 > PPh3 > P(OPh)3, in agreement with their sigma-bonding ability. These results are confirmed by ligand exchange experiments monitored with 31P NMR spectroscopy, in which a weaker binding PR3 ligand is replaced with a stronger one. Furthermore, we demonstrate that the heterobimetallic complexes are active catalysts in the Negishi coupling reaction, where stronger binding PR3 ligands inhibit access to an active site at the metal center. Similar strategies could be applied to other complexes to better understand their ligand-binding energetics and predict their reactivity as both precursors and catalysts.
Collapse
Affiliation(s)
- Carena L Daniels
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Eunbyeol Gi
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,US DOE Ames Laboratory, Ames, Iowa 50011, United States
| | - Benjamin A Atterberry
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,US DOE Ames Laboratory, Ames, Iowa 50011, United States
| | | | - Aaron J Rossini
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,US DOE Ames Laboratory, Ames, Iowa 50011, United States
| | - Javier Vela
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,US DOE Ames Laboratory, Ames, Iowa 50011, United States
| |
Collapse
|
4
|
O'Dea C, Ugarte Trejo O, Arras J, Ehnbom A, Bhuvanesh N, Stollenz M. Ethylene-Bridged Hexadentate Bis(amidines) and Bis(amidinates) with Variable Binding Sites. J Org Chem 2019; 84:14217-14226. [PMID: 31560534 DOI: 10.1021/acs.joc.9b01908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hexadentate bis(amidines) form versatile networks of hydrogen bonds both in solid state and solution, as revealed by X-ray crystallography, IR, and NMR spectroscopy. Moreover, the corresponding bis(amidinates) produce blue and green emissions in THF solution. Tethered tetradentate bis(amidines) have emerged in coordination chemistry, enantioselective catalysis, as building blocks for polyfunctional heterocycles, and in photoluminescent materials. The next generation of flexible bis(amidine)/bis(amidinate) platforms with up to six N-donor sites has now been established.
Collapse
Affiliation(s)
- Connor O'Dea
- Department of Chemistry and Biochemistry , Kennesaw State University , 370 Paulding Avenue NW , MD #1203, Kennesaw , Georgia 30144 , United States
| | - Omar Ugarte Trejo
- Department of Chemistry and Biochemistry , Kennesaw State University , 370 Paulding Avenue NW , MD #1203, Kennesaw , Georgia 30144 , United States
| | - Janet Arras
- Department of Chemistry and Biochemistry , Kennesaw State University , 370 Paulding Avenue NW , MD #1203, Kennesaw , Georgia 30144 , United States
| | - Andreas Ehnbom
- Department of Chemistry , Texas A&M University , 580 Ross Street , P.O. Box 30012, College Station , Texas 77842-3012 , United States
| | - Nattamai Bhuvanesh
- Department of Chemistry , Texas A&M University , 580 Ross Street , P.O. Box 30012, College Station , Texas 77842-3012 , United States
| | - Michael Stollenz
- Department of Chemistry and Biochemistry , Kennesaw State University , 370 Paulding Avenue NW , MD #1203, Kennesaw , Georgia 30144 , United States
| |
Collapse
|
5
|
Chernyshov IY, Vener MV, Shenderovich IG. Local-structure effects on 31P NMR chemical shift tensors in solid state. J Chem Phys 2019; 150:144706. [PMID: 30981271 DOI: 10.1063/1.5075519] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The effect of the local structure on the 31P NMR chemical shift tensor (CST) has been studied experimentally and simulated theoretically using the density functional theory gauge-independent-atomic-orbital approach. It has been shown that the dominating impact comes from a small number of noncovalent interactions between the phosphorus-containing group under question and the atoms of adjacent molecules. These interactions can be unambiguously identified using the Bader analysis of the electronic density. A robust and computationally effective approach designed to attribute a given experimental 31P CST to a certain local morphology has been elaborated. This approach can be useful in studies of surfaces, complex molecular systems, and amorphous materials.
Collapse
Affiliation(s)
- Ivan Yu Chernyshov
- Department of Quantum Chemistry, D. Mendeleev University of Chemical Technology, Moscow 125047, Russia
| | - Mikhail V Vener
- Department of Quantum Chemistry, D. Mendeleev University of Chemical Technology, Moscow 125047, Russia
| | - Ilya G Shenderovich
- Institute of Organic Chemistry, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
6
|
Mokrai R, Barrett J, Apperley DC, Batsanov AS, Benkő Z, Heift D. Weak Pnictogen Bond with Bismuth: Experimental Evidence Based on Bi-P Through-Space Coupling. Chemistry 2019; 25:4017-4024. [PMID: 30680824 PMCID: PMC6593703 DOI: 10.1002/chem.201900266] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Indexed: 12/21/2022]
Abstract
To study pnictogen bonding involving bismuth, flexible accordion-like molecular complexes of the composition [P(C6 H4 -o-CH2 SCH3 )3 BiX3 ], (X=Cl, Br, I) have been synthesised and characterised. The strength of the weak and mainly electrostatic interaction between the Bi and P centres strongly depends on the character of the halogen substituent on bismuth, which is confirmed by single-crystal X-ray diffraction analyses, DFT and ab initio computations. Significantly, 209 Bi-31 P through-space coupling (J=2560 Hz) is observed in solid-state 31 P NMR spectra, which is so far unprecedented in the literature, delivering direct information on the magnitude of this pnictogen interaction.
Collapse
Affiliation(s)
- Réka Mokrai
- Budapest University of Technology and EconomicsH-1111BudapestHungary
| | - Jamie Barrett
- Department of ChemistryDurham UniversityDH1 3LEDurhamUK
| | | | | | - Zoltán Benkő
- Budapest University of Technology and EconomicsH-1111BudapestHungary
| | | |
Collapse
|
7
|
Lino JBDR, Ramalho TC. Exploring Through-Space Spin-Spin Couplings for Quantum Information Processing: Facing the Challenge of Coherence Time and Control Quantum States. J Phys Chem A 2019; 123:1372-1379. [PMID: 30673241 DOI: 10.1021/acs.jpca.8b09425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nuclear magnetic resonance (NMR) is a powerful tool for studying quantum information processing (QIP). Recently quantum technologies have been proposed to overcome the challenges in large-scale NMR QIP. Furthermore, computational chemistry can promote its improvement. Nuclear spins-1/2 are natural qubits and have been used in most NMR quantum computation experiments. However, molecules that enable many qubits NMR QIP implementations should meet some requirements regarding their spectroscopic properties. Exceptionally large through-space (TS) P-P spin-spin coupling constants (SSCC or J) observed in 1,8-diphosphanaphthalenes (PPN) and in naphtho[1,8- cd]-1,2-dithiole phenylphosphines (NTP) were proposed and investigated to provide more accurate control within large-scale NMR QIP. Spectroscopic properties of PPN and NTP derivatives were explored by theoretical strategies using locally dense basis sets (LDBS). 31P chemical shifts (δ) calculated at the B3LYP/aug-cc-pVTZ-J level and TS P-P SSCCs at the PBE1PBE/pcJ-2 (LDBS-1) level are very close to the experimental data for the PPN molecule. Differently, for the NTP dimer, PBE1PBE/pcJ-2 (LDBS-2) predicts more accurate 31P δ, whereas PBE1PBE/Def2-TZVP (LDBS-1) forecasts more accurate TS P-P SSCCs. From our results, PPNo-F, PPNo-ethyl, and PPNo-NH2 were the best candidates for NMR QIP, in which the large TS SSCCS could face the need of long-time quantum gates implementations. Therefore, it could overcome natural limitations concerning the development of large-scale NMR.
Collapse
Affiliation(s)
| | - Teodorico Castro Ramalho
- Chemistry Department , Federal University of Lavras , 37200-000 Lavras , MG Brazil.,Center for Basic and Applied Research, Faculty of Informatics and Management , University Hradec Kralove , 50003 Hradec Kralove , Czech Republic
| |
Collapse
|
8
|
Aman M, Dostál L, Růžičková Z, Mebs S, Beckmann J, Jambor R. Ambiguous Role of N → Sn Coordinated Stannylene: Lewis Base or Acid? Organometallics 2019. [DOI: 10.1021/acs.organomet.8b00816] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Michal Aman
- Department of General and Inorganic Chemistry, University of Pardubice, 53210 Pardubice, Czech Republic
| | - Libor Dostál
- Department of General and Inorganic Chemistry, University of Pardubice, 53210 Pardubice, Czech Republic
| | - Zdenka Růžičková
- Department of General and Inorganic Chemistry, University of Pardubice, 53210 Pardubice, Czech Republic
| | - Stefan Mebs
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Jens Beckmann
- Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Straße 7, 28359 Bremen, Germany
| | - Roman Jambor
- Department of General and Inorganic Chemistry, University of Pardubice, 53210 Pardubice, Czech Republic
| |
Collapse
|
9
|
Dutta S, Maity B, Thirumalai D, Koley D. Computational Investigation of Carbene–Phosphinidenes: Correlation between 31P Chemical Shifts and Bonding Features to Estimate the π-Backdonation of Carbenes. Inorg Chem 2018. [DOI: 10.1021/acs.inorgchem.8b00174] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sayan Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741 246, India
| | - Bholanath Maity
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741 246, India
| | - D. Thirumalai
- Department of Chemistry, Thiruvalluvar University, Serkkadu, Vellore 632 115, India
| | - Debasis Koley
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741 246, India
| |
Collapse
|
10
|
West JK, Stahl L. Reactions of Germylenes and Stannylenes with Halo(hydrocarbyl)- and Chloro(amino)phosphines: Oxidative Addition versus Ligand Transfer. Inorg Chem 2017; 56:12728-12738. [DOI: 10.1021/acs.inorgchem.7b01275] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joseph K. West
- Department of Chemistry, University of North Dakota, Grand
Forks, North Dakota 58202-9024, United States
| | - Lothar Stahl
- Department of Chemistry, University of North Dakota, Grand
Forks, North Dakota 58202-9024, United States
| |
Collapse
|
11
|
Sanz Camacho P, McKay D, Dawson DM, Kirst C, Yates JR, Green TFG, Cordes DB, Slawin AMZ, Woollins JD, Ashbrook SE. Investigating Unusual Homonuclear Intermolecular “Through-Space” J Couplings in Organochalcogen Systems. Inorg Chem 2016; 55:10881-10887. [DOI: 10.1021/acs.inorgchem.6b01121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Paula Sanz Camacho
- School of Chemistry, EaStCHEM and Centre
of Magnetic Resonance, University of St Andrews, St Andrews, Fife KY16 9ST, U.K
| | - David McKay
- School of Chemistry, EaStCHEM and Centre
of Magnetic Resonance, University of St Andrews, St Andrews, Fife KY16 9ST, U.K
| | - Daniel M. Dawson
- School of Chemistry, EaStCHEM and Centre
of Magnetic Resonance, University of St Andrews, St Andrews, Fife KY16 9ST, U.K
| | - Christin Kirst
- School of Chemistry, EaStCHEM and Centre
of Magnetic Resonance, University of St Andrews, St Andrews, Fife KY16 9ST, U.K
| | | | | | - David B. Cordes
- School of Chemistry, EaStCHEM and Centre
of Magnetic Resonance, University of St Andrews, St Andrews, Fife KY16 9ST, U.K
| | - Alexandra M. Z. Slawin
- School of Chemistry, EaStCHEM and Centre
of Magnetic Resonance, University of St Andrews, St Andrews, Fife KY16 9ST, U.K
| | - J. Derek Woollins
- School of Chemistry, EaStCHEM and Centre
of Magnetic Resonance, University of St Andrews, St Andrews, Fife KY16 9ST, U.K
| | - Sharon E. Ashbrook
- School of Chemistry, EaStCHEM and Centre
of Magnetic Resonance, University of St Andrews, St Andrews, Fife KY16 9ST, U.K
| |
Collapse
|