1
|
Hayton TW, Autschbach J. Using NMR Spectroscopy to Evaluate Metal-Ligand Bond Covalency for the f Elements. Acc Chem Res 2025; 58:488-498. [PMID: 39838941 DOI: 10.1021/acs.accounts.4c00727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
ConspectusUnderstanding f element-ligand covalency is at the center of efforts to design new separations schemes for spent nuclear fuel, and is therefore of signficant fundamental and practical importance. Considerable effort has been invested into quantifying covalency in f element-ligand bonding. Over the past decade, numerous studies have employed a variety of techniques to study covalency, including XANES, EPR, and optical spectroscopies, as well as X-ray crystallography. NMR spectroscopy is another widely available spectroscopic technique that is complementary to these more established methods; however, its use for measuring 4f/5f covalency is still in its infancy. This Account describes efforts in the authors' laboratories to develop and validate multinuclear NMR spectroscopy as a tool for studying metal-ligand covalency in the actinides and selected lanthanide complexes. Thus far, we have quantified M-L covalency for a variety of ligand types, including chalcogenides, carbenes, alkyls, acetylides, amides, and nitrides, and for a variety of isotopes, including 13C, 15N, 77Se, and 125Te. Using NMR spectroscopy to probe M-C and M-N covalency is particularly attractive because of the ready availability of the13C and 15N isotopes (both I = 1/2), and also because these elements are found in some of the most important f element ligand classes, including alkyls, carbenes, polypyridines, amides, imidos, and nitrides.The covalency analysis is based on the chemical shift (δ) and corresponding nuclear shielding constant (σ) of the metal-bound nucleus. The diamagnetic (σdia), paramagnetic (σpara), and spin-orbit contributions (σSO) to σ can be obtained and analyzed by relativistic density functional theory (DFT). Of particular importance is σSO, which arises from the combination of spin-orbit coupling, the magnetic field, and chemical bonding. Its magnitude correlates with the amount of ligand s-character and metal nf (and (n+1)d) character in the M-L bond. In practice, ΔSO, the total difference between calculated chemical shift for the ligand nucleus including vs excluding SO effects, provides a more convenient metric for analysis. For the examples discussed herein, ΔSO accounts primarily for σSO in an f-element complex, but also includes minor SO effects on the other shielding mechanisms and (usually) minor SO effects on the reference shielding. ΔSO can be very large, as in the case of [U(CH2SiMe3)6] (348 ppm), which is not surprising as the An-C bonds in this example exhibits a high degree of covalency (e.g., 20% 5f character). However, even small values of ΔSO can indicate profound bonding effects, as shown by our analysis of [La(C6Cl5)4]-. In this case, ΔSO is only 9 ppm, consistent with a highly ionic La-C bond (e.g., <1% 4f character). Nonetheless, the inclusion of SO effects in the calculation are necessary to achieve good agreement between the predicted and experimentally determined chemical shifts. Overall, the examples discussed herein highlight the exquisite sensitivity of this method to unravel electronic structure in f element complexes.
Collapse
Affiliation(s)
- Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
2
|
Peterson A, Adewuyi JA, Woods JJ, Wacker J, Lukens WW, Abergel RJ, Ung G. Consolidated Curium Reprocessing Procedure Inspires Molecular Design for Sensitized Curium Circularly Polarized Luminescence. Inorg Chem 2024; 63:19752-19758. [PMID: 39375943 DOI: 10.1021/acs.inorgchem.4c02976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Curium's stable redox chemistry and ability to emit strong metal-based luminescence make it uniquely suitable for spectroscopic studies among the actinide series. Targeted ligand and coordination compound design can support both fundamental electronic structure studies and industrial safeguards with the identification of unique spectroscopic signatures. However, limited availability, inherent radioactive hazards, and arduous purifications have long inhibited such investigations of this element. A consolidated reprocessing procedure for curium has been developed for the milligram scale. The recovery of not only standard legacy curium samples but also hazardous legacy perchlorate containing curium samples was achieved, culminating in column chromatography utilizing the extraction resin DGA (N,N,N',N'-tetra-2-ethylhexyldiglycolamide, branched). Surprisingly, controlled elution of the Cm band from the extraction resin was followed through bright pink luminescence triggered by an inexpensive hand-held UV-vis lamp (380-400 nm). This observation inspired the design of an enantiopure, C2-symmetrical ligand bearing a chiral (trans-1,2-diaminocyclohexane) backbone with achiral DGA moieties (N,N,N',N'-tetra-n-octylacetamide), that enabled rarely observed curium circularly polarized luminescence upon metal chelation. These combined achievements should unlock more luminescence and circularly polarized luminescence studies of curium, and enable the recovery of many curium and other trivalent actinide samples.
Collapse
Affiliation(s)
- Appie Peterson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Joseph A Adewuyi
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Joshua J Woods
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jennifer Wacker
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Wayne W Lukens
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Nuclear Engineering and Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Gaël Ung
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
3
|
Peterson A, Kelly SN, Arino T, Gunther SO, Ouellette ET, Wacker JN, Woods JJ, Teat SJ, Lukens WW, Arnold J, Abergel RJ, Minasian SG. Formation of Fully Stoichiometric, Oxidation-State Pure Neptunium and Plutonium Dioxides from Molecular Precursors. Inorg Chem 2024; 63:18417-18428. [PMID: 39284039 PMCID: PMC11445724 DOI: 10.1021/acs.inorgchem.4c02099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024]
Abstract
Amidate-based ligands (N-(tert-butyl)isobutyramide, ITA) bind κ2 to form homoleptic, 8-coordinate complexes with tetravalent 237Np (Np(ITA)4, 1-Np) and 242Pu (Pu(ITA)4, 1-Pu). These compounds complete an isostructural series from Th, U-Pu and allow for the direct comparison between many of the early actinides with stable tetravalent oxidation states by nuclear magnetic resonance (NMR) spectroscopy and single crystal X-ray diffraction (SCXRD). The molecular precursors are subjected to controlled thermolysis under mild conditions with the exclusion of exogenous air and moisture, facilitating the removal of the volatile organic ligands and ligand byproducts. The preformed metal-oxygen bond in the precursor, as well as the metal oxidation state, are maintained through the decomposition, forming fully stoichiometric, oxidation-state pure NpO2 and PuO2. Powder X-ray diffraction (PXRD), scanning transmission electron microscopy (STEM), and energy dispersive X-ray spectroscopy (EDS) elemental mapping supported the evaluation of these high-purity materials. This chemistry is applicable to a wide range of metals, including actinides, with accessible tetravalent oxidation states, and provides a consistent route to analytical standards of importance to the field of nuclear nonproliferation, forensics, and fundamental studies.
Collapse
Affiliation(s)
- Appie Peterson
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Sheridon N. Kelly
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Trevor Arino
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Nuclear Engineering, University of California,
Berkeley, Berkeley, California 94720, United States
| | - S. Olivia Gunther
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Erik T. Ouellette
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Jennifer N. Wacker
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Joshua J. Woods
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Simon J. Teat
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Wayne W. Lukens
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - John Arnold
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Rebecca J. Abergel
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Department
of Nuclear Engineering, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Stefan G. Minasian
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Shaw TE, Jones ZR, Adelman SL, Anderson NH, Bowes EG, Bauer ED, Dan D, Klouda J, Knope KE, Kozimor SA, MacInnes MM, Mocko V, Rocha FR, Root HD, Stein BW, Thompson JD, Wacker JN. PuCl 3{CoCp[OP(OEt) 2] 3}: transuranic elements entering the field of heterometallic molecular chemistry. Chem Sci 2024; 15:12754-12764. [PMID: 39148769 PMCID: PMC11323317 DOI: 10.1039/d4sc01767f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/22/2024] [Indexed: 08/17/2024] Open
Abstract
Recent advances enabled the discovery of heterometallic molecules for many metals: main group, d-block, lanthanides, and some actinides (U, Th). These complexes have at least two different metals joined by bridging ligands or by direct metal-metal bonding interactions. They are attractive because they can enable chemical cooperativity between metals from different parts of the periodic table. Some heterometallics provide access to unique reactivity and others exhibit physical properties that cannot be accessed by homometallic species. We envisioned that transuranic heterometallics might similarly enable new transuranic chemistry, though synthetic routes to such compounds have yet to be developed. Reported here is the first synthesis of a molecular transuranic complex that contains plutonium (Pu) and cobalt (Co). Our analyses of PuCl3{CoCp[OP(OEt)2]3} showed Pu(iv) and Co(iii) were present and suggested that the Pu(iv) oxidation state was stabilized by the electron donating phosphite ligands. This synthetic method - and the demonstration that Pu(iv) can be stabilized in a heterobimetallic molecular setting - provides a foundation for further exploration of transuranic multimetallic chemistry.
Collapse
Affiliation(s)
- Thomas E Shaw
- Los Alamos National Laboratory (LANL) P. O. Box 1663, Los Alamos New Mexico 87545 USA
| | - Zachary R Jones
- Los Alamos National Laboratory (LANL) P. O. Box 1663, Los Alamos New Mexico 87545 USA
| | - Sara L Adelman
- Los Alamos National Laboratory (LANL) P. O. Box 1663, Los Alamos New Mexico 87545 USA
| | - Nickolas H Anderson
- Los Alamos National Laboratory (LANL) P. O. Box 1663, Los Alamos New Mexico 87545 USA
| | - Eric G Bowes
- Los Alamos National Laboratory (LANL) P. O. Box 1663, Los Alamos New Mexico 87545 USA
| | - Eric D Bauer
- Los Alamos National Laboratory (LANL) P. O. Box 1663, Los Alamos New Mexico 87545 USA
| | - David Dan
- Los Alamos National Laboratory (LANL) P. O. Box 1663, Los Alamos New Mexico 87545 USA
| | - Jan Klouda
- Los Alamos National Laboratory (LANL) P. O. Box 1663, Los Alamos New Mexico 87545 USA
| | - Karah E Knope
- Department of Chemistry, Georgetown University 37th and O Streets NW Washington, D.C. 20057 USA
| | - Stosh A Kozimor
- Los Alamos National Laboratory (LANL) P. O. Box 1663, Los Alamos New Mexico 87545 USA
| | - Molly M MacInnes
- Los Alamos National Laboratory (LANL) P. O. Box 1663, Los Alamos New Mexico 87545 USA
| | - Veronika Mocko
- Los Alamos National Laboratory (LANL) P. O. Box 1663, Los Alamos New Mexico 87545 USA
| | - Francisca R Rocha
- Los Alamos National Laboratory (LANL) P. O. Box 1663, Los Alamos New Mexico 87545 USA
| | - Harrison D Root
- Los Alamos National Laboratory (LANL) P. O. Box 1663, Los Alamos New Mexico 87545 USA
| | - Benjamin W Stein
- Los Alamos National Laboratory (LANL) P. O. Box 1663, Los Alamos New Mexico 87545 USA
| | - Joe D Thompson
- Los Alamos National Laboratory (LANL) P. O. Box 1663, Los Alamos New Mexico 87545 USA
| | - Jennifer N Wacker
- Los Alamos National Laboratory (LANL) P. O. Box 1663, Los Alamos New Mexico 87545 USA
- Department of Chemistry, Georgetown University 37th and O Streets NW Washington, D.C. 20057 USA
| |
Collapse
|
5
|
Baker CF, Seed JA, Adams RW, Lee D, Liddle ST. 13C carbene nuclear magnetic resonance chemical shift analysis confirms Ce IV[double bond, length as m-dash]C double bonding in cerium(iv)-diphosphonioalkylidene complexes. Chem Sci 2023; 15:238-249. [PMID: 38131084 PMCID: PMC10732143 DOI: 10.1039/d3sc04449a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Diphosphonioalkylidene dianions have emerged as highly effective ligands for lanthanide and actinide ions, and the resulting formal metal-carbon double bonds have challenged and developed conventional thinking about f-element bond multiplicity and covalency. However, f-element-diphosphonioalkylidene complexes can be represented by several resonance forms that render their metal-carbon double bond status unclear. Here, we report an experimentally-validated 13C Nuclear Magnetic Resonance computational assessment of two cerium(iv)-diphosphonioalkylidene complexes, [Ce(BIPMTMS)(ODipp)2] (1, BIPMTMS = {C(PPh2NSiMe3)2}2-; Dipp = 2,6-diisopropylphenyl) and [Ce(BIPMTMS)2] (2). Decomposing the experimental alkylidene chemical shifts into their corresponding calculated shielding (σ) tensor components verifies that these complexes exhibit Ce[double bond, length as m-dash]C double bonds. Strong magnetic coupling of Ce[double bond, length as m-dash]C σ/π* and π/σ* orbitals produces strongly deshielded σ11 values, a characteristic hallmark of alkylidenes, and the largest 13C chemical shift tensor spans of any alkylidene complex to date (1, 801 ppm; 2, 810 ppm). In contrast, the phosphonium-substituent shielding contributions are much smaller than the Ce[double bond, length as m-dash]C σ- and π-bond components. This study confirms significant Ce 4f-orbital contributions to the Ce[double bond, length as m-dash]C bonding, provides further support for a previously proposed inverse-trans-influence in 2, and reveals variance in the 4f spin-orbit contributions that relate to the alkylidene hybridisation. This work thus confirms the metal-carbon double bond credentials of f-element-diphosphonioalkylidenes, providing quantified benchmarks for understanding diphosphonioalkylidene bonding generally.
Collapse
Affiliation(s)
- Cameron F Baker
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - John A Seed
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ralph W Adams
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Daniel Lee
- Department of Chemical Engineering, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stephen T Liddle
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
6
|
Du J, Hurd J, Seed JA, Balázs G, Scheer M, Adams RW, Lee D, Liddle ST. 31P Nuclear Magnetic Resonance Spectroscopy as a Probe of Thorium-Phosphorus Bond Covalency: Correlating Phosphorus Chemical Shift to Metal-Phosphorus Bond Order. J Am Chem Soc 2023; 145:21766-21784. [PMID: 37768555 PMCID: PMC10571089 DOI: 10.1021/jacs.3c02775] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Indexed: 09/29/2023]
Abstract
We report the use of solution and solid-state 31P Nuclear Magnetic Resonance (NMR) spectroscopy combined with Density Functional Theory calculations to benchmark the covalency of actinide-phosphorus bonds, thus introducing 31P NMR spectroscopy to the investigation of molecular f-element chemical bond covalency. The 31P NMR data for [Th(PH2)(TrenTIPS)] (1, TrenTIPS = {N(CH2CH2NSiPri3)3}3-), [Th(PH)(TrenTIPS)][Na(12C4)2] (2, 12C4 = 12-crown-4 ether), [{Th(TrenTIPS)}2(μ-PH)] (3), and [{Th(TrenTIPS)}2(μ-P)][Na(12C4)2] (4) demonstrate a chemical shift anisotropy (CSA) ordering of (μ-P)3- > (═PH)2- > (μ-PH)2- > (-PH2)1- and for 4 the largest CSA for any bridging phosphido unit. The B3LYP functional with 50% Hartree-Fock mixing produced spin-orbit δiso values that closely match the experimental data, providing experimentally benchmarked quantification of the nature and extent of covalency in the Th-P linkages in 1-4 via Natural Bond Orbital and Natural Localized Molecular Orbital analyses. Shielding analysis revealed that the 31P δiso values are essentially only due to the nature of the Th-P bonds in 1-4, with largely invariant diamagnetic but variable paramagnetic and spin-orbit shieldings that reflect the Th-P bond multiplicities and s-orbital mediated transmission of spin-orbit effects from Th to P. This study has permitted correlation of Th-P δiso values to Mayer bond orders, revealing qualitative correlations generally, but which should be examined with respect to specific ancillary ligand families rather than generally to be quantitative, reflecting that 31P δiso values are a very sensitive reporter due to phosphorus being a soft donor that responds to the rest of the ligand field much more than stronger, harder donors like nitrogen.
Collapse
Affiliation(s)
- Jingzhen Du
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Joseph Hurd
- Department
of Chemical Engineering, The University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - John A. Seed
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Gábor Balázs
- Institute
of Inorganic Chemistry, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Manfred Scheer
- Institute
of Inorganic Chemistry, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Ralph W. Adams
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Daniel Lee
- Department
of Chemical Engineering, The University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Stephen T. Liddle
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| |
Collapse
|
7
|
Skanthakumar S, Yu X, Autschbach J, Soderholm L. Magnetic Properties of Tetravalent Pu in the Perovskites BaPuO 3 and SrPuO 3. Inorg Chem 2023; 62:15891-15901. [PMID: 37721450 DOI: 10.1021/acs.inorgchem.3c01821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BaPuO3 and SrPuO3 were synthesized, and their structures were refined in the orthorhombic space group Pbnm, a common distortion from the classic Pm3̅m cubic perovskite. Magnetic-susceptibility measurements, obtained as a function of temperature over the range of 1.8-320 K, exhibit temperature-dependent behavior, with evidence of long-range magnetic order at temperatures higher than their lanthanide and actinide analogues: BaPuO3 below 164(1) K and SrPuO3 below 76(1) K. Effective moments of 1.66(10)μB for BaPuO3 and 1.84(8)μB for SrPuO3 were obtained by fitting their paramagnetic susceptibilities using the Curie-Weiss law. Both are below the free-ion value of 2.68 μB expected for a Pu4+ 5I4 ground level. Ab initio wave function calculations, performed at the relativistic complete active space level including spin-orbit coupling and with an embedded cluster approach that neglects interactions between Pu centers, were used to generate embedded-cluster Pu4+ magnetic susceptibilities. The calculations agree well with experimental data at higher temperatures, providing evidence that a single-ion representation is sufficient to account for the observed paramagnetic behavior without the need to invoke charge transfer, disproportionation, strong covalent bonding, or other more complex electronic behavior.
Collapse
Affiliation(s)
- S Skanthakumar
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Xiaojuan Yu
- Department of Chemistry, University of Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Jochen Autschbach
- Department of Chemistry, University of Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - L Soderholm
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
8
|
Surbella RG, Ducati LC, Schofield MH, McNamara BK, Pellegrini KL, Corbey JF, Schwantes JM, Autschbach J, Cahill CL. Plutonium Hybrid Materials: A Platform to Explore Assembly and Metal–Ligand Bonding. Inorg Chem 2022; 61:17963-17971. [DOI: 10.1021/acs.inorgchem.2c02084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Robert G. Surbella
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Lucas C. Ducati
- Department of Fundamental Chemistry Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil
| | - Mark H. Schofield
- Department of Chemistry, The George Washington University, 800 22nd Street NW, Washington, District of Columbia 20052, United States
| | - Bruce K. McNamara
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Kristi L. Pellegrini
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Jordan F. Corbey
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Jon M. Schwantes
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, 312 Natural Sciences Complex, Buffalo, New York 14260, United States
| | - Christopher L. Cahill
- Department of Chemistry, The George Washington University, 800 22nd Street NW, Washington, District of Columbia 20052, United States
| |
Collapse
|
9
|
Godsall M, Chilton NF. Investigation of the Electronic Structure and Optical Spectra of Uranium (IV), (V), and (VI) Complexes Using Multiconfigurational Methods. J Phys Chem A 2022; 126:6059-6066. [PMID: 36067502 PMCID: PMC9483975 DOI: 10.1021/acs.jpca.2c03314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Interpreting electronic
spectra of uranium-containing compounds
is an important component of fundamental chemistry as well as in the
assessment of waste streams in the nuclear fuel cycle. Here we employ
multiconfigurational calculations with CASSCF or DMRGSCF methods on
exemplar uranium molecules [UVIO2Cl4]2–, [UV(TRENTIPS)(N)]−, and [UIVCl5(THF)]−, featuring an array of geometries and oxidation states, to determine
their effectiveness in predicting electronic spectra, compared to
literature calculations and experimental data. For [UVIO2Cl4]2–, DMRGSCF alone shows
poor agreement with experiment, which can be improved by adding corrections
for dynamic correlation with MC-PDFT to give results of similar quality
to TD-DFT. However, for [UV(TRENTIPS)(N)]− the addition of dynamical correlation via MC-PDFT
or CASPT2 made no improvements over CASSCF, suggesting that perhaps
other factors such as solvation effects could be more important in
this case. Finally, for [UIVCl5(THF)]−, dynamical correlation included via MS-CASPT2 on top of CASSCF calculations
is crucial to obtaining a quantitatively correct spectrum. Here, MC-PDFT
fails to even qualitatively describe the spectrum, highlighting the
shortcomings of single-state methods in cases of near-degeneracy.
Collapse
Affiliation(s)
- Michael Godsall
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Nicholas F Chilton
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| |
Collapse
|
10
|
Sergentu DC, Autschbach J. Covalency in actinide(iv) hexachlorides in relation to the chlorine K-edge X-ray absorption structure. Chem Sci 2022; 13:3194-3207. [PMID: 35414875 PMCID: PMC8926251 DOI: 10.1039/d1sc06454a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/03/2022] [Indexed: 12/02/2022] Open
Abstract
Chlorine K-edge X-ray absorption near edge structure (XANES) in actinideIV hexachlorides, [AnCl6]2- (An = Th-Pu), is calculated with relativistic multiconfiguration wavefunction theory (WFT). Of particular focus is a 3-peak feature emerging from U toward Pu, and its assignment in terms of donation bonding to the An 5f vs. 6d shells. With or without spin-orbit coupling, the calculated and previously measured XANES spectra are in excellent agreement with respect to relative peak positions, relative peak intensities, and peak assignments. Metal-ligand bonding analyses from WFT and Kohn-Sham theory (KST) predict comparable An 5f and 6d covalency from U to Np and Pu. Although some frontier molecular orbitals in the KST calculations display increasing An 5f-Cl 3p mixing from Th to Pu, because of energetic stabilization of 5f relative to the Cl 3p combinations of the matching symmetry, increasing hybridization is neither seen in the WFT natural orbitals, nor is it reflected in the calculated bond orders. The appearance of the pre-edge peaks from U to Pu and their relative intensities are rationalized simply by the energetic separation of transitions to 6d t2g versus transitions to weakly-bonded and strongly stabilized a2u, t2u and t1u orbitals with 5f character. The study highlights potential pitfalls when interpreting XANES spectra based on ground state Kohn-Sham molecular orbitals.
Collapse
Affiliation(s)
- Dumitru-Claudiu Sergentu
- Department of Chemistry, University at Buffalo State University of New York Buffalo NY 14260-3000 USA
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo State University of New York Buffalo NY 14260-3000 USA
| |
Collapse
|
11
|
Sergentu DC, Gendron F, Walter ED, Park S, Capan C, Surbella RG, Soderquist CZ, Hall GB, Sinkov SI, Autschbach J, Cho H. Equatorial Electronic Structure in the Uranyl Ion: Cs 2UO 2Cl 4 and Cs 2UO 2Br 4. Inorg Chem 2021; 61:3821-3831. [PMID: 34817159 DOI: 10.1021/acs.inorgchem.1c02832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electric field gradient (EFG) tensors in the equatorial plane of the linear UO22+ ion have been measured by nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) experiments and computed by relativistic Kohn-Sham methods with and without environment embedding for Cs2UO2Cl4 and Cs2UO2Br4. This approach expands the possibilities for probing the electronic structure in uranyl complexes beyond the strongly covalent U-O bonds. The combined analyses find that one of the two largest principal EFG tensor components at the halogen sites points along the U-X bond (X = Cl, Br), and the second is parallel to the UO22+ ion; in Cs2UO2Cl4, the components are nearly equal in magnitude, whereas in Cs2UO2Br4, due to short-range bromide-cesium interactions, the equatorial component is dominant for one pair of Br sites and the axial component is larger for the second pair. The directions and relative magnitudes of the field gradient principal axes are found to be sensitive to the σ and π electron donation by the ligands and the model of the environment. Chlorine-35 NQR spectra of 235U-depleted and 235U-enriched Cs2UO2Cl4 exhibited no uranium-isotope-dependent shift, but the resonance of the depleted sample displayed a 58% broader line width.
Collapse
Affiliation(s)
- Dumitru-Claudiu Sergentu
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Frédéric Gendron
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Eric D Walter
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Sejun Park
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Cigdem Capan
- Washington State University, Richland, Washington 99354, United States
| | - R Gian Surbella
- National Security Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Chuck Z Soderquist
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Gabriel B Hall
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Sergey I Sinkov
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Herman Cho
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
12
|
Du J, Seed JA, Berryman VEJ, Kaltsoyannis N, Adams RW, Lee D, Liddle ST. Exceptional uranium(VI)-nitride triple bond covalency from 15N nuclear magnetic resonance spectroscopy and quantum chemical analysis. Nat Commun 2021; 12:5649. [PMID: 34561448 PMCID: PMC8463702 DOI: 10.1038/s41467-021-25863-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/06/2021] [Indexed: 11/24/2022] Open
Abstract
Determining the nature and extent of covalency of early actinide chemical bonding is a fundamentally important challenge. Recently, X-ray absorption, electron paramagnetic, and nuclear magnetic resonance spectroscopic studies have probed actinide-ligand covalency, largely confirming the paradigm of early actinide bonding varying from ionic to polarised-covalent, with this range sitting on the continuum between ionic lanthanide and more covalent d transition metal analogues. Here, we report measurement of the covalency of a terminal uranium(VI)-nitride by 15N nuclear magnetic resonance spectroscopy, and find an exceptional nitride chemical shift and chemical shift anisotropy. This redefines the 15N nuclear magnetic resonance spectroscopy parameter space, and experimentally confirms a prior computational prediction that the uranium(VI)-nitride triple bond is not only highly covalent, but, more so than d transition metal analogues. These results enable construction of general, predictive metal-ligand 15N chemical shift-bond order correlations, and reframe our understanding of actinide chemical bonding to guide future studies.
Collapse
Affiliation(s)
- Jingzhen Du
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - John A Seed
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Victoria E J Berryman
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Nikolas Kaltsoyannis
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Ralph W Adams
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Daniel Lee
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, M13 9PL, UK.
| | - Stephen T Liddle
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
13
|
Alvarez S. Continuous Shape Measures Study of the Coordination Spheres of Actinide Complexes – Part 1: Low Coordination Numbers. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Santiago Alvarez
- Department de Química Inorgànica i Orgànica – Secció de Química Inorgànica and Institut de Química Teòrica i Computacional Universitat de Barcelona Martí i Franquès 1 08028 Barcelona Spain
| |
Collapse
|
14
|
Sergentu DC, Kent GT, Staun SL, Yu X, Cho H, Autschbach J, Hayton TW. Probing the Electronic Structure of a Thorium Nitride Complex by Solid-State 15N NMR Spectroscopy. Inorg Chem 2020; 59:10138-10145. [DOI: 10.1021/acs.inorgchem.0c01263] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Dumitru-Claudiu Sergentu
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Greggory T. Kent
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Selena L. Staun
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Xiaojuan Yu
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Herman Cho
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, 908 Battelle Boulevard, Richland, Washington 99354, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Trevor W. Hayton
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
15
|
Wacker JN, Han SY, Murray AV, Vanagas NA, Bertke JA, Sperling JM, Surbella RG, Knope KE. From Thorium to Plutonium: Trends in Actinide(IV) Chloride Structural Chemistry. Inorg Chem 2019; 58:10578-10591. [DOI: 10.1021/acs.inorgchem.9b01279] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jennifer N. Wacker
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Sae Young Han
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Aphra V. Murray
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Nicole A. Vanagas
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Jeffery A. Bertke
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Joseph M. Sperling
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Robert G. Surbella
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Karah E. Knope
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| |
Collapse
|
16
|
Abstract
Over the past 25 years, magnetic actinide complexes have been the object of considerable attention, not only at the experimental level, but also at the theoretical one. Such systems are of great interest, owing to the well-known larger spin–orbit coupling for actinide ions, and could exhibit slow relaxation of the magnetization, arising from a large anisotropy barrier, and magnetic hysteresis of purely molecular origin below a given blocking temperature. Furthermore, more diffuse 5f orbitals than lanthanide 4f ones (more covalency) could lead to stronger magnetic super-exchange. On the other hand, the extraordinary experimental challenges of actinide complexes chemistry, because of their rarity and toxicity, afford computational chemistry a particularly valuable role. However, for such a purpose, the use of a multiconfigurational post-Hartree-Fock approach is required, but such an approach is computationally demanding for polymetallic systems—notably for actinide ones—and usually simplified models are considered instead of the actual systems. Thus, Density Functional Theory (DFT) appears as an alternative tool to compute magnetic exchange coupling and to explore the electronic structure and magnetic properties of actinide-containing molecules, especially when the considered systems are very large. In this paper, relevant achievements regarding DFT investigations of the magnetic properties of actinide complexes are surveyed, with particular emphasis on some representative examples that illustrate the subject, including actinides in Single Molecular Magnets (SMMs) and systems featuring metal-metal super-exchange coupling interactions. Examples are drawn from studies that are either entirely computational or are combined experimental/computational investigations in which the latter play a significant role.
Collapse
|
17
|
Su J, Batista ER, Boland KS, Bone SE, Bradley JA, Cary SK, Clark DL, Conradson SD, Ditter AS, Kaltsoyannis N, Keith JM, Kerridge A, Kozimor SA, Löble MW, Martin RL, Minasian SG, Mocko V, La Pierre HS, Seidler GT, Shuh DK, Wilkerson MP, Wolfsberg LE, Yang P. Energy-Degeneracy-Driven Covalency in Actinide Bonding. J Am Chem Soc 2018; 140:17977-17984. [DOI: 10.1021/jacs.8b09436] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jing Su
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, United States
| | - Enrique R. Batista
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, United States
| | - Kevin S. Boland
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, United States
| | - Sharon E. Bone
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, United States
| | - Joseph A. Bradley
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, United States
- University of Washington, Seattle, Washington 98195, United States
| | - Samantha K. Cary
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, United States
| | - David L. Clark
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, United States
| | - Steven D. Conradson
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, United States
| | - Alex S. Ditter
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, United States
- University of Washington, Seattle, Washington 98195, United States
| | - Nikolas Kaltsoyannis
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Jason M. Keith
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, United States
| | | | - Stosh A. Kozimor
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, United States
| | - Matthias W. Löble
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, United States
| | - Richard L. Martin
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, United States
| | - Stefan G. Minasian
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, United States
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Veronika Mocko
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, United States
| | - Henry S. La Pierre
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, United States
| | | | - David K. Shuh
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Marianne P. Wilkerson
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, United States
| | - Laura E. Wolfsberg
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, United States
| | - Ping Yang
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
18
|
Ringgold M, Rehe D, Hrobárik P, Kornienko AY, Emge TJ, Brennan JG. Thorium Cubanes–Synthesis, Solid-State and Solution Structures, Thermolysis, and Chalcogen Exchange Reactions. Inorg Chem 2018; 57:7129-7141. [DOI: 10.1021/acs.inorgchem.8b00836] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marissa Ringgold
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - David Rehe
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - Peter Hrobárik
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, SK-84215 Bratislava, Slovakia
| | - Anna Y. Kornienko
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - Thomas J. Emge
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - John G. Brennan
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| |
Collapse
|
19
|
Jung J, Atanasov M, Neese F. Ab Initio Ligand-Field Theory Analysis and Covalency Trends in Actinide and Lanthanide Free Ions and Octahedral Complexes. Inorg Chem 2017; 56:8802-8816. [DOI: 10.1021/acs.inorgchem.7b00642] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Julie Jung
- Max Planck Institut für Chemische Energiekonversion, Stifstrasse 34−36, D-45470 Mülheim an der
Ruhr, Germany
| | - Mihail Atanasov
- Max Planck Institut für Chemische Energiekonversion, Stifstrasse 34−36, D-45470 Mülheim an der
Ruhr, Germany
- Institute of General and
Inorganic Chemistry, Bulgarian Academy of Sciences, Akad. Georgi
Bontchev Street 11, 1113 Sofia, Bulgaria
| | - Frank Neese
- Max Planck Institut für Chemische Energiekonversion, Stifstrasse 34−36, D-45470 Mülheim an der
Ruhr, Germany
| |
Collapse
|
20
|
Gendron F, Autschbach J. Puzzling Lack of Temperature Dependence of the PuO 2 Magnetic Susceptibility Explained According to Ab Initio Wave Function Calculations. J Phys Chem Lett 2017; 8:673-678. [PMID: 28112941 DOI: 10.1021/acs.jpclett.6b02968] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The electronic structure and the magnetic properties of solid PuO2 are investigated by wave function theory calculations, using a relativistic complete active space (CAS) approach including spin-orbit coupling. The experimental magnetic susceptibility is well reproduced by calculations for an embedded PuO812- cluster model. The calculations indicate that the surprising lack of temperature dependence of the magnetic susceptibility χ of solid PuO2 can be rationalized based on the properties of a single Pu4+ ion in the cubic ligand field of the surrounding oxygen ions. Below ∼300 K, the only populated state is the nonmagnetic ground state, leading to standard temperature-independent paramagnetism (TIP). Above 300 K, there is an almost perfect cancellation of temperature-dependent contributions to χ that depends delicately on the mixing of ion levels in the electronic states, their relative energies, and the magnetic coupling between them.
Collapse
Affiliation(s)
- Frédéric Gendron
- Department of Chemistry, University at Buffalo, State University of New York , Buffalo, New York 14260-3000, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York , Buffalo, New York 14260-3000, United States
| |
Collapse
|
21
|
Autillo M, Guerin L, Guillaumont D, Moisy P, Bolvin H, Berthon C. Paramagnetism of Aqueous Actinide Cations. Part II: Theoretical Aspects and New Measurements on An(IV). Inorg Chem 2016; 55:12149-12157. [DOI: 10.1021/acs.inorgchem.6b01449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Matthieu Autillo
- Nuclear Energy Division, RadioChemistry & Processes Department, CEA, Service de modélisation et de chimie des procédés et de Séparation, SMCS LILA, F-30207 Bagnols sur Cèze, France
| | - Laetitia Guerin
- Nuclear Energy Division, RadioChemistry & Processes Department, CEA, Service de modélisation et de chimie des procédés et de Séparation, SMCS LILA, F-30207 Bagnols sur Cèze, France
| | - Dominique Guillaumont
- Nuclear Energy Division, RadioChemistry & Processes Department, CEA, Service de modélisation et de chimie des procédés et de Séparation, SMCS LILA, F-30207 Bagnols sur Cèze, France
| | - Philippe Moisy
- Nuclear Energy Division, RadioChemistry & Processes Department, CEA, Service de modélisation et de chimie des procédés et de Séparation, SMCS LILA, F-30207 Bagnols sur Cèze, France
| | - Hélène Bolvin
- Laboratoire
de Physique et de Chimie Quantiques, Université Toulouse 3, 118 Route
de Narbonne, 31062 Toulouse, France
| | - Claude Berthon
- Nuclear Energy Division, RadioChemistry & Processes Department, CEA, Service de modélisation et de chimie des procédés et de Séparation, SMCS LILA, F-30207 Bagnols sur Cèze, France
| |
Collapse
|