1
|
Huang P, Yoshida Y, Komatsu T, Nakamura Y, Sugimoto K, Kitagawa H. Isomerization-Controlled Proton-Electron Coupling in a π-Planar Metal Complex. Inorg Chem 2023; 62:1135-1140. [PMID: 36632676 DOI: 10.1021/acs.inorgchem.2c03417] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Proton-coupled electron transfer (PCET) is a ubiquitous and fundamental process in biochemistry and electrochemistry performed by transition-metal complexes. Most synthetic efforts have been devoted to selecting the components, that is, metal ions and ligands, to control the proton-electron coupling. Here, we show the first example of controlling the proton-electron coupling using the cis-trans metal-ligand isomerization in a π-planar platinum complex, Pt(itsq)2 (itsq1-: o-iminothiosemiquinonate). Both the isomers, which were obtained separately, were characterized by single-crystal X-ray diffraction, and the cis-to-trans isomerization was achieved by immersing in organic solvents. Theoretical calculations predicted that the proton-electron coupling evaluated from the energetic stabilization of the lowest unoccupied molecular orbital by protonation varies greatly depending on the geometrical configuration compared to the metal substitution.
Collapse
Affiliation(s)
- Pingping Huang
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto606-8502, Japan
| | - Yukihiro Yoshida
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto606-8502, Japan
| | - Tokutaro Komatsu
- School of Medicine, Nihon University, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo173-8610, Japan
| | - Yuiga Nakamura
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo679-5198, Japan
| | - Kunihisa Sugimoto
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo679-5198, Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto606-8502, Japan
| |
Collapse
|
2
|
Schallenberg D, Pardemann N, Villinger A, Seidel WW. Synthesis and coordination behaviour of 1 H-1,2,3-triazole-4,5-dithiolates. Dalton Trans 2022; 51:13681-13691. [PMID: 36000523 DOI: 10.1039/d2dt00410k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparative access to and first group 10 metal complexes of novel 1H-1,2,3-triazole-4,5-dithiolate ligands (tazdt2-) are reported. A set of S-protected 1H-1,2,3-triazole-4,5-dithiol derivatives with R1 = 2,6-dimethylphenyl (Xy) or benzyl (Bn) at N1 and with R2 = Bn or trimethylsilylethyl (TMS-ethyl) at both S atoms were synthesized by a 1,3-dipolar cycloaddition catalysed by either Ru(II) or Cu(I). Extensive investigations on the removal of the protective groups resulted the reductive removal of benzyl groups to be superior in isolating the free 4,5-dithiols of R1N3C2(SH)2 with R1 = Xy (H2-8) or Bn (H2-9). Coordination of these ligands led to the formation of the metal complexes [(η5-C5H5)2Ti(8)], [Ni(dppe)(8)], [Ni(dppe)(9)], [Pd(dppe)(9)] {dppe = bis(diphenylphosphanyl)ethane} and homoleptic (NBu4)n[Ni(8)2] (n = 1, 2). All complexes were fully characterized including structure determination by single crystal XRD. The electronic properties of the Ni and Pd complexes were determined by cyclic voltammetry, UV/vis and EPR spectroscopy supported by DFT calculations. According to the spectral and electrochemical data, the tazdt2- complexes resemble the corresponding benzene-1,2-dithiolate (bdt2-) type compounds reflecting the restricted influence of the electron-withdrawing N3 moiety in the backbone. DSC-TGA measurements with [(η5-C5H5)2Ti(8)] and [Ni(dppe)(8)] indicate a well-defined thermal process involving simultaneous elimination of both N2 and CS.
Collapse
Affiliation(s)
- David Schallenberg
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.
| | - Nils Pardemann
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.
| | - Alexander Villinger
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.
| | - Wolfram W Seidel
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany. .,Leibniz Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| |
Collapse
|
3
|
Huang P, Yoshida Y, Nakano Y, Yamochi H, Hayashi M, Kitagawa H. Strong Proton‐Electron Coupling in π‐Planar Metal Complex with Redox‐Active Ligands. Angew Chem Int Ed Engl 2022; 61:e202204521. [DOI: 10.1002/anie.202204521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Pingping Huang
- Division of Chemistry, Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho Sakyo-ku Kyoto 606-8502 Japan
| | - Yukihiro Yoshida
- Division of Chemistry, Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho Sakyo-ku Kyoto 606-8502 Japan
| | - Yoshiaki Nakano
- Division of Chemistry, Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho Sakyo-ku Kyoto 606-8502 Japan
- Division of Chemistry, Graduate School of Science Kyoto University Yoshida Honmachi Sakyo-ku Kyoto 606–8501 Japan
| | - Hideki Yamochi
- Division of Chemistry, Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho Sakyo-ku Kyoto 606-8502 Japan
- Division of Chemistry, Graduate School of Science Kyoto University Yoshida Honmachi Sakyo-ku Kyoto 606–8501 Japan
| | - Mikihiro Hayashi
- Faculty of Education Nagasaki University 1-14 Bunkyo-machi Nagasaki 852-8521 Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
4
|
Mori H, Yokomori S, Dekura S, Ueda A. Proton-electron-coupled functionalities of conductivity, magnetism, and optical properties in molecular crystals. Chem Commun (Camb) 2022; 58:5668-5682. [PMID: 35420071 DOI: 10.1039/d1cc06826a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proton-electron-coupled reactions, specifically proton-coupled electron transfer (PCET), in biological and chemical processes have been extensively investigated for use in a wide variety of applications, including energy conversion and storage. However, the exploration of the functionalities of the conductivity, magnetism, and dielectrics by proton-electron coupling in molecular materials is challenging. Dynamic and static proton-electron-coupled functionalities are to be expected. This feature article highlights the recent progress in the development of functionalities of dynamic proton-electron coupling in molecular materials. Herein, single-unit conductivity by self-doping, quantum spin liquid state coupled with quantum fluctuation of protons, switching of conductivity and magnetism triggered by the disorder-order transition of deuterons, and their external responses under pressure and in the presence of an electric field are introduced. In addition, as for the functionalities of proton-d/π-electron coupling in metal dithiolene complexes, magnetic switching with multiple PCET and vapochromism induced by electron transfer through hydrogen-bond (H-bond) formation is introduced experimentally and theoretically. We also outlined the basic and applied issues and potential challenges for development of proton-electron-coupled molecular materials, functionalities, and devices.
Collapse
Affiliation(s)
- Hatsumi Mori
- The Institute for Solid State Physics, the University of Tokyo, 5-1-5 Kashiwabiha, Kashiwa 277-8581, Japan
| | - So Yokomori
- The Institute for Solid State Physics, the University of Tokyo, 5-1-5 Kashiwabiha, Kashiwa 277-8581, Japan
| | - Shun Dekura
- The Institute for Solid State Physics, the University of Tokyo, 5-1-5 Kashiwabiha, Kashiwa 277-8581, Japan
| | - Akira Ueda
- Department of Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| |
Collapse
|
5
|
Huang P, Yoshida Y, Nakano Y, Yamochi H, Hayashi M, Kitagawa H. Strong Proton‐Electron Coupling in π‐Planar Metal Complex with Redox‐Active Ligands. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pingping Huang
- Division of Chemistry, Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho Sakyo-ku Kyoto 606-8502 Japan
| | - Yukihiro Yoshida
- Division of Chemistry, Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho Sakyo-ku Kyoto 606-8502 Japan
| | - Yoshiaki Nakano
- Division of Chemistry, Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho Sakyo-ku Kyoto 606-8502 Japan
- Division of Chemistry, Graduate School of Science Kyoto University Yoshida Honmachi Sakyo-ku Kyoto 606–8501 Japan
| | - Hideki Yamochi
- Division of Chemistry, Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho Sakyo-ku Kyoto 606-8502 Japan
- Division of Chemistry, Graduate School of Science Kyoto University Yoshida Honmachi Sakyo-ku Kyoto 606–8501 Japan
| | - Mikihiro Hayashi
- Faculty of Education Nagasaki University 1-14 Bunkyo-machi Nagasaki 852-8521 Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
6
|
Deng X, Zheng SL, Zhong YH, Hu J, Chung LH, He J. Conductive MOFs based on Thiol-functionalized Linkers: Challenges, Opportunities, and Recent Advances. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214235] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Henfling S, Kultaeva A, Pöppl A, Klose J, Kersting B, Domasevitch KV, Krautscheid H. Proton and Electron Transfer in the Formation of a Copper Dithiolene-Based Coordination Polymer. Inorg Chem 2021; 60:9008-9018. [PMID: 34077201 DOI: 10.1021/acs.inorgchem.1c00914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal bis(dithiolene) complexes are promising building blocks for electrically conductive coordination polymers. N-Heterocyclic dithiolene complexes allow their cross-linking via the coordination of N-donor atoms to additional transition metal ions. In this study, we present the formal copper(II) and copper(III) 6,7-quinoxalinedithiolene complexes [Cu(qdt)2]- and [Cu(qdt)2]2- (qdt2-: 6,7-quinoxalinedithiolate), as well as the 2D coordination polymer Cu[Cu(Hqdt)(qdt)] (3). The dithiolene complexes were isolated as (Bu4N)2[Cu(qdt)2] (1), Na[Cu(qdt)2]·4H2O (2a), [Na(acetone)4][Cu(qdt)2] (2b), and [Ni(MeOH)6][Cu(qdt)2]2·2H2O (2c). Their crystal structures reveal nearly planar complexes with a high tendency of π-stacking. For a better understanding of their coordination behavior, the electronic properties are investigated by UV-vis-NIR spectroscopy, cyclic voltammetry, and DFT simulations. The synthesis of the 2D coordination polymer 3 involves the reduction and protonation of the monoanionic copper(III) complex. A combination of powder X-ray diffraction, magnetic susceptibility measurements, as well as IR and EPR spectroscopy confirm that formal [CuII(Hqdt)(qdt)]- units link trigonal planar copper(I) atoms to a dense 2D coordination polymer. The electrical conductivity of 3 at room temperature is 2 × 10-7 S/cm. Temperature dependent conductivity measurements confirm the semiconducting behavior of 3 with an Arrhenius derived activation energy of 0.33 eV. The strong absorption of 3 in the visible and NIR regions of the spectrum is caused by the small optical band gap of Eg,opt = 0.65 eV, determined by diffuse reflectance spectroscopy. This study sheds light on the coordination chemistry of N-heterocyclic dithiolene complexes and may serve as a reference for the future design and synthesis of dithiolene-based coordination polymers with interesting electrical and magnetic properties.
Collapse
Affiliation(s)
- Stefan Henfling
- Institute for Inorganic Chemistry, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
| | - Anastasia Kultaeva
- Felix Bloch Institute for Solid State Physics, Universität Leipzig, Linnéstraße 5, D-04103 Leipzig, Germany.,Faculty of Chemistry and Biochemistry, Ruhr University Bochum, D-44801 Bochum, Germany
| | - Andreas Pöppl
- Felix Bloch Institute for Solid State Physics, Universität Leipzig, Linnéstraße 5, D-04103 Leipzig, Germany
| | - Jennifer Klose
- Institute for Inorganic Chemistry, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
| | - Berthold Kersting
- Institute for Inorganic Chemistry, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
| | - Kostiantyn V Domasevitch
- Department of Inorganic Chemistry, University of Kiev, Volodimirska Street 64, UA-25033 Kiev, Ukraine
| | - Harald Krautscheid
- Institute for Inorganic Chemistry, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
| |
Collapse
|
8
|
Henfling S, Kempt R, Klose J, Kuc A, Kersting B, Krautscheid H. Dithiol-Dithione Tautomerism of 2,3-Pyrazinedithiol in the Synthesis of Copper and Silver Coordination Compounds. Inorg Chem 2020; 59:16441-16453. [PMID: 33091305 DOI: 10.1021/acs.inorgchem.0c02203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A promising strategy for new electrically conductive coordination polymers is the combination of d10 metal ions, which tolerate short metal···metal distances, with dithiolene linkers, known for their "non-innocent" redox behavior. This study explores the coordination chemistry of 2,3-pyrazinedithiol (H2pdt) toward Cu+ and Ag+ ions, highlighting similarities and differences. The synthetic approach, starting with the fully protonated ligand, allowed the isolation of a homoleptic bis(dithiolene) complex with formal CuI atoms, [Cu(H2pdt)2]Cl (1). This complex was further transformed to a 1D coordination polymer with short metal···metal distances, 1D[Cu(Hpdt)] (2Cu). The larger Ag+ ion directly built up a very similar coordination polymer, 1D[Ag(Hpdt)] (2Ag), without any appearance of an intermediate metal complex. The coordination polymer 1D[Cu(H2pdt)I] (4), like complex 1, bears fully protonated H2pdt ligands in their dithione form. Upon heating, both compounds underwent auto-oxidation coupled with a dehydrogenation of the ligand to form the open-shell neutral copper(II) complex [Cu(Hpdt)2] (3) and the coordination polymer 1D[Cu2I2(H2pdt)(Hpdt)] (5), respectively. For all presented compounds, crystal structures are discussed in-depth. Furthermore, properties of 1, 3, and those of the three 1D coordination polymers, 2Ag, 2Cu, and 4, were investigated by UV-vis-NIR spectroscopy, cyclic voltammetry, and variable-temperature magnetic susceptibility, and direct current (dc)-conductivity measurements. The experimental results are compared and discussed with the aid of DFT simulations.
Collapse
Affiliation(s)
- Stefan Henfling
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
| | - Roman Kempt
- Technische Universität Dresden, Professur für Theoretische Chemie, Bergstrasse 66c, D-01062 Dresden, Germany
| | - Jennifer Klose
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
| | - Agnieszka Kuc
- Helmholtz-Zentrum Dresden-Rossendorf, Forschungsstelle Leipzig, Abteilung Reaktiver Transport, Institut für Ressourcenökologie, Permoserstrasse 15, D-04318 Leipzig, Germany
| | - Berthold Kersting
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
| | - Harald Krautscheid
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
| |
Collapse
|
9
|
Tahara K, Abe M. Stimuli-responsive Mixed-valence Architectures: Synthetic Design and Interplay between Mobile and Introduced Charges. CHEM LETT 2020. [DOI: 10.1246/cl.200069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Keishiro Tahara
- Department of Material Science, Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Masaaki Abe
- Department of Material Science, Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| |
Collapse
|
10
|
Tahara K, Terashita N, Tokunaga K, Yabumoto S, Kikuchi JI, Ozawa Y, Abe M. Zwitterionic Mixed Valence: Internalizing Counteranions into a Biferrocenium Framework toward Molecular Expression of Half-Cells in Quantum Cellular Automata. Chemistry 2019; 25:13728-13738. [PMID: 31376186 DOI: 10.1002/chem.201902840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/26/2019] [Indexed: 01/26/2023]
Abstract
Realization of molecular quantum cellular automata (QCA), a promising architecture for molecular computing through current-free processes, requires improved understanding and application of mixed-valence (MV) molecules. In this report, we present an electrostatic approach to creating MV subspecies through internalizing opposite charges in close proximity to MV ionic moieties. This approach is demonstrated by unsymmetrically attaching a charge-responsive boron substituent to a well-known organometallic MV complex, biferrocenium. Guest anions (CN- and F- ) bind to the Lewis acidic boron center, leading to unusual blue-shifts of the intervalence charge-transfer (IVCT) bands. To the best of our knowledge, this is the first reported example of a zwitterionic MV series in which the degree of positive charge delocalization can be varied by changing the bound anions, and serves to clarify the interplay between IVCT parameters. The key underlying factor is the variable zero-level energy difference in the MV states. This work provides new insight into imbuing MV molecules with external charge-responsiveness, a prerequisite of molecular QCA techniques.
Collapse
Affiliation(s)
- Keishiro Tahara
- Department of Material Science, Graduate School of Material Science, University of Hyogo, 3-2-1, Kouto, Kamigori, Ako, Hyogo, 678-1297, Japan
| | - Nazuna Terashita
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Ken Tokunaga
- Division of Liberal Arts, Centre for Promotion of Higher Education, Kogakuin University, 2665-1, Nakano, Hachioji, Tokyo, 192-0015, Japan
| | - Shiomi Yabumoto
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Jun-Ichi Kikuchi
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Yoshiki Ozawa
- Department of Material Science, Graduate School of Material Science, University of Hyogo, 3-2-1, Kouto, Kamigori, Ako, Hyogo, 678-1297, Japan
| | - Masaaki Abe
- Department of Material Science, Graduate School of Material Science, University of Hyogo, 3-2-1, Kouto, Kamigori, Ako, Hyogo, 678-1297, Japan
| |
Collapse
|
11
|
Tahara K, Koyama H, Fujitsuka M, Tokunaga K, Lei X, Majima T, Kikuchi JI, Ozawa Y, Abe M. Charge-Separated Mixed Valency in an Unsymmetrical Acceptor-Donor-Donor Triad Based on Diarylboryl and Triarylamine Units. J Org Chem 2019; 84:8910-8920. [PMID: 31072099 DOI: 10.1021/acs.joc.9b00836] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we report the generation of new mixed-valence (MV) subspecies with charge-separated (CS) characters from an unsymmetrical acceptor-donor-donor (A-D-D) triad. The triad was synthesized by attaching a dimesitylboryl group (A) to a D-D conjugate that consisted of triarylamine (NAr3) units. The MV radical cation, obtained by chemical oxidation of the triad, exhibited a strong intervalence charge transfer (IVCT) absorption derived from the bis(NAr3)•+ moiety in the near-IR region. The charge-separated MV (CSMV) state, obtained by photoexcitation of the triad, caused a blue shift in IVCT energy in the femtosecond transient absorption spectra, reflecting a bias of positive charge distributions to the D end site. This resulted from increased electron density at the A site and restructuring of the central D site from NAr3 to NAr2 sites. Interestingly, any shift in the IVCT energy that was caused by the polarity of the solvent was minimal, reflecting the unique characteristics of the CSMV state. These findings represent the first detailed analysis of the CSMV state, including a comparison with conventional MV states. Therefore, this work provides new insights into counterion-free MV systems and their applications in molecular devices.
Collapse
Affiliation(s)
- Keishiro Tahara
- Department of Material Science and Research Center for New Functional Materials, Graduate School of Material Science , University of Hyogo , 3-2-1, Kouto , Kamigori, Ako , Hyogo 678-1297 , Japan
| | - Haruya Koyama
- Graduate School of Materials Science , Nara Institute of Science and Technology , 8916-5, Takayama , Ikoma, Nara 630-0192 , Japan
| | - Mamoru Fujitsuka
- Institute of Scientific and Industrial Research (SANKEN) , Osaka University , 8-1, Mihogaoka , Ibaraki , Osaka 567-0047 , Japan
| | - Ken Tokunaga
- Division of Liberal Arts, Centre for Promotion of Higher Education , Kogakuin University , 2665-1, Nakano , Hachioji, Tokyo 192-0015 , Japan
| | - Xu Lei
- Institute of Scientific and Industrial Research (SANKEN) , Osaka University , 8-1, Mihogaoka , Ibaraki , Osaka 567-0047 , Japan
| | - Tetsuro Majima
- Institute of Scientific and Industrial Research (SANKEN) , Osaka University , 8-1, Mihogaoka , Ibaraki , Osaka 567-0047 , Japan
| | - Jun-Ichi Kikuchi
- Graduate School of Materials Science , Nara Institute of Science and Technology , 8916-5, Takayama , Ikoma, Nara 630-0192 , Japan
| | - Yoshiki Ozawa
- Department of Material Science and Research Center for New Functional Materials, Graduate School of Material Science , University of Hyogo , 3-2-1, Kouto , Kamigori, Ako , Hyogo 678-1297 , Japan
| | - Masaaki Abe
- Department of Material Science and Research Center for New Functional Materials, Graduate School of Material Science , University of Hyogo , 3-2-1, Kouto , Kamigori, Ako , Hyogo 678-1297 , Japan
| |
Collapse
|
12
|
Kimura Y, Hayashi M, Yoshida Y, Kitagawa H. Rational Design of Proton-Electron-Transfer System Based on Nickel Dithiolene Complexes with Pyrazine Skeletons. Inorg Chem 2019; 58:3875-3880. [PMID: 30794423 DOI: 10.1021/acs.inorgchem.8b03501] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To understand the effect of chemical modification on the stability and proton-electron coupling in neutral radical molecules with a proton-electron-transfer (PET) state, we investigate a nickel dithiolene complex with cyano-substituted pyrazine skeletons using experimental and theoretical methods. A Pourbaix diagram constructed from absorption spectroscopic and cyclic voltammetric measurements strongly suggests that the PET state of the complex is significantly more stable compared with that of the nonsubstituted complex. Theoretical calculations predicted that the introduction of electron-withdrawing groups leads to stabilization of the PET state mainly because of a greater delocalized electron distribution in the molecule. Crystallographic studies, with the support of theoretical calculations, revealed that the degree of coupling between protons and electrons varies depending on the Hammett σ value of the substituents; the electronic state of the nonsubstituted complex appears to be most sensitive to the protonated state mainly owing to the spatially confined π-electron system.
Collapse
Affiliation(s)
- Yojiro Kimura
- Division of Chemistry, Graduate School of Science , Kyoto University , Kitashirakawa-Oiwakecho , Sakyo-ku , Kyoto 606-8502 , Japan
| | - Mikihiro Hayashi
- Division of Chemistry, Graduate School of Science , Kyoto University , Kitashirakawa-Oiwakecho , Sakyo-ku , Kyoto 606-8502 , Japan.,Faculty of Education , Nagasaki University , 1-14 Bunkyo-machi , Nagasaki 852-8521 , Japan
| | - Yukihiro Yoshida
- Division of Chemistry, Graduate School of Science , Kyoto University , Kitashirakawa-Oiwakecho , Sakyo-ku , Kyoto 606-8502 , Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science , Kyoto University , Kitashirakawa-Oiwakecho , Sakyo-ku , Kyoto 606-8502 , Japan
| |
Collapse
|
13
|
Schlimgen AW, Mazziotti DA. Static and Dynamic Electron Correlation in the Ligand Noninnocent Oxidation of Nickel Dithiolates. J Phys Chem A 2017; 121:9377-9384. [DOI: 10.1021/acs.jpca.7b09567] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Anthony W. Schlimgen
- Department of Chemistry and
the James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - David A. Mazziotti
- Department of Chemistry and
the James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
14
|
Hayashi M, Otsubo K, Maesato M, Komatsu T, Sugimoto K, Fujiwara A, Kitagawa H. An Electrically Conductive Single-Component Donor-Acceptor-Donor Aggregate with Hydrogen-Bonding Lattice. Inorg Chem 2016; 55:13027-13034. [PMID: 27989166 DOI: 10.1021/acs.inorgchem.6b02301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An electrically conductive D-A-D aggregate composed of a single component was first constructed by use of a protonated bimetal dithiolate (complex 1H2). The crystal structure of complex 1H2 has one-dimensional (1-D) π-stacking columns where the D and A moieties are placed in a segregated-stacking manner. In addition, these segregated-stacking 1-D columns are stabilized by hydrogen bonds. The result of a theoretical band calculation suggests that a conduction pathway forms along these 1-D columns. The transport property of complex 1H2 is semiconducting (Ea = 0.29 eV, ρrt = 9.1 × 104 Ω cm) at ambient pressure; however, the resistivity becomes much lower upon applying high pressure up to 8.8 GPa (Ea = 0.13 eV, ρrt = 6.2 × 10 Ω cm at 8.8 GPa). The pressure dependence of structural and optical changes indicates that the enhancement of conductivity is attributed to not only an increase of π-π overlapping but also a unique pressure-induced intramolecular charge transfer from D to A moieties in this D-A-D aggregate.
Collapse
Affiliation(s)
- Mikihiro Hayashi
- Division of Chemistry, Graduate School of Science, Kyoto University , Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kazuya Otsubo
- Division of Chemistry, Graduate School of Science, Kyoto University , Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Mitsuhiko Maesato
- Division of Chemistry, Graduate School of Science, Kyoto University , Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tokutaro Komatsu
- Division of Chemistry, Institute of Liberal Education, Nihon University School of Medicine , Tokyo 173-8610, Japan
| | - Kunihisa Sugimoto
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8 , 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Akihiko Fujiwara
- Department of Nanotechnology for Sustainable Energy, Graduate School of Science and Technology, Kansei Gakuin University , Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University , Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|