1
|
Leitner D, Wittwer B, Neururer FR, Seidl M, Wurst K, Tambornino F, Hohloch S. Expanding the Utility of β-Diketiminate Ligands in Heavy Group VI Chemistry of Molybdenum and Tungsten. Organometallics 2023; 42:1411-1424. [PMID: 37388273 PMCID: PMC10302891 DOI: 10.1021/acs.organomet.3c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Indexed: 07/01/2023]
Abstract
We report the synthesis of 17 molybdenum and tungsten complexes supported by the ubiquitous BDI ligand framework (BDI = β-diketiminate). The focal entry point is the synthesis of four molybdenum and tungsten(V) BDI complexes of the general formula [MO(BDIR)Cl2] [M = Mo, R = Dipp (1); M = W, R = Dipp (2); M = Mo, R = Mes (3); M = W, R = Mes (4)] synthesized by the reaction between MoOCl3(THF)2 or WOCl3(THF)2 and LiBDIR. Reactivity studies show that the BDIDipp complexes are excellent precursors toward adduct formation, reacting smoothly with dimethylaminopyridine (DMAP) and triethylphosphine oxide (OPEt3). No reaction with small phosphines has been observed, strongly contrasting the chemistry of previously reported rhenium(V) complexes. Additionally, the complexes 1 and 2 are good precursors for salt metathesis reactions. While 1 can be chemically reduced to the first stable example of a Mo(IV) BDI complex 15, reduction of 2 resulted in degradation of the BDI ligand via a nitrene transfer reaction, leading to MAD (4-((2,6-diisopropylphenyl)imino)pent-2-enide) supported tungsten(V) and tungsten(VI) complexes 16 and 17. All reported complexes have been thoroughly studied by VT-NMR and (heteronuclear) NMR spectroscopy, as well as UV-vis and EPR spectroscopy, IR spectroscopy, and X-ray diffraction analysis.
Collapse
Affiliation(s)
- Daniel Leitner
- Faculty
of Chemistry and Pharmacy, Institute for General, Inorganic and Theoretical
Chemistry, University of Innsbruck, Innrain 80−82, Innsbruck 6020 Austria
| | - Benjamin Wittwer
- Faculty
of Chemistry and Pharmacy, Institute for General, Inorganic and Theoretical
Chemistry, University of Innsbruck, Innrain 80−82, Innsbruck 6020 Austria
| | - Florian R. Neururer
- Faculty
of Chemistry and Pharmacy, Institute for General, Inorganic and Theoretical
Chemistry, University of Innsbruck, Innrain 80−82, Innsbruck 6020 Austria
| | - Michael Seidl
- Faculty
of Chemistry and Pharmacy, Institute for General, Inorganic and Theoretical
Chemistry, University of Innsbruck, Innrain 80−82, Innsbruck 6020 Austria
| | - Klaus Wurst
- Faculty
of Chemistry and Pharmacy, Institute for General, Inorganic and Theoretical
Chemistry, University of Innsbruck, Innrain 80−82, Innsbruck 6020 Austria
| | - Frank Tambornino
- Fachbereich
Chemie and Wissenschaftlichen Zentrum für Materialwissenschaften
(WZMW), Phillips-University Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Stephan Hohloch
- Faculty
of Chemistry and Pharmacy, Institute for General, Inorganic and Theoretical
Chemistry, University of Innsbruck, Innrain 80−82, Innsbruck 6020 Austria
| |
Collapse
|
2
|
Pätsch S, Correia JV, Elvers BJ, Steuer M, Schulzke C. Inspired by Nature-Functional Analogues of Molybdenum and Tungsten-Dependent Oxidoreductases. Molecules 2022; 27:molecules27123695. [PMID: 35744820 PMCID: PMC9227248 DOI: 10.3390/molecules27123695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022] Open
Abstract
Throughout the previous ten years many scientists took inspiration from natural molybdenum and tungsten-dependent oxidoreductases to build functional active site analogues. These studies not only led to an ever more detailed mechanistic understanding of the biological template, but also paved the way to atypical selectivity and activity, such as catalytic hydrogen evolution. This review is aimed at representing the last decade’s progress in the research of and with molybdenum and tungsten functional model compounds. The portrayed systems, organized according to their ability to facilitate typical and artificial enzyme reactions, comprise complexes with non-innocent dithiolene ligands, resembling molybdopterin, as well as entirely non-natural nitrogen, oxygen, and/or sulfur bearing chelating donor ligands. All model compounds receive individual attention, highlighting the specific novelty that each provides for our understanding of the enzymatic mechanisms, such as oxygen atom transfer and proton-coupled electron transfer, or that each presents for exploiting new and useful catalytic capability. Overall, a shift in the application of these model compounds towards uncommon reactions is noted, the latter are comprehensively discussed.
Collapse
|
3
|
Ouellette ET, Magdalenski JS, Bergman RG, Arnold J. Applications of Low-Valent Transition Metalates: Development of a Reactive Noncarbonyl Rhenium(I) Anion. Acc Chem Res 2022; 55:783-793. [PMID: 35171568 DOI: 10.1021/acs.accounts.2c00013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Low-valent transition metalates─anionic, electronic-rich organometallic complexes─comprise a class of highly reactive chemical reagents that find integral applications in organic synthesis, small-molecule activation, transient species stabilization, and M-E bond formation, among others. The inherent reactivity of such electron-rich metal centers has necessitated the widespread use of strong backbonding ligands, particularly carbonyls, to aid in the isolation and handling of metalate reagents, albeit sometimes at the expense of partially masking their full reactivity. However, recent synthetic explorations into transition-metalate complexes devoid of archetypic back-bonding ligands have led to the discovery of highly reactive metalates capable of performing a variety of novel chemical transformations.Building on our group's long-standing interest in reactive organometallic species, a series of rational progressions in early-to-middle transition-metal chemistry ultimately led to our isolation of a rhenium(I) β-diketiminate cyclopentadienide metalate that displays exceptional reactivity. We have found this Re(I) metalate to be capable of small-molecule activation; notably, the complex reversibly binds dinitrogen in solution and can be utilized to trap N2 for the synthesis of functionalized diazenido species. By employing isolobal analogues to N2 (CO and RNC), we were able to thoroughly monitor the mechanism of activation and conclude that the metalate's sodium counterion plays an integral role in promoting dinitrogen activation through a novel side-on interaction. The Re(I) metalate is also used in forming a variety of M-E bonds, including a series of uncommon rhenium-tetrylene (Si, Ge, and Sn) complexes that display varying degrees of multiple bonding. These metal tetrylenes act to highlight deviations in chemical properties within the group 14 elements. Our metalate's utility also applies to metal-metal bond formation, as demonstrated through the synthesis of a heterotetrametallic rhenium-zinc dimer. In this reaction, the Re(I) metalate performs a dual role as a reductant and metalloligand to stabilize a transient Zn22+ core fragment. Finally, the metalate displays unique reactivity with uranium(III) to yield the first transition metal-actinide inverse-sandwich bonds, in this case with three rhenium fragments bound through their Cp moieties surrounding the uranium center. Notably, throughout these endeavors we demonstrate that the metalate displays reactivity at multiple locations, including directly at the rhenium metal center, at a Cp carbon, through a Cp-sandwich mode, or through reversibly bound dinitrogen.Overall, the rhenium(I) metalate described herein demonstrates utility in diverse applications: small-molecule activation, the stabilization of reduced and/or unstable species, and the formation of unconventional M-E/M-M bonds or heterometallic complexes. Moving forward, we suggest that the continued discovery of noncarbonyl, electron-rich transition-metal anions featuring new or unconventional ligands should produce additional reactive organometallic species capable of stabilizing unique structural motifs and performing novel and unusual chemical transformations.
Collapse
Affiliation(s)
- Erik T. Ouellette
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Julian S. Magdalenski
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Robert G. Bergman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Sun Y, Zhou Y, Bai W, Li Y, Wang Y. Metalla-phenalene complexes: synthesis, structure and aromaticity. Chem Commun (Camb) 2021; 58:435-438. [PMID: 34901974 DOI: 10.1039/d1cc05855j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metallaaromatics show a diversity of aromaticity. In this work, we report the synthesis and structural characterization of the first rhena-phenalene complexes. In addition to the Hückel aromaticity and σ-aromaticity, pseudo π anti-aromaticity is observed. DFT computations show that this anti-aromaticity (paramagnetic properties) is induced by the fused aromatic naphthyl ring.
Collapse
Affiliation(s)
- Yue Sun
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P. R. China.
| | - Yan Zhou
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, 188 Daxue East Road, Nanning, Guangxi 530006, P. R. China
| | - Wei Bai
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P. R. China.
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P. R. China. .,School of Chemical Engineering, Dalian University of Technology, Panjin, Liaoning 124221, P. R. China
| | - Yilun Wang
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P. R. China. .,School of Chemical Engineering, Dalian University of Technology, Panjin, Liaoning 124221, P. R. China
| |
Collapse
|
5
|
Wei W, Xu X, Lee KH, Lin R, Sung HHY, Williams ID, Lin Z, Jia G. Reactions of Rhenacyclobutadiene Complexes with Allenes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wei Wei
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Xin Xu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Ka-Ho Lee
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Ran Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Herman H. Y. Sung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Ian D. Williams
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Guochen Jia
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| |
Collapse
|
6
|
|
7
|
Lee KF, Yang T, Tsang LY, Sung HHY, Williams ID, Lin Z, Jia G. Azavinylidene Complexes from Coupling Reactions of Organonitriles with Phosphines. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kui-Fun Lee
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Tilong Yang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Long-Yiu Tsang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Herman H. Y. Sung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ian D. Williams
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Guochen Jia
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
8
|
Liu S, Amaro-Estrada JI, Baltrun M, Douair I, Schoch R, Maron L, Hohloch S. Catalytic Deoxygenation of Nitroarenes Mediated by High-Valent Molybdenum(VI)–NHC Complexes. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shenyu Liu
- Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | | | - Marc Baltrun
- Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | - Iskander Douair
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Roland Schoch
- Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | - Laurent Maron
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Stephan Hohloch
- University of Innsbruck, Faculty of Chemistry and Pharmacy, Institute of General, Inorganic and Theoretical Chemistry, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
9
|
Wei W, Jia G. Metal-Carbon Bonds of Heavier Group 7 and 8 Metals (Tc, Re, Ru, Os): Mononuclear Tc/Re/Ru/Os Complexes With Metal-Carbon Bonds. COMPREHENSIVE COORDINATION CHEMISTRY III 2021:123-439. [DOI: 10.1016/b978-0-08-102688-5.00049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Locher J, Watt FA, Neuba AG, Schoch R, Munz D, Hohloch S. Molybdenum(VI) bis-imido Complexes of Dipyrromethene Ligands. Inorg Chem 2020; 59:9847-9856. [PMID: 32639151 DOI: 10.1021/acs.inorgchem.0c01051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report the synthesis of high-valent molybdenum(VI) bis-imido complexes 1-4 with dipyrromethene (DPM) supporting ligands of the general formula (DPMR)Mo(NR')2Cl (R, R' = mesityl (Mes) or tert-butyl (tBu)). The electrochemical and chemical properties of 1-4 reveal unexpected ligand noninnocence and reactivity. 15N NMR spectroscopy is used to assess the electronic properties of the imido ligands in the tert-butyl complexes 1 and 3. Complex 1 is inert toward ligand (halide) exchange with bulky phenolates such as KOMes or amides (e.g., KN(SiMe3)2), whereas the use of the lithium alkyl LiCH2SiMe3 results in a rare nucleophilic β-alkylation of the DPM ligand. While the reductions of the complexes occur at molybdenum, the oxidation is centered at the DPM ligand. Quantum-chemical calculations (complete active space self-consistent field, density functional theory) suggest facile (near-infrared) interligand charge transfer to the imido ligand, which might preclude the isolation of the oxidized complex [1]+ in the experiment.
Collapse
Affiliation(s)
- Jan Locher
- Department of Chemistry, Paderborn University, 33098 Paderborn, Germany
| | - Fabian A Watt
- Department of Chemistry, Paderborn University, 33098 Paderborn, Germany
| | - Adam G Neuba
- Department of Chemistry, Paderborn University, 33098 Paderborn, Germany
| | - Roland Schoch
- Department of Chemistry, Paderborn University, 33098 Paderborn, Germany
| | - Dominik Munz
- Inorganic Chemistry, University of the Saarland, 66123 Saarbrücken, Germany.,Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Stephan Hohloch
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
11
|
Lohrey TD, Cortes EA, Fostvedt JI, Oanta AK, Jain A, Bergman RG, Arnold J. Diverse Reactivity of a Rhenium(V) Oxo Imido Complex: [2 + 2] Cycloadditions, Chalcogen Metathesis, Oxygen Atom Transfer, and Protic and Hydridic 1,2-Additions. Inorg Chem 2020; 59:11096-11107. [DOI: 10.1021/acs.inorgchem.0c01589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Trevor D. Lohrey
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Emmanuel A. Cortes
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jade I. Fostvedt
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Alexander K. Oanta
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Anukta Jain
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Robert G. Bergman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
12
|
Lohrey TD, Cortes EA, Bergman RG, Arnold J. Facile Activation of Triarylboranes by Rhenium(V) Oxo Imido Complexes. Inorg Chem 2020; 59:7216-7226. [PMID: 32339452 DOI: 10.1021/acs.inorgchem.0c00658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the synthesis and reactivity studies of a pair of rhenium(V) oxo imido complexes. Oxidation of the rhenium(III) terminal oxo ORe(η2-DHF)(BDI) (DHF = dihydrofulvalene, BDI = N,N'-bis(2,6-diisopropylphenyl)-3,5-dimethyl-β-diketiminate) with organic azides R-N3 (R = tBu, 2,6-diisopropylphenyl) yields the title complexes. Computational studies confirm that the rhenium oxo moieties of these complexes are polarized and correspondingly nucleophilic, owing to the preferential π bonding of the imido ligand to the Re center. This asymmetry in the metal-ligand multiple bond electronic structure facilitates the ready activation of B-C bonds in triarylboranes (BPh3 and B(C6F5)3), yielding rhenium(V) aryl borinate complexes. In the case of BPh3, subsequent cyclometalation of the 1,2-addition products was found to take place upon heating, ejecting benzene to form bidentate diphenylborinate complexes.
Collapse
Affiliation(s)
- Trevor D Lohrey
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Emmanuel A Cortes
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Robert G Bergman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
13
|
Lambic NS, Sommer RD, Ison EA. Synthesis and reactivity of nitridorhenium complexes incorporating the mercaptoethylsulfide (SSS) ligand. Dalton Trans 2020; 49:6127-6134. [PMID: 32324183 DOI: 10.1039/d0dt00631a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A method for the preparation of nitridorhenium(v) complexes of the form (SSS)Re(N)(L) (where SSS = 2-mercaptoethylsulfide and L = PPh3 and t-BuNC) has been described. These complexes react with Lewis acids allowing for the isolation of adducts. The lack of a significant steric profile on the SSS ligand combined with enhanced nucleophilicity of the nitrido group does not allow for the effective formation of frustrated Lewis pairs with these complexes and as a result these species are poor catalysts for the hydrogenation of unactivated olefins.
Collapse
Affiliation(s)
- Nikola S Lambic
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695-8204, USA.
| | | | | |
Collapse
|
14
|
Watt FA, McCabe KN, Schoch R, Maron L, Hohloch S. A transient lanthanum phosphinidene complex. Chem Commun (Camb) 2020; 56:15410-15413. [DOI: 10.1039/d0cc06670b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Deprotonation of the terminal phosphido complex (PN)2La(PHMes) results in the C–H-activation of one of the PN ligands via a transient phosphinidene complex.
Collapse
|
15
|
Lohrey TD, Rao G, Britt RD, Bergman RG, Arnold J. H2 Activation and Direct Access to Terminal Nitride and cyclo-P3 Complexes by an Acceptor-Free Rhenium(II) β-Diketiminate. Inorg Chem 2019; 58:13492-13501. [DOI: 10.1021/acs.inorgchem.9b02556] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Trevor D. Lohrey
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Guodong Rao
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - R. David Britt
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Robert G. Bergman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
16
|
Baumeister JE, Mitchell AW, Kelley SP, Barnes CL, Jurisson SS. Steric influence of salicylaldehyde-based Schiff base ligands on the formation of trans-[Re(PR 3) 2(Schiff base)] + complexes. Dalton Trans 2019; 48:12943-12955. [PMID: 31393493 DOI: 10.1039/c9dt02630d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Complexes of the type trans-[Re(PR3)2(Schiff base)]+ (R = ethyl and/or phenyl) 2-7 were prepared by the reaction of (nBu4N)[ReOCl4] with H2sal2en or H2sal2ibn followed by addition of a tertiary phosphine. The trans-[Re(PR3)2(sal2en)]+ complexes 2-4 were stable in solution, whereas the trans-[Re(PR3)2(sal2ibn)]+ complexes 6-7 were observed to convert to their corresponding cis-[ReO(PR3)(sal2ibn)]+ products through a process involving ligand dissociation, metal oxidation, and Schiff base ligand rearrangement. The conversion of the trans-[Re(PR3)2(sal2ibn)]+ complexes is likely driven by steric interactions between the bulky backbone gem-dimethyl groups of the sal2ibn ligand and the phosphine ligands. These complexes were isolated and characterized by 1H and 13C NMR, FT-IR spectroscopy, cyclic voltammetry, and single crystal X-ray diffraction. The results reported herein provide insight into the factors that drive trans-[Re(PR3)2(Schiff base)]+ complex formation. This will aid in the development of novel 186/188Re therapeutic agents and the design of novel bifunctional N2O2 Schiff base ligands.
Collapse
Affiliation(s)
- Jakob E Baumeister
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA.
| | - Andrew W Mitchell
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA.
| | - Steven P Kelley
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA.
| | - Charles L Barnes
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA.
| | - Silvia S Jurisson
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
17
|
Kurogi T, Chu J, Chen Y, Mindiola DJ. Neutral and Anionic Monomeric Zirconium Imides Prepared via Selective C=N Bond Cleavage of a Multidentate and Sterically Demanding β‐Diketiminato Ligand. Chem Asian J 2019; 14:2629-2638. [DOI: 10.1002/asia.201900451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/13/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Takashi Kurogi
- Department of ChemistryUniversity of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Jiaxiang Chu
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Yaofeng Chen
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Daniel J. Mindiola
- Department of ChemistryUniversity of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| |
Collapse
|
18
|
Decomposition Mechanism of 5,5′-Bis(tetrazole)-1,1′-diolate(TKX-50) Anion Initiated by Intramolecular Oxygen Transfer. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-8332-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Chrysochos N, Ahmadi M, Wahlefeld S, Rippers Y, Zebger I, Mroginski MA, Schulzke C. Comparison of molybdenum and rhenium oxo bis-pyrazine-dithiolene complexes - in search of an alternative metal centre for molybdenum cofactor models. Dalton Trans 2019; 48:2701-2714. [PMID: 30720825 DOI: 10.1039/c8dt04237c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A pair of structurally precise analogues of molybdenum and rhenium complexes, [Et4N]/K2[MoO(prdt)2] and K[ReO(prdt)2] (prdt = pyrazine-2,3-dithiolene), were synthesized. These complexes serve as structural models for the active sites of bacterial molybdenum cofactor containing enzymes. They were comprehensively characterized and investigated by NMR, computationally supported IR and resonance Raman spectroscopy, cyclic voltammetry, mass spectrometry, elemental analysis and single-crystal X-ray diffraction. All compiled data are discussed in the context of comparing chemical and electronic structures and consequences thereof. This study constitutes the first investigation of a potential alternative Moco model system bearing rhenium as the central metal in an identical coordination environment to its molybdenum analogue. Structural evaluation revealed a slightly stronger M[double bond, length as m-dash]O bond in the rhenium complex in accordance with spectroscopic results, i.e. observed bond strengths. Thermodynamic parameters for the redox processes MoIV ↔ MoV and ReIV ↔ ReV were obtained by temperature dependent cyclic voltammetry. In contrast to molybdenum, rhenium loses entropy upon reduction and its redox potential is more temperature sensitive, indicating more significant differences than the respective diagonal relationship between the two metals in the periodic table might suggest and questioning rhenium's suitability as a functional artificial active site metal.
Collapse
Affiliation(s)
- Nicolas Chrysochos
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, 17487 Greifswald, Germany.
| | | | | | | | | | | | | |
Collapse
|
20
|
Lohrey TD, Bergman RG, Arnold J. Reductions of a Rhenium(III) Terminal Oxo Complex by Isocyanides and Carbon Monoxide. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Trevor D. Lohrey
- Department of Chemistry, University of California, Berkeley, 420 Latimer Hall, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Robert G. Bergman
- Department of Chemistry, University of California, Berkeley, 420 Latimer Hall, Berkeley, California 94720, United States
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, 420 Latimer Hall, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| |
Collapse
|
21
|
Panda S, Mandal A, Ghosh P, Lahiri GK. Ru-Complex Framework toward Aerobic Oxidative Transformations of β-Diketiminate and α-Ketodiimine. Inorg Chem 2017; 56:14900-14911. [DOI: 10.1021/acs.inorgchem.7b02172] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Sanjib Panda
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Abhishek Mandal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Prabir Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
22
|
Lohrey TD, Bergman RG, Arnold J. Olefin‐Supported Rhenium(III) Terminal Oxo Complexes Generated by Nucleophilic Addition to a Cyclopentadienyl Ligand. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Trevor D. Lohrey
- Department of Chemistry University of California, Berkeley 420 Latimer Hall Berkeley CA 94720 USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| | - Robert G. Bergman
- Department of Chemistry University of California, Berkeley 420 Latimer Hall Berkeley CA 94720 USA
| | - John Arnold
- Department of Chemistry University of California, Berkeley 420 Latimer Hall Berkeley CA 94720 USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| |
Collapse
|
23
|
Lohrey TD, Bergman RG, Arnold J. Olefin-Supported Rhenium(III) Terminal Oxo Complexes Generated by Nucleophilic Addition to a Cyclopentadienyl Ligand. Angew Chem Int Ed Engl 2017; 56:14241-14245. [PMID: 28929597 DOI: 10.1002/anie.201707957] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/31/2017] [Indexed: 11/10/2022]
Abstract
The reactivity of the oxo ReV β-diketiminate, OReCl2 (BDI), with various cyclopentadienide (Cp) sources has been investigated. As a result, we have developed a route to a new class of terminal oxo complexes of ReIII supported by olefin moieties of substituted cyclopentadienes. The success of this pathway is due to the electrophilic nature of the Cp ligand in the cation, [ORe(η5 -Cp)(BDI)]+ (3+ ), which allows for nucleophilic attack by a variety of reagents under mild conditions. In contrast, t BuNC was found to attack at the oxo moiety to produce isocyanate by oxygen atom transfer.
Collapse
Affiliation(s)
- Trevor D Lohrey
- Department of Chemistry, University of California, Berkeley, 420 Latimer Hall, Berkeley, CA, 94720, USA.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Robert G Bergman
- Department of Chemistry, University of California, Berkeley, 420 Latimer Hall, Berkeley, CA, 94720, USA
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, 420 Latimer Hall, Berkeley, CA, 94720, USA.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| |
Collapse
|