1
|
Lin F, Tang R, Liu S, Tan Y. Recent advances in the synthetic applications of nitrosoarene chemistry. Org Biomol Chem 2025; 23:1253-1291. [PMID: 39692149 DOI: 10.1039/d4ob01654h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Nitroso groups are widely present in biologically active compounds in medicinal chemistry, and nitroso compounds serve as important building blocks in organic chemistry and materials science. Nitrosoarenes, in particular, showcase remarkable versatility, functioning as both electrophilic and nucleophilic reagents in a broad spectrum of organic reactions, thereby holding significant relevance in organic chemistry. This review aims to provide a comprehensive overview of the latest advancements in nitrosoarene reactions spanning a decade. Special attention is given to the synthesis of products derived from nitrosoarenes and the conditions that promote these reactions, as well as the type of catalysts. The exploration covers various facets of nitrosoarene chemistry, including cyclization, reactions involving attacks at the oxygen or nitrogen terminus, dimerization, rearrangement, coordination, and other significant reactions. By delving into these diverse reaction pathways and mechanisms, this review aspires to serve as a valuable resource for researchers seeking to deepen their understanding of nitrosoarene chemistry and its applications in both fundamental and applied scientific research.
Collapse
Affiliation(s)
- Feng Lin
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| | - Rongzhi Tang
- School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Sheng Liu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
- The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong, China
| | - Yu Tan
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| |
Collapse
|
2
|
Khan FF, Bera SK, Dey S, Lahiri GK. Redox activity as a tool for bond activations and functionalizations. INORGANIC CHEMISTRY IN INDIA 2023. [DOI: 10.1016/bs.adioch.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
3
|
Arya Y, Bera SK, Priego JL, Jiménez-Aparicio R, Lahiri GK. Bidirectional noninnocence of hinge-like deprotonated bis-lawsone on selective ruthenium platform: a function of varying ancillary ligands. Dalton Trans 2022; 51:10441-10456. [PMID: 35762823 DOI: 10.1039/d2dt01466a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present work aimed to obtain discrete heavier metal complexes of unperturbed deprotonated bis-lawsone (hinge-like H2L = 2,2'-bis(3-hydroxy-1,4-napthoquinone). This is primarily due to its limited examples with lighter metal ions (Co, Zn, and Ga) and the fact that our earlier approach with the osmium ion facilitated its functionalisation. Herein, we demonstrated the successful synthesis and structural characterisation of L2--derived diruthenium [(bpy)2RuII(μ-L2-)RuII(bpy)2](ClO4)2 [1](ClO4)2 (S = 0), (acac)2RuIII(μ-L2-)RuIII(acac)22 (S = 1) and monoruthenium (pap)2Ru(L2-) 3 (S = 0) derivatives (bpy = 2,2'-bipyridine, acac = acetylacetonate, and pap = 2-phenylazopyridine). The crystal structures established that (i) O,O-/O,O- donating five-membered bis-bidentate and O-,O- donating seven-membered bidentate chelating modes of deprotonated L2- in rac (ΔΔ/ΛΛ) diastereomeric [1](ClO4)2, 2 and 3, respectively. (ii) The L2- bridging unit in [1](ClO4)2, 2 and 3 underwent twisting its two naphthoquinone rings with respect to the ring connecting C-C bond by 73.01°, 62.15° and 59.12°, respectively. (iii) Intermolecular π-π interactions (∼3.5 Å) between the neighbouring molecules. The paramagnetic complex 2 (S = 1) with two non-interacting Ru(III) (S = 1/2) ions exhibited weak antiferromagnetic coupling only at very low temperatures. In agreement with the magnetic results, 2 displayed typical RuIII-based anisotropic EPR in CH3CN (<g>/Δg: 2.314/0.564) but without any forbidden g1/2 signal at 120 K. The complexes exhibited multiple redox processes in CH3CN in the experimental potential window of ± 2.0 V versus SCE. The analysis of the redox steps via a combined experimental and theoretical (DFT/TD-DFT) approach revealed the involvement of L2- to varying extents in both the oxidative and reductive processes as a consequence of its bidirectional redox non-innocent feature. The mixing of the frontier orbitals of the metal ion and L2- due to their closeness in energy indeed led to the resonating electronic form in certain redox states instead of any precise electronic structural state.
Collapse
Affiliation(s)
- Yogita Arya
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Sudip Kumar Bera
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - José Luis Priego
- Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, E-28040 Madrid, Spain
| | - Reyes Jiménez-Aparicio
- Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, E-28040 Madrid, Spain
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
4
|
Harada T, Ando S, Kuwata S. Redox Non‐innocence of ortho‐Benzoquinone Dioximate Dianion in Ligand Exchange on Ruthenium. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Takuya Harada
- Tokyo Institute of Technology: Tokyo Kogyo Daigaku Department of Chemical Science and Engineering 2-12-1 O-okayama, Meguro-ku 152-8552 Tokyo JAPAN
| | - Shinji Ando
- Tokyo Institute of Technology: Tokyo Kogyo Daigaku Department of Chemical Science and Engineering 2-12-1 O-okayama, Meguro-ku 152-8552 Tokyo JAPAN
| | - Shigeki Kuwata
- Ritsumeikan University: Ritsumeikan Daigaku Department of Applied Chemistry 1-1-1 Noji-higashi 525-8577 Kusatsu JAPAN
| |
Collapse
|
5
|
Singh A, Dey S, Panda S, Lahiri GK. Radical versus Nonradical States of Azobis(benzothiazole) as a Function of Ancillary Ligands on Selective Ruthenium Platforms. Inorg Chem 2021; 60:18260-18269. [PMID: 34762800 DOI: 10.1021/acs.inorgchem.1c02883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The paper deals with the electronic impact of ancillary ligands on the varying redox features of azobis(benzothiazole) (abbt) in the newly introduced mononuclear ruthenium complexes [Ru(pap)2(abbt)]n (1n) and [Ru(bpy)2(abbt)]n (2n), where pap = 2-phenylazopyridine and bpy = 2,2'-bipyridine. In this regard, the complexes [RuII(pap)2(abbt•-)]ClO4 ([1]ClO4), [RuII(pap)2(abbt0)](ClO4)2 ([1](ClO4)2), [RuII(bpy)2(abbt0)](ClO4)2 ([2](ClO4)2), and [RuII(bpy)2(abbt•-)]ClO4 ([2]ClO4) were structurally and spectroscopically characterized. Unambiguous assignments of the aforestated radical and nonradical forms of abbt in 1+/2+ and 12+/22+, respectively, were made primarily based on their redox-sensitive azo (N═N) bond distances as well as by their characteristic electron paramagnetic resonance (EPR)/NMR signatures. Although the radical form of abbt•- was isolated as an exclusive product in the case of strongly π-acidic pap-derived 1+, the corresponding moderately π-acidic bpy ancillary ligand primarily delivered an oxidized form of abbt0 in 22+, along with the radical form in 2+ as a minor (<10%) component. The oxidized abbt0-derived [1](ClO4)2 was, however, obtained via the chemical oxidation of [1]ClO4. Both 1+ and 22+ displayed multiple closed by reversible redox processes (one oxidation O1 and four successive reductions R1-R4) within the potential window of ±2.0 V versus saturated calomel electrode. The involvement of metal-, ligand-, or metal/ligand-based frontier molecular orbitals along the redox chain was assigned based on the combined experimental (structure, EPR, and spectroelectrochemisry) and theoretical [density functional theory (DFT): molecular orbitals, Mulliken spin densities/time-dependent DFT] investigations. It revealed primarily ligand (abbt/pap or bpy)-based redox activities, keeping the metal ion as a simple spectator. Moreover, frontier molecular orbital analysis corroborated the initial isolation of the radical and nonradical species for the pap-derived 1+ and bpy-derived 22+ as well as facile reduction of pap and abbt in 1+ and 2+, respectively.
Collapse
Affiliation(s)
- Aditi Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sanchaita Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sanjib Panda
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
6
|
Dey S, Panda S, Lahiri GK. Ruthenium-Hydride Assisted Remarkable Diversity Towards Non-Spectator Feature of Benzodifuroxan. Chem Asian J 2020; 15:3281-3295. [PMID: 32779852 DOI: 10.1002/asia.202000849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/09/2020] [Indexed: 11/07/2022]
Abstract
The present article demonstrates that ruthenium-hydride [RuII (H)(Cl)(CO)(PPh3 )3 ] mediated diverse functionalization modes of benzodifuroxan (BDF) encompassing two furoxan rings. Hydride transfer from the metal precursor facilitated multiple cascade reactions involving unsymmetrical cleavage of the furoxan rings of BDF, leading to the one-pot formation of a series of ruthenium (II) coordinated functionalized ligands exhibiting bidentate κ2 -N,O, κ2 -N,N' and bis-bidentate μ-bis(κ2 -N,O) modes. Further, a moderately stable intermediate species was also encountered in the reaction sequence in which the transformed deoxygenated ligand coordinated to the metal ion via the rarely manifested furazan ring (κ2 -N,N'' mode). The products were authenticated by their single-crystal X-ray structures and other spectroscopic/analytical techniques. Redox non-innocence of the functionalized ligands in the complexes was illustrated by spectroelectrochemistry (cyclic voltammmetry, UV-Vis. and EPR) in conjunction with DFT/TD-DFT calculations. Mechanistic outline for the facile ring opening processes of BDF including interconversions of complexes (e. g. reductive ring opening) were also addressed.
Collapse
Affiliation(s)
- Sanchaita Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Sanjib Panda
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
7
|
Bera SK, Mondal S, Hazari AS, Priego JL, Jiménez‐Aparicio R, Kaim W, Lahiri GK. Three Bis‐BODIPY Analogous Diruthenium Redox Series: Characterization and Electronic Structure Analysis. Chem Asian J 2020; 15:2532-2543. [DOI: 10.1002/asia.202000326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/17/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Sudip Kumar Bera
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Sudipta Mondal
- Institut für Anorganische ChemieUniversität Stuttgart Pfaffenwaldring 55 D-70550 Stuttgart Germany
| | - Arijit Singha Hazari
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai 400076 India
| | - José Luis Priego
- Departamento de Química Inorgánica Facultad de Ciencias QuímicasUniversidad Complutense de Madrid Ciudad Universitaria E-28040 Madrid Spain
| | - Reyes Jiménez‐Aparicio
- Departamento de Química Inorgánica Facultad de Ciencias QuímicasUniversidad Complutense de Madrid Ciudad Universitaria E-28040 Madrid Spain
| | - Wolfgang Kaim
- Institut für Anorganische ChemieUniversität Stuttgart Pfaffenwaldring 55 D-70550 Stuttgart Germany
| | - Goutam Kumar Lahiri
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai 400076 India
| |
Collapse
|
8
|
Panda S, Goel P, Lahiri GK. Non-Spectator Feature of α-Diimine Mimicked Di/tetrahydro-bisisoquinoline and Biimidazopyridine on {Ru(acac)2
} Platform. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Sanjib Panda
- Department of Chemistry; Indian Institute of Technology Bombay; 400076 Mumbai Powai India
| | - Puneet Goel
- Department of Chemistry; Indian Institute of Technology Bombay; 400076 Mumbai Powai India
| | - Goutam Kumar Lahiri
- Department of Chemistry; Indian Institute of Technology Bombay; 400076 Mumbai Powai India
| |
Collapse
|
9
|
Efimenko ZM, Novikov AS, Ivanov DM, Piskunov AV, Vereshchagin AA, Levin OV, Bokach NA, Kukushkin VY. The (Dioximate)Ni II/I 2 System: Ligand Oxidation and Binding Modes of Triiodide Species. Inorg Chem 2020; 59:2316-2327. [PMID: 32027131 DOI: 10.1021/acs.inorgchem.9b03132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reinvestigation of (o-benzoquinonedioximate)2Ni/I2 systems demonstrated that the reaction itself and also the crystallization conditions dramatically affect the identity of generated species. Crystallization (CHCl3, 20-25 °C) of the nickel(II) dioximate complex [Ni(bqoxH)2] (bqoxH2 = o-benzoquinonedioxime) with I2 in the 1:(1-10) molar ratios of the reactants led to several (o-benzoquinonedioximate)2Ni derivatives and/or iodine adducts [Ni(I)(bqoxH)(bqoxH2)]·3/2I2, [Ni(I3)(bqoxH)(bqoxH2)]·[Ni(bqoxH)2], and [Ni(I3)(bqox•-)(bqoxH2)]·I2; the latter one, featuring the anion-radical bqox•- ligand, is derived from the formal (-2H+/1e-)-oxidation of bqoxH2. In these three adducts, various types of noncovalent interactions were identified experimentally and their existence was supported theoretically. The [Ni(I3)(bqox•-)(bqoxH2)]·I2 adduct exhibits simultaneous semicoordination and coordination patterns of the triiodide ligand; this is the first recognition of the semicoordination of any polyiodide ligand to a metal center. The semicoordination noncovalent contact Ni···I3 (3.7011(10) Å) is substantially longer that the Ni-I3 coordination bond (2.8476(9) Å), and the difference in energies between these two types of linkages is 8-12 kcal/mol.
Collapse
Affiliation(s)
- Zarina M Efimenko
- Institute of Chemistry , Saint Petersburg State University , Universitetskaya Nab. 7/9 , 199034 Saint Petersburg , Russian Federation
| | - Alexander S Novikov
- Institute of Chemistry , Saint Petersburg State University , Universitetskaya Nab. 7/9 , 199034 Saint Petersburg , Russian Federation
| | - Daniil M Ivanov
- Institute of Chemistry , Saint Petersburg State University , Universitetskaya Nab. 7/9 , 199034 Saint Petersburg , Russian Federation
| | - Alexandr V Piskunov
- G.A. Razuvaev Institute of Organometallic Chemistry , Russian Academy of Sciences , Tropinina Str. 49 , 603950 Nizhny Novgorod , Russian Federation
| | - Anatoly A Vereshchagin
- Institute of Chemistry , Saint Petersburg State University , Universitetskaya Nab. 7/9 , 199034 Saint Petersburg , Russian Federation
| | - Oleg V Levin
- Institute of Chemistry , Saint Petersburg State University , Universitetskaya Nab. 7/9 , 199034 Saint Petersburg , Russian Federation
| | - Nadezhda A Bokach
- Institute of Chemistry , Saint Petersburg State University , Universitetskaya Nab. 7/9 , 199034 Saint Petersburg , Russian Federation
| | - Vadim Yu Kukushkin
- Institute of Chemistry , Saint Petersburg State University , Universitetskaya Nab. 7/9 , 199034 Saint Petersburg , Russian Federation
| |
Collapse
|
10
|
Chan SC, Wong CY. Recent developments in ruthenium–nitrosoarene chemistry: Unconventional synthetic strategies, new ligand designs, and exploration of ligands redox non-innocence. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
11
|
Photophysical, electrochemical, and DFT studies of the novel azacrown-bridged dinuclear ruthenium dye sensitizers for solar cells. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.114106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
12
|
Panda S, Bera SK, Goel P, Dutta AK, Lahiri GK. Ruthenium-Chelated Non-Innocent Bis(heterocyclo)methanides: A Mimicked β-Diketiminate. Inorg Chem 2019; 58:11458-11469. [DOI: 10.1021/acs.inorgchem.9b01201] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sanjib Panda
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sudip Kumar Bera
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Puneet Goel
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Achintya Kumar Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
13
|
Panda S, Ansari MA, Mandal A, Lahiri GK. Near‐IR Absorbing Ruthenium Complexes of Non‐Innocent 6,12‐Di(pyridin‐2‐yl)indolo[3,2‐
b
]carbazole: Variation as a Function of Co‐Ligands. Chem Asian J 2019; 14:4631-4640. [DOI: 10.1002/asia.201900719] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/24/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Sanjib Panda
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai- 400076 India
| | - Md Asif Ansari
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai- 400076 India
| | - Abhishek Mandal
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai- 400076 India
| | - Goutam Kumar Lahiri
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai- 400076 India
| |
Collapse
|
14
|
Khan FF, Sobottka S, Sarkar B, Lahiri GK. Redox‐Induced Oxidative C−C Bond Cleavage of 2,2′‐Pyridil in Diruthenium Complexes. Chemistry 2019; 25:9737-9746. [DOI: 10.1002/chem.201901758] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Farheen Fatima Khan
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai- 400076 India
| | - Sebastian Sobottka
- Institut für Chemie und Biochemie, Anorganische ChemieFreie Universität Berlin Fabeckstrasse 34–36 14195 Berlin Germany
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Anorganische ChemieFreie Universität Berlin Fabeckstrasse 34–36 14195 Berlin Germany
| | - Goutam Kumar Lahiri
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai- 400076 India
| |
Collapse
|
15
|
Khan FF, Klein J, Priego JL, Sarkar B, Jiménez-Aparicio R, Lahiri GK. Questions of Noninnocence and Ease of Azo Reduction in Diruthenium Frameworks with a 1,8-Bis((E)-phenyldiazenyl)naphthalene-2,7-dioxido Bridge. Inorg Chem 2018; 57:12800-12810. [DOI: 10.1021/acs.inorgchem.8b01996] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Farheen Fatima Khan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Johannes Klein
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, D-14195 Berlin, Germany
| | - José Luis Priego
- Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, E-28040 Madrid, Spain
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, D-14195 Berlin, Germany
| | - Reyes Jiménez-Aparicio
- Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, E-28040 Madrid, Spain
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
16
|
Ghosh P, Dey S, Panda S, Lahiri GK. Solvent-Mediated Functionalization of Benzofuroxan on Electron-Rich Ruthenium Complex Platform. Chem Asian J 2018; 13:1582-1593. [DOI: 10.1002/asia.201800308] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/29/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Prabir Ghosh
- Department of Chemistry; Indian Institute of Technology Bombay; Powai Mumbai 400076 India
| | - Sanchaita Dey
- Department of Chemistry; Indian Institute of Technology Bombay; Powai Mumbai 400076 India
| | - Sanjib Panda
- Department of Chemistry; Indian Institute of Technology Bombay; Powai Mumbai 400076 India
| | - Goutam Kumar Lahiri
- Department of Chemistry; Indian Institute of Technology Bombay; Powai Mumbai 400076 India
| |
Collapse
|
17
|
Hazari AS, Indra A, Lahiri GK. Mixed valency in ligand-bridged diruthenium frameworks: divergences and perspectives. RSC Adv 2018; 8:28895-28908. [PMID: 35547993 PMCID: PMC9084559 DOI: 10.1039/c8ra03206h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 08/01/2018] [Indexed: 11/21/2022] Open
Abstract
Emerging fundamental issues involving intramolecular electron transfer at the mixed valent diruthenium frameworks and its application prospects have been highlighted.
Collapse
Affiliation(s)
| | - Arindam Indra
- Department of Chemistry
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi
- India
| | - Goutam Kumar Lahiri
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| |
Collapse
|
18
|
Khan FF, Mandal A, Klein J, Priego JL, Jiménez-Aparicio R, Sarkar B, Lahiri GK. Mixed Donor-Acceptor-Derived N
,N′
-Diarylpyrazine-2,5-dicarboxamido-Bridged Diruthenium Systems: Structures, Magnetic Properties, and Electronic Forms in Multiredox States. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201701009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Farheen Fatima Khan
- Department of Chemistry; Indian Institute of Technology Bombay; 400076 Powai, Mumbai India
| | - Abhishek Mandal
- Department of Chemistry; Indian Institute of Technology Bombay; 400076 Powai, Mumbai India
| | - Johannes Klein
- Institut für Chemie und Biochemie; Anorganische Chemie; Freie Universitaet Berlin; Fabeckstraße 34-36 14195 Berlin Germany
| | - José Luis Priego
- Departamento de Química Inorgánica; Facultad de Ciencias Químicas; Universidad Complutense; 28040 Madrid Spain
| | - Reyes Jiménez-Aparicio
- Departamento de Química Inorgánica; Facultad de Ciencias Químicas; Universidad Complutense; 28040 Madrid Spain
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie; Anorganische Chemie; Freie Universitaet Berlin; Fabeckstraße 34-36 14195 Berlin Germany
| | - Goutam Kumar Lahiri
- Department of Chemistry; Indian Institute of Technology Bombay; 400076 Powai, Mumbai India
| |
Collapse
|
19
|
Panda S, Mandal A, Ghosh P, Lahiri GK. Ru-Complex Framework toward Aerobic Oxidative Transformations of β-Diketiminate and α-Ketodiimine. Inorg Chem 2017; 56:14900-14911. [DOI: 10.1021/acs.inorgchem.7b02172] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Sanjib Panda
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Abhishek Mandal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Prabir Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
20
|
Ghosh P, Panda S, Banerjee S, Lahiri GK. Ruthenium-Hydride Mediated Unsymmetrical Cleavage of Benzofuroxan to 2-Nitroanilido with Varying Coordination Mode. Inorg Chem 2017; 56:10735-10747. [DOI: 10.1021/acs.inorgchem.7b01696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Prabir Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sanjib Panda
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Soumyodip Banerjee
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|