1
|
Gamache MT, Gehring B, Hanan GS, Kurth DG. Spectro-electrochemical study of iron and ruthenium bis-terpyridine complexes with methyl viologen-like subunits as models for supramolecular polymers. Dalton Trans 2024; 53:13151-13159. [PMID: 39041831 DOI: 10.1039/d4dt00974f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Metallo-supramolecular polyelectrolytes (MEPE) have a variety of attractive properties concerning electrochromism, spin-crossover, rheology, and cell differentiation. Previous studies suggest that these polynuclear structures can be regarded as an assembly of individual subunits and mononuclear complexes can act as models. In this study, we synthesize a monotopic and a ditopic terpyridine ligand with pyridinium units as well as the corresponding iron and ruthenium MEPEs and their mononuclear counterparts. UV-vis studies show that the mononuclear complexes have similar absorption properties to MEPEs. Furthermore, all complexes and MEPEs exhibit electrochromic behavior. Yet only the MEPEs can be deposited on different substrates using a layer-by-layer approach which makes them attractive for applications as electrochromic devices. However, the low solubility particularly of the ruthenium MEPE, renders characterization in solution impractical. Hence, the use of mononuclear complexes with similar monotopic ligands as presented herein can act as a first instance to evaluate the properties of corresponding MEPEs, facilitating the development of metallo-supramolecular materials.
Collapse
Affiliation(s)
- Mira T Gamache
- Chemische Technologie der Materialsynthese, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany.
- Département de Chimie, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec, H2V-03B, Canada
| | - Benjamin Gehring
- Chemische Technologie der Materialsynthese, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany.
| | - Garry S Hanan
- Département de Chimie, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec, H2V-03B, Canada
| | - Dirk G Kurth
- Chemische Technologie der Materialsynthese, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany.
| |
Collapse
|
2
|
Shu M, Tao J, Han Y, Fu W, Li X, Zhang R, Liu J. Molecular engineering of terpyridine-Fe(II) coordination polymers consisting of quinoxaline-based π-spacers toward enhanced electrochromic performance. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Mukkatt I, Mohanachandran AP, Nirmala A, Patra D, Sukumaran PA, Pillai RS, Rakhi RB, Shankar S, Ajayaghosh A. Tunable Capacitive Behavior in Metallopolymer-based Electrochromic Thin Film Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31900-31910. [PMID: 35791964 DOI: 10.1021/acsami.2c05744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Volumetric capacitance is a more critical performance parameter for rechargeable power supply in lightweight and microelectronic devices as compared to gravimetric capacitance in larger devices. To this end, we report three electrochromic metallopolymer-based electrode materials containing Fe2+ as the coordinating metal ion with high volumetric capacitance and energy densities in a symmetric two-electrode supercapacitor setup. These metallopolymers exhibited volumetric capacitance up to 866.2 F cm-3 at a constant current density of 0.25 A g-1. The volumetric capacitance (poly-Fe-L2: 544.6 F cm-3 > poly-Fe-L1: 313.8 F cm-3 > poly-Fe-L3: 230.8 F cm-3 at 1 A g-1) and energy densities (poly-Fe-L2: 75.5 mWh cm-3 > poly-Fe-L1: 43.6 mWh cm-3 > poly-Fe-L3: 31.2 mWh cm-3) followed the order of the electrical conductivity of the metallopolymers and are among the best values reported for metal-organic systems. The variation in the ligand structure was key toward achieving different electrical conductivities in these metallopolymers with excellent operational stability under continuous cycling. High volumetric capacitances and energy densities combined with tunable electro-optical properties and electrochromic behavior of these metallopolymers are expected to contribute to high performance and compact microenergy storage systems. We envision that the integration of smart functionalities with thin film supercapacitors would warrant the surge of miniaturized on-chip microsupercapacitors integrated in-plane with other microelectronic devices for wearable applications.
Collapse
Affiliation(s)
- Indulekha Mukkatt
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Sciences and Technology (CSIR - NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anjana Padmaja Mohanachandran
- Material Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Sciences and Technology (CSIR - NIIST), Thiruvananthapuram 695019, India
- Department of Physics, University of Kerala, Thiruvananthapuram, Kerala 695581, India
| | - Anjali Nirmala
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Sciences and Technology (CSIR - NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dipak Patra
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Sciences and Technology (CSIR - NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priyanka A Sukumaran
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Sciences and Technology (CSIR - NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Renjith S Pillai
- Department of Chemistry, Christ University, Bangalore 560029, Karnataka, India
| | - R B Rakhi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Material Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Sciences and Technology (CSIR - NIIST), Thiruvananthapuram 695019, India
| | - Sreejith Shankar
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Sciences and Technology (CSIR - NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ayyappanpillai Ajayaghosh
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Sciences and Technology (CSIR - NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Gamache MT, Auvray T, Kurth DG, Hanan GS. Dinuclear 2,4-di(pyridin-2-yl)-pyrimidine based ruthenium photosensitizers for hydrogen photo-evolution under red light. Dalton Trans 2021; 50:16528-16538. [PMID: 34698748 DOI: 10.1039/d1dt00868d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we report two dinuclear Ru(II) complexes C1 and C2 and compare them to their mononuclear analogues Ref1 and Ref2. The dinuclear species exhibit a much stronger absorption, longer excited-state lifetimes and higher luminescence quantum yields than the mononuclear complexes. In addition, C1 and C2 are easier to reduce. An estimation of the driving forces for the electron transfer processes relevant to photocatalytic hydrogen evolution suggests that C1 and Ref2 possess similar activity as photosensitizer (PS). Yet, the improved photophysical properties of C1 make it a more promising candidate for hydrogen evolution. In hydrogen evolution experiments, C1 indeed exhibits increased activity as PS, however, the catalytic system loses its activity after only a few hours. C2 is less active than the mononuclear complexes despite its superior photophysical properties. This observation is attributed to a lack of driving force for the electron transfer towards the catalyst. Further studies of the dinuclear complex C1 show that it is indeed the PS, which decomposes under the catalytic conditions, presumably due to the electron transfer towards the catalyst being the rate-limiting step.
Collapse
Affiliation(s)
- Mira T Gamache
- Chemische Technologie der Materialsynthese, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany.,Département de Chimie, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec, H2V-03B, Canada
| | - Thomas Auvray
- Département de Chimie, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec, H2V-03B, Canada
| | - Dirk G Kurth
- Chemische Technologie der Materialsynthese, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Garry S Hanan
- Département de Chimie, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec, H2V-03B, Canada
| |
Collapse
|
5
|
Rupp MT, Auvray T, Hanan GS, Kurth DG. Electrochemical and Photophysical Study of Homoleptic and Heteroleptic Methylated Ru(II) Bis‐terpyridine Complexes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Mira T. Rupp
- Département de Chimie Université de Montréal 1375 Avenue Thérèse-Lavoie-Roux Montréal Québec H2V-0B3 Canada
- Chemische Technologie der Materialsynthese Julius-Maximilians-Universität Würzburg Röntgenring 11 97070 Würzburg Germany
| | - Thomas Auvray
- Département de Chimie Université de Montréal 1375 Avenue Thérèse-Lavoie-Roux Montréal Québec H2V-0B3 Canada
| | - Garry S. Hanan
- Département de Chimie Université de Montréal 1375 Avenue Thérèse-Lavoie-Roux Montréal Québec H2V-0B3 Canada
| | - Dirk G. Kurth
- Chemische Technologie der Materialsynthese Julius-Maximilians-Universität Würzburg Röntgenring 11 97070 Würzburg Germany
| |
Collapse
|
6
|
Wang HX, Wei CW, Wang XJ, Xiang HF, Yang XZ, Wu GL, Lin YW. A facile gelator based on phenylalanine derivative is capable of forming fluorescent Zn-metallohydrogel, detecting Zn 2+ in aqueous solutions and imaging Zn 2+ in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119378. [PMID: 33401180 DOI: 10.1016/j.saa.2020.119378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/14/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Supramolecular hydrogels are attracting soft materials with potential applications. In this study, we synthesized a facile gelator (named 2-QF) based on phenylalanine derivative with a Quinoline group. 2-QF can assemble to form hydrogels at room temperature in different colors under low pH values. Moreover, 2-QF was triggered to form a yellow metallohydrogel (2-QF-Zn) at high pH by the coordination between 2-QF and Zn2+. 2-QF-Zn metallohydrogel showed excellent multi-stimuli responsiveness, especially the reversible "on-off" luminescence switching, as induced by base/acid. In addition, at a low concentration, 2-QF can selectively and visibly identify Zn2+ through fluorescence enhancement, and can detect Zn2+ at physiological pH as a chemosensor. Remarkably, 2-QF and 2-QF-Zn exhibited an excellent biocompatibility without cell cytotoxicity, and 2-QF is able to penetrate live HeLa cells and image intracellular Zn2+ by a turn-on fluorescent response, which makes it a potential candidate for biomedical applications.
Collapse
Affiliation(s)
- Hai-Xia Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Chuan-Wan Wei
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Xiao-Juan Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Heng-Fang Xiang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Xin-Zhi Yang
- Lab of Protein Structure and Function, University of South China Medical School, Hengyang 421001, China
| | - Gui-Long Wu
- Lab of Protein Structure and Function, University of South China Medical School, Hengyang 421001, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; Lab of Protein Structure and Function, University of South China Medical School, Hengyang 421001, China.
| |
Collapse
|
7
|
Mukkatt I, Nirmala A, Madhavan ND, Shankar S, Deb B, Ajayaghosh A. Ligand-Controlled Electrochromic Diversification with Multilayer Coated Metallosupramolecular Polymer Assemblies. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5245-5255. [PMID: 33470782 DOI: 10.1021/acsami.0c20428] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Designing surface-confined molecular systems capable of expressing changes in functional properties as a result of slight variations in chemical structure under the influence of an external stimulus is of contemporary interest. In this context, we have designed three tetraterpyridine ligands with variations in their core architecture (phenyl vs tetraphenylethynyl vs bithiophene) to create spray-coated electrochromic assemblies of iron(II)-based metallosupramolecular polymer network films on transparent conducting oxide substrates. These assemblies exhibited molecular permeability and spectroelectrochemical properties that are in turn dictated by the ligand structure. Electrochromic films with high coloration efficiencies (up to 1050 cm2/C) and superior optical contrast (up to 76%) with a concomitant color-to-color redox transition were readily achieved. These functional switching elements were integrated into sandwich-type electrochromic cells (CE up to 641 cm2/C) that exhibited high contrast ratios of up to 56%, with attractive ON-OFF ratios, fast switching kinetics, and high operational stability. Every measurable spectroelectrochemical property of the films and devices is an associated function of the ligand structure that coordinates the same metal ion to different extents. While exhibiting a ligand-structure induced differential metal coordination leading to porosity and spectroelectrochemical diversification, these assemblies allow the creation of electrochromic patterns and images by a simple spray-coating technique.
Collapse
Affiliation(s)
- Indulekha Mukkatt
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate P.O., Pappanamcode, Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India
| | - Anjali Nirmala
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate P.O., Pappanamcode, Thiruvananthapuram 695019, India
| | - Nayan Dev Madhavan
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate P.O., Pappanamcode, Thiruvananthapuram 695019, India
| | - Sreejith Shankar
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate P.O., Pappanamcode, Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India
| | - Biswapriya Deb
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate P.O., Pappanamcode, Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India
| | - Ayyappanpillai Ajayaghosh
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate P.O., Pappanamcode, Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India
| |
Collapse
|
8
|
Chernyshev A, Acharya U, Pfleger J, Trhlíková O, Zedník J, Vohlídal J. Iron (II) Metallo-Supramolecular Polymers Based on Thieno[3,2- b]thiophene for Electrochromic Applications. Polymers (Basel) 2021; 13:polym13030362. [PMID: 33498749 PMCID: PMC7865520 DOI: 10.3390/polym13030362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/31/2023] Open
Abstract
Four new bis(tpy) unimers with different linkers between the thieno[3,2-b]thiophene-2,5-diyl central unit and terpyridine-4′-yl (tpy) end-groups: no linker (Tt), ethynediyl (TtE), 1,4-phenylene (TtPh) and 2,2′-bithophene-5,5′-diyl (TtB) are prepared, characterized, and assembled with Fe2+ ions to metallo-supramolecular polymers (Fe-MSPs). The Fe-MSP films prepared by spin-casting on Indium Tin Oxide (ITO) glass are characterized by atomic force microscope (AFM) microscopy, cyclic voltammetry, and UV/vis spectroscopy and studied for their electrochromism and effect of the unimer structure on their electrochromic performance. Of the studied MSPs, Fe-Tt shows the highest optical contrast as well as coloration efficiency (CE = 641 cm2 C−1) and the fastest optical response. This makes it an excellent candidate for possible use in electrochromic devices.
Collapse
Affiliation(s)
- Andrei Chernyshev
- Faculty of Science, Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 2030, 128 40 Prague 2, Czech Republic
| | - Udit Acharya
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
- Faculty of Mathematics and Physics, Charles University, 121 16 Prague 2, Czech Republic
| | - Jiří Pfleger
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Olga Trhlíková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Jiří Zedník
- Faculty of Science, Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 2030, 128 40 Prague 2, Czech Republic
| | - Jiří Vohlídal
- Faculty of Science, Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 2030, 128 40 Prague 2, Czech Republic
| |
Collapse
|
9
|
Rupp MT, Auvray T, Shevchenko N, Swoboda L, Hanan GS, Kurth DG. Substituted 2,4-Di(pyridin-2-yl)pyrimidine-Based Ruthenium Photosensitizers for Hydrogen Photoevolution under Red Light. Inorg Chem 2021; 60:292-302. [PMID: 33322895 DOI: 10.1021/acs.inorgchem.0c02955] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The photocatalytic reduction of water to form hydrogen gas (H2) is a promising approach to collect, convert, and store solar energy. Typically, ruthenium tris(bipyridine) and its many derivatives are used as photosensitizers (PSs) in a variety of photocatalytic conditions. The bis(terpyridine) analogues, however, have only recently gained attention for this application because of their poor photophysical properties. Yet, by the introduction of electron-donating or -withdrawing groups on the terpyridine ligands, the photophysical and electrochemical properties can be considerably improved. In this study, we report a series of nonsymmetric 2,6-di(pyridin-2-yl)pyrimidine ligands with peripheral pyridine substituents in different positions and their corresponding ruthenium(II) complexes. The presence of the pyrimidine ring stabilizes the lowest unoccupied molecular orbital, leading to a red-shifted emission and prolonged excited-state lifetimes as well as higher luminescence quantum yields compared to analogous terpyridine complexes. Furthermore, all complexes are easier to reduce than the previously reported bis(terpyridine) complexes used as PSs. Interestingly, the pyridine substituent in the 4-pyrimidine position has a greater impact on both the photophysical and electrochemical properties. This correlation between the substitution pattern and properties of the complexes is further investigated by using time-dependent density functional theory. In hydrogen evolution experiments under blue- and red-light irradiation, all investigated complexes exhibit much higher activity compared to the previously reported ruthenium(II) bis(terpyridine) complexes, but none of the complexes are as stable as the literature compounds, presumably because of an additional decomposition pathway of the reduced PS competing with electron transfer from the reduced PS to the catalyst.
Collapse
Affiliation(s)
- Mira T Rupp
- Département de Chimie, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2 V-03B, Canada.,Chemische Technologie der Materialsynthese, Julius-Maximilians-Universität Würzburg, Röntgenring 11, Würzburg 97070, Germany
| | - Thomas Auvray
- Département de Chimie, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2 V-03B, Canada
| | - Natali Shevchenko
- Département de Chimie, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2 V-03B, Canada
| | - Lukas Swoboda
- Chemische Technologie der Materialsynthese, Julius-Maximilians-Universität Würzburg, Röntgenring 11, Würzburg 97070, Germany
| | - Garry S Hanan
- Département de Chimie, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2 V-03B, Canada
| | - Dirk G Kurth
- Chemische Technologie der Materialsynthese, Julius-Maximilians-Universität Würzburg, Röntgenring 11, Würzburg 97070, Germany
| |
Collapse
|
10
|
|
11
|
Laschuk NO, Ahmad R, Ebralidze II, Poisson J, Easton EB, Zenkina OV. Multichromic Monolayer Terpyridine-Based Electrochromic Materials. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41749-41757. [PMID: 32870639 DOI: 10.1021/acsami.0c11478] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The article describes novel electrochromic materials (ECMs) that are based on a monolayer consisting of two or three isostructural metal complexes of 4'-(pyridin-4-yl)-2,2':6',2''-terpyridine simultaneously deposited on surface-enhanced support. The support was made by screen printing of indium tin oxide (ITO) nanoparticles on ITO-glass and has a surface area sufficient for a monolayer to give color visible to the naked eye. The ability to separately electrochemically address the oxidation state of the metal centers on the surface (i.e., Co2+/Co3+, Os2+/Os3+, and Fe2+/Fe3+) provides an opportunity to achieve several distinct color-to-color transitions, thus opening the door for constructing monolayer-based multicolor ECMs.
Collapse
Affiliation(s)
- Nadia O Laschuk
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada
| | - Rana Ahmad
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada
| | - Iraklii I Ebralidze
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada
| | - Jade Poisson
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada
| | - E Bradley Easton
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada
| | - Olena V Zenkina
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada
| |
Collapse
|
12
|
Jena SR, Choudhury J. A fast-switching electrochromic device with a surface-confined 3D metallo-organic coordination assembly. Chem Commun (Camb) 2020; 56:559-562. [PMID: 31829325 DOI: 10.1039/c9cc06920h] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Demonstrated herein is a fast (<1 s)-switching solid-state electrochromic device (t = 0.49 s for coloration and 0.90 s for bleaching), fabricated with a novel imidazolium-linked [Fe(terpyridine)2]2+ chromophore-based surface-confined three dimensional metallo-organic coordination assembly. The device also exhibits promising electrochromic attributes such as high coloration efficiency (η = 275 cm2 C-1), moderate operating voltage (from -2 V to +3.2 V) and transmittance contrast (ΔT = 40%), and high cycling stability (up to 4500 cycles).
Collapse
Affiliation(s)
- Satya Ranjan Jena
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462 066, India.
| | | |
Collapse
|
13
|
Keisar H, Lahav M, van der Boom ME. Integrated Molecular Logic Using a Multistate Electrochromic Platform. Chemphyschem 2019; 20:2403-2407. [PMID: 31402510 DOI: 10.1002/cphc.201900784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Indexed: 01/08/2023]
Abstract
Herein, we present an approach that integrates molecular logic functions using surface-confined metallo-organic assemblies. These assemblies are electrochromic and mimic the behaviour of logic elements. The logic elements are addressed individually by electrochemical methods, and their outputs are simultaneously read-out optically by UV/Vis absorption spectroscopy. The versatility of our setup is demonstrated by the integration of two multi-component assemblies; each acting as ternary logic elements. We used also a laminated cell configuration to demonstrate color-to-color and color-to-transparent transitions. This concept offers a route for the future development of devices with multiple logic states.
Collapse
Affiliation(s)
- Hodaya Keisar
- Department of Organic Chemistry, The Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Michal Lahav
- Department of Organic Chemistry, The Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Milko E van der Boom
- Department of Organic Chemistry, The Weizmann Institute of Science, 7610001, Rehovot, Israel
| |
Collapse
|
14
|
Wiesler S, Bau MA, Niepel T, Younas SL, Luu H, Streuff J. Synthesis of α,ω‐Bis‐Enones by the Double Addition of Alkenyl Grignard Reagents to Diacid Weinreb Amides. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Stefan Wiesler
- Institut für Organische Chemie Albert‐Ludwigs‐Universität Freiburg Albertstr. 21 79104 Freiburg im Breisgau Germany
| | - Michael A. Bau
- Institut für Organische Chemie Albert‐Ludwigs‐Universität Freiburg Albertstr. 21 79104 Freiburg im Breisgau Germany
| | - Thomas Niepel
- Institut für Organische Chemie Albert‐Ludwigs‐Universität Freiburg Albertstr. 21 79104 Freiburg im Breisgau Germany
| | - Sara L. Younas
- Institut für Organische Chemie Albert‐Ludwigs‐Universität Freiburg Albertstr. 21 79104 Freiburg im Breisgau Germany
| | - Hieu‐Trinh Luu
- Institut für Organische Chemie Albert‐Ludwigs‐Universität Freiburg Albertstr. 21 79104 Freiburg im Breisgau Germany
| | - Jan Streuff
- Institut für Organische Chemie Albert‐Ludwigs‐Universität Freiburg Albertstr. 21 79104 Freiburg im Breisgau Germany
| |
Collapse
|
15
|
Tang L, Liao S, Qu J. Metallohydrogel with Tunable Fluorescence, High Stretchability, Shape-Memory, and Self-Healing Properties. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26346-26354. [PMID: 31251026 DOI: 10.1021/acsami.9b06177] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Aiming at the problem that the reported smart optical metallohydrogels were limited with poor mechanical properties, we reported here a novel smart optical metallohydrogel (Al-hydrogel) with excellent elongation, shape-memory ability, self-healing property, and controllable fluorescence intensity. The Al-hydrogel was obtained by the HHPMA-Al3+ and carboxylate-Al3+ coordination after one-pot micellar copolymerization of acrylic acid (AAc), acrylamide (AAm), and hydrophobic arylhydrazone-based ligand (HHPMA). This hydrogel was able to extend up to 5000% of its original length without fracture. Its emission intensity was tunable by OH-/H+ or Zn2+/AAc and increased by 500% with 0.1 M OH- or Zn2+. Its tunable fluorescence enabled us to repeatedly pattern it. A reversible system consisting of Fe3+/H+, was implemented to control the shape of the Al-hydrogel, endowing the Al-hydrogel with shape-memory ability. This highly stretchable and multifunctional Al-hydrogel has potential applications in information transmission, wearable devices, and flexible sensors.
Collapse
Affiliation(s)
- Liuyan Tang
- School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Shanshan Liao
- School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Jinqing Qu
- School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
16
|
Banasz R, Wałęsa-Chorab M. Polymeric complexes of transition metal ions as electrochromic materials: Synthesis and properties. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
17
|
Zhao S, Huang W, Guan Z, Jin B, Xiao D. A novel bis(dihydroxypropyl) viologen-based all-in-one electrochromic device with high cycling stability and coloration efficiency. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.12.135] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Bocian A, Napierała S, Gorczyński A, Kubicki M, Wałęsa-Chorab M, Patroniak V. The first example of an asymmetrical μ-oxo bridged dinuclear iron complex with a terpyridine ligand. NEW J CHEM 2019. [DOI: 10.1039/c9nj02413a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The reaction of Fe(iii) ions with a terpyridine ligand L in the presence of chlorides and independent of conditions results in the formation of μ-oxo bridged dinuclear [FeLCl(μ-O)FeCl3] and the mononuclear complex [FeLCl2].
Collapse
Affiliation(s)
| | - Sergiusz Napierała
- Faculty of Chemistry
- Adam Mickiewicz University
- 61-614 Poznań
- Poland
- Centre for Advanced Technologies
| | - Adam Gorczyński
- Faculty of Chemistry
- Adam Mickiewicz University
- 61-614 Poznań
- Poland
| | - Maciej Kubicki
- Faculty of Chemistry
- Adam Mickiewicz University
- 61-614 Poznań
- Poland
| | - Monika Wałęsa-Chorab
- Faculty of Chemistry
- Adam Mickiewicz University
- 61-614 Poznań
- Poland
- Centre for Advanced Technologies
| | | |
Collapse
|
19
|
Wang S, Gao W, Hu XY, Shen YZ, Wang L. Supramolecular strategy for smart windows. Chem Commun (Camb) 2019; 55:4137-4149. [DOI: 10.1039/c9cc00273a] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Supramolecular strategy-based materials are outlined and their applications for fabricating smart windows are summarized for future exploration of ideal smart windows.
Collapse
Affiliation(s)
- Sai Wang
- Applied Chemistry Department
- College of Material Science and Technology
- Nanjing University of Aeronautics and Astronautics
- Nanjing
- China
| | - Wei Gao
- Applied Chemistry Department
- College of Material Science and Technology
- Nanjing University of Aeronautics and Astronautics
- Nanjing
- China
| | - Xiao-Yu Hu
- Applied Chemistry Department
- College of Material Science and Technology
- Nanjing University of Aeronautics and Astronautics
- Nanjing
- China
| | - Ying-Zhong Shen
- Applied Chemistry Department
- College of Material Science and Technology
- Nanjing University of Aeronautics and Astronautics
- Nanjing
- China
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| |
Collapse
|
20
|
Li Z, Tang Y, Zhou K, Wang H, Yan H. Improving Electrochromic Cycle Life of Prussian Blue by Acid Addition to the Electrolyte. MATERIALS 2018; 12:ma12010028. [PMID: 30577668 PMCID: PMC6337291 DOI: 10.3390/ma12010028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/07/2018] [Accepted: 12/13/2018] [Indexed: 11/16/2022]
Abstract
In this study, we examined the cyclic stability of Prussian blue (PB) films in electrolytes with acid. The cyclic stabilities of the PB films were investigated in K+ based electrolytes with different values of solution pH. The acidified KCl solution can significantly improve the durability of the film. Among the three pH values tested, the KCl solutions (pH = 2.15 and pH = 3.03) showed better performance. Furthermore, we investigated the cyclic stabilities of the PB films in LiClO4/PC electrolyte containing different acids. We found that the cyclic stability of PB film was significantly improved when a small amount of acetic acid was dissolved in LiClO4/PC electrolyte. The PB film exhibited stable optical modulation after up to 20,000 cycles in LiClO4/PC electrolyte containing acetic acid—a much higher result than those of some literatures. This suggests that the addition of acetic acid to LiClO4/PC electrolyte can promote the development of PB-based devices with improved stability.
Collapse
Affiliation(s)
- ZiTong Li
- The College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China.
| | - YunHui Tang
- The College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China.
| | - KaiLing Zhou
- The College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Hao Wang
- The College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Hui Yan
- The College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
21
|
Yuan M, Wang F, Tian YK. Metallo-supramolecular polymers derived from benzothiadiazole-based platinum acetylide complexes for fluorescent security application. RSC Adv 2018; 8:40794-40797. [PMID: 35557903 PMCID: PMC9091475 DOI: 10.1039/c8ra08615j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/28/2018] [Indexed: 11/21/2022] Open
Abstract
Metallo-supramolecular polymers with the incorporation of benzothiadiazole-substituted organoplatinum moiety have been successfully constructed. The designed monomer displays intense fluorescence signals, which are severely quenched upon the supramolecular polymerization process. On–off switching of fluorescence can be further exploited for data security materials in response to the chemical stimuli. Accordingly, the resulting supramolecular polymers can be regarded as a novel and efficient candidate toward information processing applications. Metallo-supramolecular polymers with the incorporation of benzothiadiazole-substituted organoplatinum moiety have been successfully constructed.![]()
Collapse
Affiliation(s)
- Ming Yuan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China Hefei 230026 P. R. China.,Clinic Medical College of Anhui Medical University Hefei 230012 P. R. China
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China Hefei 230026 P. R. China
| | - Yu-Kui Tian
- Department of Chemistry, Tianjin University Tianjin 300354 P. R. China +86 22 27403475
| |
Collapse
|
22
|
Yoshida T, Narayana YSLV, Abe H, Higuchi M. Slow magnetic relaxation in a Tb(iii)-based coordination polymer. Dalton Trans 2018; 47:16066-16071. [PMID: 30302445 DOI: 10.1039/c8dt03125h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Tb(iii)-based coordination polymer (polyTb) was synthesized by complexation of Tb(NO3)3·(6H2O) and 4',4''''-[1,1'-biphenyl]-4,4'-diylbis[6,6''-bis(ethoxycarbonyl)2':6',2''-terpyridine](L). The polymer structure was determined by Job's plots, DFT calculation, and X-ray absorption fine structure (XAFS) measurement. Job's plots indicated that the mole ratio (Tb ion : L) is 1 : 1. The optimized model structures suggested a La model: the LaN6(O[double bond, length as m-dash]C)2 model. The bond distances of La-O and La-N are ∼2.80 Å and 2.60 Å, respectively. The EXAFS fitting indicated that the bond distances of Tb-O and Tb-N are 2.65 Å and 2.95 Å, respectively. polyTb shows field-induced magnetic relaxation in the solid and solution state. The luminescence of polyTb, originating from an f-f transition, was observed (φ = 6.9%). polyTb formed a porous structure on a Si substrate, whereas a fibrous complex structure was formed on glass. polyTb chains are orientated on glass, which were determined by XRD.
Collapse
Affiliation(s)
- Takefumi Yoshida
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan.
| | - Yemineni S L V Narayana
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan.
| | - Hitoshi Abe
- Institute of Materials Structure Science High Energy Accelerator Research Organization (KEK) 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan and Department of Materials Structure Science, School of High Energy Accelerator Science, SOKENDAI (the Graduate University for Advanced Studies) 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Masayoshi Higuchi
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan.
| |
Collapse
|
23
|
Lahav M, van der Boom ME. Polypyridyl Metallo-Organic Assemblies for Electrochromic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706641. [PMID: 29577472 DOI: 10.1002/adma.201706641] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/06/2017] [Indexed: 05/28/2023]
Abstract
Electrochromic films undergo optical changes in response to a redox stimulus. This intriguing phenomenon can be used for a wide range of applications, including smart windows, sensors, color displays, and memory elements. Despite the rapid progress of late, designing suitable electrochromic materials that offer low-cost production, appealing colors, and pronounced optical contrast with high efficiency, as well as long-term stability remains an engineering challenge. Solid-state metal oxides, liquid crystals, and organic polymers have been for many years the leading candidates, successfully making their way into commercial products. An alternative class of materials relies on metal complexes that can be processed from solution, offer a variety of colors, and have metal-centered stable and reversible redox chemistry. These metallo-organic materials possess a full range of electrochromic properties, including ultrahigh coloration efficiencies, and cyclic stability. Here, some of the recent scientific developments in this field are highlighted.
Collapse
Affiliation(s)
- Michal Lahav
- Department of Organic Chemistry, Weizmann Institute of Science, 760001, Rehovot, Israel
| | - Milko E van der Boom
- Department of Organic Chemistry, Weizmann Institute of Science, 760001, Rehovot, Israel
| |
Collapse
|
24
|
Abdul-Hassan WS, Roux D, Bucher C, Cobo S, Molton F, Saint-Aman E, Royal G. Redox-Triggered Folding of Self-Assembled Coordination Polymers incorporating Viologen Units. Chemistry 2018; 24:12961-12969. [PMID: 29907986 DOI: 10.1002/chem.201802088] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Indexed: 11/08/2022]
Abstract
We report the study of stimuli-responsive ZnII and FeII coordination polymers (MC34+ or MC24+ with M=Fe2+ or Zn2+ ). These soluble metallopolymers were formed spontaneously by reaction of an organic ligand (C34+ or C24+ ) with one molar equivalent of metal ions. The C34+ and C24+ ligands incorporate two chelating terpyridine groups bridged by a redox responsive hinge featuring two viologen units (viologen=N,N'-dialkyl-4,4'-bipyridinium) linked either with propyl (C34+ ) or ethyl (C24+ ) chains. The viologen units in the polymer chains were reduced (1 e- per viologen group) either by bulk electrolysis or by visible-light irradiation carried out in the presence of a photosensitizer. The 1 e- reduction of the viologen units in the MC24+ polymers induced a slight decrease in the viscosity of the solutions due to a modification of the overall charge carried by the metallopolymers. In strong contrast, reduction of coordination polymers involving propyl linkers (MC34+ ) led to a remarkable increase (≈+400 %) in observed viscosity. This reversible effect was attributed to a folding of the polymer chains triggered by π-dimerization of the photo-generated viologen cation radicals.
Collapse
Affiliation(s)
- Wathiq Sattar Abdul-Hassan
- Univ. Grenoble-Alpes, CNRS, Département de Chimie Moléculaire, 38400, Grenoble, France.,University of Thi-Qar, College of Science, Department of Chemistry, 64001, Nassiria, Iraq
| | - Denis Roux
- Univ. Grenoble-Alpes, CNRS, Grenoble INP, LRP, 38000, Grenoble, France
| | - Christophe Bucher
- Univ. Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, 69342, Lyon, France
| | - Saioa Cobo
- Univ. Grenoble-Alpes, CNRS, Département de Chimie Moléculaire, 38400, Grenoble, France
| | - Florian Molton
- Univ. Grenoble-Alpes, CNRS, Département de Chimie Moléculaire, 38400, Grenoble, France
| | - Eric Saint-Aman
- Univ. Grenoble-Alpes, CNRS, Département de Chimie Moléculaire, 38400, Grenoble, France
| | - Guy Royal
- Univ. Grenoble-Alpes, CNRS, Département de Chimie Moléculaire, 38400, Grenoble, France
| |
Collapse
|
25
|
Uflyand IE, Dzhardimalieva GI. Molecular design of supramolecular polymers with chelated units and their application as functional materials. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1465567] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Igor E. Uflyand
- Department of Chemistry, Southern Federal University, Rostov-on-Don, Russian Federation
| | - Gulzhian I. Dzhardimalieva
- Laboratory of Metallopolymers, The Institute of Problems of Chemical Physics RAS, Chernogolovka, Russian Federation
| |
Collapse
|
26
|
Beneto AJ, Jeong JY, Park JS. Sub-phthalocyanine-incorporated Fe(ii) metallo-supramolecular polymer exhibiting blue-to-transmissive electrochromic transition with high transmittance and coloration efficiency. Dalton Trans 2018; 47:16036-16039. [DOI: 10.1039/c8dt03587c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation of a new Fe(ii) metallo-supramolecular polymer (poly-subPc-Fe) constructed from a terpyridine-functionalized sub-phthalocyanine with axially substituted polyisobutylene is presented.
Collapse
Affiliation(s)
- Arockiam Jesin Beneto
- Department of Organic Material Science and Engineering
- Pusan National University
- Busan 46241
- Korea
| | - Jae Yoon Jeong
- Department of Organic Material Science and Engineering
- Pusan National University
- Busan 46241
- Korea
| | - Jong S. Park
- Department of Organic Material Science and Engineering
- Pusan National University
- Busan 46241
- Korea
| |
Collapse
|
27
|
Danine A, Manceriu L, Fargues A, Rougier A. Eco-friendly redox mediator gelatin-electrolyte for simplified TiO2-viologen based electrochromic devices. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.10.096] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|