1
|
Wang M, Han Z, Garcia Y, Cheng P. Six-Coordinated Co II Single-Molecule Magnets: Synthetic Strategy, Structure and Magnetic Properties. Chemphyschem 2024; 25:e202400396. [PMID: 38889310 DOI: 10.1002/cphc.202400396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
The pursuit of molecule-based magnetic memory materials contributes significantly to high-density information storage research in the frame of the ongoing information technologies revolution. Remarkable progress has been achieved in both transition metal (TM) and lanthanide based single-molecule magnets (SMMs). Notably, six-coordinated CoII SMMs hold particular research significance owing to the economic and abundant nature of 3d TM ions compared to lanthanide ions, the substantial spin-orbit coupling of CoII ions, the potential for precise control over coordination geometry, and the air-stability of coordination-saturated structures. In this review, we will summarize the progress made in six-coordinated CoII SMMs, organized by their coordination geometry and molecular structure similarity. Valuable insights, principles, and new mechanism gleaned from this research and remaining issues that need to be addressed will also be discussed to guide future optimization.
Collapse
Affiliation(s)
- Mengmeng Wang
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
- Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zongsu Han
- Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, United States
| | - Yann Garcia
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Peng Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
2
|
Zhang RJ, Chai BL, Xu H, Zheng TF, Zhu ZH, Peng Y, Chen JL, Liu SJ, Wen HR. Enhanced Heterogeneous Catalytic Activity of Peroxymonosulfate for Rhodamine B Degradation via a Co II-Based Metal-Organic Framework. Inorg Chem 2023; 62:2760-2768. [PMID: 36724472 DOI: 10.1021/acs.inorgchem.2c03888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A stable metal-organic framework with the formula {[Co(BBZB)(IPA)]·H2O}n (JXUST-23, BBZB = 4,7-bis(1H-benzimidazole-1-yl)-2,1,3-benzothiadiazole and H2IPA = isophthalic acid) was constructed by incorporating Co2+ ions and two conjugated ligands under solvothermal conditions. JXUST-23 takes a dinuclear cluster-based layer structure with a porosity of 2.7%. In this work, JXUST-23 was used to activate peroxymonosulfate (PMS) to degrade rhodamine B (RhB), a difficult-to-degrade pollutant in water. Compared with pure PMS or JXUST-23, the JXUST-23/PMS system displays the best degradation ability of RhB in neutral solution. When the mass ratio of JXUST-23 to PMS was 2:3, 99.72% of RhB (50 ppm) was removed within 60 min, and the reaction rate was 0.1 min-1. Furthermore, free radical quenching experiments show that SO4•- was the main free radical during the process of RhB degradation. In addition, JXUST-23 exhibits good reusability for the degradation of the organic dye RhB, making it a potential candidate for environmental remediation.
Collapse
Affiliation(s)
- Rui-Jie Zhang
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Bi-Lian Chai
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Hui Xu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Teng-Fei Zheng
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Zi-Hao Zhu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Yan Peng
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Jing-Lin Chen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| |
Collapse
|
3
|
Kumar Sahu P, Kharel R, Shome S, Goswami S, Konar S. Understanding the unceasing evolution of Co(II) based single-ion magnets. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
A Schiff base with excited-state intramolecular proton transfer and its Zinc(II) complex: Mechanochromic luminescence and acid-base stimuli response. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Field-Induced Single Molecule Magnetic Behavior of Mononuclear Cobalt(II) Schiff Base Complex Derived from 5-Bromo Vanillin. INORGANICS 2022. [DOI: 10.3390/inorganics10080105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A mononuclear Co(II) complex of a Schiff base ligand derived from 5-Bromo-vanillin and 4-aminoantipyrine, that has a compressed tetragonal bipyramidal geometry and exhibiting field-induced slow magnetic relaxation, has been synthesized and characterized by single crystal X-ray diffraction, elemental analysis and molecular spectroscopy. In the crystal packing, a hydrogen-bonded dimer structural topology has been observed with two distinct metal centers having slightly different bond parameters. The complex has been further investigated for its magnetic nature on a SQUID magnetometer. The DC magnetic data confirm that the complex behaves as a typical S = 3/2 spin system with a sizable axial zero-field splitting parameter D/hc = 38 cm−1. The AC susceptibility data reveal that the relaxation time for the single-mode relaxation process is τ = 0.16(1) ms at T = 2.0 K and BDC = 0.12 T.
Collapse
|
6
|
Shao D, Xu F, Yin L, Li H, Sun Y, Ouyang Z, Wang Z, Zhang Y, Wang X. Fine‐Tuning
of Structural Distortion and Magnetic Anisotropy by Organosulfonates in Octahedral Cobalt(
II
) Complexes. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dong Shao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering Huanggang Normal University Huanggang 438000 P. R. China
| | - Fang‐Xue Xu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Lei Yin
- Wuhan National High Magnetic Field Centre Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Hong‐Qing Li
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Yu‐Chen Sun
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Zhong‐Wen Ouyang
- Wuhan National High Magnetic Field Centre Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Zhen‐Xing Wang
- Wuhan National High Magnetic Field Centre Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Yi‐Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology Nanjing Normal University Nanjing 210097 P. R. China
| | - Xin‐Yi Wang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
7
|
Ruppert T, Schlittenhardt S, Suryadevara N, Fuhr O, Anson CE, Ruben M, Powell AK. Keeping dysprosium in line: Trinuclear heterometallic M
II
2
Dy
III
complexes with M=Cd, Co and Cu. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Thomas Ruppert
- Institute for Inorganic Chemistry (AOC) Karlsruhe Institute of Technology (KIT) Engesserstr. 15 76131 Karlsruhe Germany
| | - Sören Schlittenhardt
- Institute of Nanotechnology (INT) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Nithin Suryadevara
- Institute of Nanotechnology (INT) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Olaf Fuhr
- Institute of Nanotechnology (INT) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Karlsruhe Nano Micro Facility (KNMFi) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Christopher E. Anson
- Institute for Inorganic Chemistry (AOC) Karlsruhe Institute of Technology (KIT) Engesserstr. 15 76131 Karlsruhe Germany
| | - Mario Ruben
- Institute of Nanotechnology (INT) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Institute for Quantum Materials and Technologies (IQMT) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Annie K. Powell
- Institute for Inorganic Chemistry (AOC) Karlsruhe Institute of Technology (KIT) Engesserstr. 15 76131 Karlsruhe Germany
- Institute of Nanotechnology (INT) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Institute for Quantum Materials and Technologies (IQMT) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
8
|
Plyuta N, Petrusenko SR, Kokozay V, Cauchy T, Lloret F, Julve M, Cano J, Avarvari N. Field-induced mononuclear cobalt(II) single-molecule magnet (SMM) based on a benzothiadiazole-ortho-vanillin ligand. Dalton Trans 2022; 51:4760-4771. [DOI: 10.1039/d1dt04274b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A unique π-conjugated benzothiadiazole-ortho-vanillin ligand (HL), characterized by single crystal X-ray diffraction and DFT calculations, has been prepared by condensation between 4-amino-benzothiadiazole (BTD) and ortho-vanillin. Its reaction with cobalt(II) acetate...
Collapse
|
9
|
Mitsuhashi R, Hosoya S, Suzuki T, Sunatsuki Y, Sakiyama H, Mikuriya M. Zero-field slow relaxation of magnetization in cobalt(ii) single-ion magnets: suppression of quantum tunneling of magnetization by tailoring the intermolecular magnetic coupling. RSC Adv 2020; 10:43472-43479. [PMID: 35519684 PMCID: PMC9058397 DOI: 10.1039/d0ra08286d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/23/2020] [Indexed: 12/03/2022] Open
Abstract
The correlation between magnetic relaxation dynamics and the alignment of single-ion magnets (SIMs) in a crystal was investigated using four analogous cobalt(ii) complexes with unique hydrogen-bond networks. The hydrogen-bonding interactions in the crystals resulted in a relatively short intermolecular Co⋯Co distance, which led to non-zero intermolecular magnetic coupling. All the complexes with a Co⋯Co distance shorter than 6.5 Å exhibited zero-field slow magnetic relaxation as weak magnetic interactions split the ground ±Ms levels and suppressed quantum tunneling of magnetization (QTM). In particular, antiferromagnetically coupled one-dimensional chain SIM networks effectively suppressed QTM when the two intrachain Co⋯Co distances were non-equivalent. However, when the two distances in a chain were equivalent and each molecular symmetry axis aligned parallell within the chain, QTM suppression was insufficient because magnetic coupling from the adjacent molecules was virtually cancelled. Partial substitution of the CoII ion with the diamagnetic ZnII ion up to 33% for this complex resulted in complete QTM suppression in the absence of an external field. These results show that the manipulation of intermolecular distances and alignments is effective for suppressing undesired QTM events in SIMs.
Collapse
Affiliation(s)
- Ryoji Mitsuhashi
- Institute of Liberal Arts and Science, Kanazawa University Kakuma Kanazawa Ishikawa 920-1192 Japan
| | - Satoshi Hosoya
- School of Science and Technology, Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
| | - Takayoshi Suzuki
- Research Institute for Interdisciplinary Science, Okayama University 3-1-1 Tsushima-naka, Kita-ku Okayama 700-8530 Japan
| | - Yukinari Sunatsuki
- Department of Chemistry, Faculty of Science, Okayama University 3-1-1 Tsushima-naka, Kita-ku Okayama 700-8530 Japan
| | - Hiroshi Sakiyama
- Department of Science, Faculty of Science, Yamagata University 1-4-12 Kojirakawa Yamagata 990-8560 Japan
| | - Masahiro Mikuriya
- School of Science and Technology, Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
| |
Collapse
|
10
|
Sarkar A, Dey S, Rajaraman G. Role of Coordination Number and Geometry in Controlling the Magnetic Anisotropy in Fe II , Co II , and Ni II Single-Ion Magnets. Chemistry 2020; 26:14036-14058. [PMID: 32729641 DOI: 10.1002/chem.202003211] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/22/2022]
Abstract
Since the last decade, the focus in the area of single-molecule magnets (SMMs) has been shifting constructively towards the development of single-ion magnets (SIMs) based on transition metals and lanthanides. Although ground-breaking results have been witnessed for DyIII -based SIMs, significant results have also been obtained for some mononuclear transition metal SIMs. Among others, studies based on CoII ion are very prominent as they often exhibit high magnetic anisotropy or zero-field splitting parameters and offer a large barrier height for magnetisation reversal. Although CoII possibly holds the record for having the largest number of zero-field SIMs known for any transition metal ion, controlling the magnetic anisotropy in these systems are is still a challenge. In addition to the modern spectroscopic techniques, theoretical studies, especially ab initio CASSCF/NEVPT2 approaches, have been used to uncover the electronic structure of various CoII SIMs. In this article, with some selected examples, the aim is to showcase how varying the coordination number from two to eight, and the geometry around the CoII centre alters the magnetic anisotropy. This offers some design principles for the experimentalists to target new generation SIMs based on the CoII ion. Additionally, some important FeII /FeIII and NiII complexes exhibiting large magnetic anisotropy and SIM properties are also discussed.
Collapse
Affiliation(s)
- Arup Sarkar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Sourav Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| |
Collapse
|
11
|
Hrubý J, Dvořák D, Squillantini L, Mannini M, van Slageren J, Herchel R, Nemec I, Neugebauer P. Co(II)-Based single-ion magnets with 1,1'-ferrocenediyl-bis(diphenylphosphine) metalloligands. Dalton Trans 2020; 49:11697-11707. [PMID: 32789384 DOI: 10.1039/d0dt01512a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein, we report on investigations of magnetic and spectroscopic properties of three heterobimetallic Fe(ii)-Co(ii) coordination compounds based on the tetracoordinate {CoP2X2} core encapsulated by dppf metalloligand, where X = Cl (1), Br (2), I (3), dppf = 1,1'-ferrocenediyl -bis(diphenylphosphine). The analysis of static magnetic data has revealed the presence of axial magnetic anisotropy in compounds (1) and (2) and this was further confirmed by high-frequency electron spin resonance (HF-ESR) spectroscopy. Dynamic magnetic data confirmed that (1) and (2) behave as field-induced Single-Ion Magnets (SIMs). Together with bulk studies, we have also tested the possibility of depositing (2) as thick films on Au(111), glass, and polymeric acetate by drop-casting as well as thermal sublimation, a key aspect for the development of future devices embedding these magnetic objects.
Collapse
Affiliation(s)
- J Hrubý
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200 Brno, Czech Republic.
| | - D Dvořák
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77147 Olomouc, Czech Republic
| | - L Squillantini
- Department of Chemistry "Ugo Schiff", University of Florence and INSTM Research Unit of Florence, via Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - M Mannini
- Department of Chemistry "Ugo Schiff", University of Florence and INSTM Research Unit of Florence, via Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - J van Slageren
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - R Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77147 Olomouc, Czech Republic
| | - I Nemec
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200 Brno, Czech Republic. and Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77147 Olomouc, Czech Republic
| | - P Neugebauer
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200 Brno, Czech Republic.
| |
Collapse
|
12
|
Kowalkowska-Zedler D, Nedelko N, Kazimierczuk K, Aleshkevych P, Łyszczek R, Ślawska-Waniewska A, Pladzyk A. Novel tetrahedral cobalt(ii) silanethiolates: structures and magnetism. RSC Adv 2020; 10:29100-29108. [PMID: 35521135 PMCID: PMC9055939 DOI: 10.1039/d0ra06036d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/31/2020] [Indexed: 11/23/2022] Open
Abstract
Three heteroleptic complexes of Co(ii) tri-tert-butoxysilanethiolates have been synthesized with piperidine [Co{SSi(OtBu)3}2(ppd)2] 1, piperazine [Co{SSi(OtBu)3}2(NH3)]2(μ-ppz)·2CH3CN 2, and N-ethylimidazole [Co{SSi(OtBu)3}2(etim)2] 3. The complexes have been characterized by a single-crystal X-ray, revealing their tetrahedral geometry on Co(ii) coordinated by two nitrogen and two sulfur atoms. Complexes 1 and 3 are mononuclear, whereas 2 is binuclear. The spectral properties and thermal properties of 1-3 complexes were established by FTIR spectroscopy for solid samples and TGA. The magnetic properties of complexes 1, 2, and 3 have been investigated by static magnetic measurements and X-band EPR spectroscopy. These studies have shown that 1 and 3, regardless of the similarity in structure of CoN2S2 cores, demonstrate different types of local magnetic anisotropy. Magnetic investigations of 2 reveal the presence of weak antiferromagnetic intra-molecular Co(ii)-Co(ii) interactions that are strongly influenced by the local magnetic anisotropy of individual Co(ii) ions.
Collapse
Affiliation(s)
- Daria Kowalkowska-Zedler
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology Narutowicza Str. 11/12 80-233 Gdańsk Poland
| | - Natalia Nedelko
- Institute of Physics, Polish Academy of Sciences Aleja Lotników 32/46 02-668 Warsaw Poland
| | - Katarzyna Kazimierczuk
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology Narutowicza Str. 11/12 80-233 Gdańsk Poland
| | - Pavlo Aleshkevych
- Institute of Physics, Polish Academy of Sciences Aleja Lotników 32/46 02-668 Warsaw Poland
| | - Renata Łyszczek
- Department of Coordination and General Chemistry and Crystallography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin M.C. Skłodowska Sq. 2 20-031 Lublin Poland
| | - Anna Ślawska-Waniewska
- Institute of Physics, Polish Academy of Sciences Aleja Lotników 32/46 02-668 Warsaw Poland
| | - Agnieszka Pladzyk
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology Narutowicza Str. 11/12 80-233 Gdańsk Poland
| |
Collapse
|
13
|
Navas A, Jannus F, Fernández B, Cepeda J, Medina O’Donnell M, Díaz-Ruiz L, Sánchez-González C, Llopis J, Seco JM, Rufino-Palomares E, Lupiáñez JA, Gómez-Ruiz S, Quiles JL, Battino M, Choquesillo-Lazarte D, Ruiz-Muelle AB, Fernández I, Reyes-Zurita F, Rodríguez-Diéguez A. Designing Single-Molecule Magnets as Drugs with Dual Anti-Inflammatory and Anti-Diabetic Effects. Int J Mol Sci 2020; 21:ijms21093146. [PMID: 32365648 PMCID: PMC7246571 DOI: 10.3390/ijms21093146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 12/19/2022] Open
Abstract
We have designed and synthesized two novel cobalt coordination compounds using bumetanide (bum) and indomethacin (ind) therapeutic agents. The anti-inflammatory effects of cobalt metal complexes with ind and bum were assayed in lipopolysaccharide stimulated RAW 264.7 macrophages by inhibition of nitric oxide production. Firstly, we determined the cytotoxicity and the anti-inflammatory potential of the cobalt compounds and ind and bum ligands in RAW 264.7 cells. Indomethacin-based metal complex was able to inhibit the NO production up to 35% in a concentration-dependent manner without showing cytotoxicity, showing around 6–37 times more effective than indomethacin. Cell cycle analysis showed that the inhibition of NO production was accompanied by a reversion of the differentiation processes in LPS-stimulated RAW 264.7 cells, due to a decreased of cell percentage in G0/G1 phase, with the corresponding increase in the number of cells in S phase. These two materials have mononuclear structures and show slow relaxation of magnetization. Moreover, both compounds show anti-diabetic activity with low in vitro cell toxicities. The formation of metal complexes with bioactive ligands is a new and promising strategy to find new compounds with high and enhanced biochemical properties and promises to be a field of great interest.
Collapse
Affiliation(s)
- Arturo Navas
- Department of Inorganic Chemistry, C/ Severo Ochoa s/n, University of Granada, 18071 Granada, Spain;
| | - Fatin Jannus
- Department of Biochemistry and Molecular Biology I, Severo Ochoa s/n, University of Granada, 18071 Granada, Spain; (F.J.); (L.D.-R.); (E.R.-P.); (J.A.L.)
| | - Belén Fernández
- Institute of Parasitology and Biomedicine “López-Neyra”, CSIC, Av. Conocimiento s/n, 18600 Granada, Spain
- Correspondence: (B.F.); (J.L.Q.); (F.R.-Z.); (A.R.-D.); Tel.: +349-5818-1621 (B.F.); +34-958-24-0057 (J.L.Q.); +34-958-24-3252 (F.R.-Z.); +349-5824-8524 (A.R.-D.)
| | - Javier Cepeda
- Department of Applied Chemistry, University of The Basque Country (UPV/EHU), 20018 San Sebastián, Spain; (J.C.); (J.M.S.)
| | - Marta Medina O’Donnell
- Department of Organic Chemistry, C/ Severo Ochoa s/n, University of Granada, 18071 Granada, Spain;
| | - Luis Díaz-Ruiz
- Department of Biochemistry and Molecular Biology I, Severo Ochoa s/n, University of Granada, 18071 Granada, Spain; (F.J.); (L.D.-R.); (E.R.-P.); (J.A.L.)
| | - Cristina Sánchez-González
- Department of Physiology, University Campus of Cartuja, University of Granada, 18071 Granada, Spain; (C.S.-G.); (J.L.)
| | - Juan Llopis
- Department of Physiology, University Campus of Cartuja, University of Granada, 18071 Granada, Spain; (C.S.-G.); (J.L.)
| | - José M. Seco
- Department of Applied Chemistry, University of The Basque Country (UPV/EHU), 20018 San Sebastián, Spain; (J.C.); (J.M.S.)
| | - E. Rufino-Palomares
- Department of Biochemistry and Molecular Biology I, Severo Ochoa s/n, University of Granada, 18071 Granada, Spain; (F.J.); (L.D.-R.); (E.R.-P.); (J.A.L.)
| | - José Antonio Lupiáñez
- Department of Biochemistry and Molecular Biology I, Severo Ochoa s/n, University of Granada, 18071 Granada, Spain; (F.J.); (L.D.-R.); (E.R.-P.); (J.A.L.)
| | - Santiago Gómez-Ruiz
- Department of Biology and Geology, Physics and Inorganic Chemistry, Rey Juan Carlos University, Calle Tulipán s/n, 28933 Móstoles (Madrid), Spain;
| | - José Luis Quiles
- Department of Physiology. Institute of Nutrition and Food Technology “Jose Mataix”, Biomedical Research Center, Avda. Conocimiento s/n, 18100 Armilla, Spain
- Correspondence: (B.F.); (J.L.Q.); (F.R.-Z.); (A.R.-D.); Tel.: +349-5818-1621 (B.F.); +34-958-24-0057 (J.L.Q.); +34-958-24-3252 (F.R.-Z.); +349-5824-8524 (A.R.-D.)
| | - Maurizio Battino
- Department of Clinical Specialist and Odontostomatological Sciences (DISCO) -Sez. Biochemistry, Faculty of Medicine, Polytechnic University of Marche, 60131 Ancona, Italy;
| | - Duane Choquesillo-Lazarte
- Laboratorio de Estudios Cristalográficos, IACT (CSIC-UGR), Avda. de las Palmeras 4, 18100 Armilla, Spain;
| | - Ana Belén Ruiz-Muelle
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain; (A.B.R.-M.); (I.F.)
| | - Ignacio Fernández
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain; (A.B.R.-M.); (I.F.)
| | - Fernando Reyes-Zurita
- Department of Biochemistry and Molecular Biology I, Severo Ochoa s/n, University of Granada, 18071 Granada, Spain; (F.J.); (L.D.-R.); (E.R.-P.); (J.A.L.)
- Correspondence: (B.F.); (J.L.Q.); (F.R.-Z.); (A.R.-D.); Tel.: +349-5818-1621 (B.F.); +34-958-24-0057 (J.L.Q.); +34-958-24-3252 (F.R.-Z.); +349-5824-8524 (A.R.-D.)
| | - Antonio Rodríguez-Diéguez
- Department of Inorganic Chemistry, C/ Severo Ochoa s/n, University of Granada, 18071 Granada, Spain;
- Correspondence: (B.F.); (J.L.Q.); (F.R.-Z.); (A.R.-D.); Tel.: +349-5818-1621 (B.F.); +34-958-24-0057 (J.L.Q.); +34-958-24-3252 (F.R.-Z.); +349-5824-8524 (A.R.-D.)
| |
Collapse
|
14
|
Znovjyak K, Fritsky IO, Sliva TY, Amirkhanov VM, Seredyuk M. Crystal structure of the mixed methanol and ethanol solvate of bis-{3,4,5-trimeth-oxy- N'-[1-(pyridin-2-yl)ethyl-idene]benzohydrazidato}zinc(II). Acta Crystallogr E Crystallogr Commun 2020; 76:303-308. [PMID: 32148865 PMCID: PMC7057386 DOI: 10.1107/s2056989020000857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 01/22/2020] [Indexed: 11/10/2022]
Abstract
The unit cell of the title compound, [Zn(C17H18N3O4)2]·CH4O·C2H6O, contains two complex mol-ecules related by an inversion centre, plus one methanol and one ethanol solvent molecule per complex molecule. In each complex, two deprotonated pyridine aroylhydrazone ligands {3,4,5-trimeth-oxy-N'-[1-(pyridin-2-yl)ethyl-idene]benzohydrazide} coordinate to the ZnII ion through the N atoms of the pyridine group and the ketamine, and, additionally, through the O atom of the enolate group. In the crystal, dimers are formed by π-π inter-actions between the planar ligand moieties, which are further connected by C⋯O and C⋯C inter-actions. The inter-molecular inter-actions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing that the most important contributions for the crystal packing are from H⋯H (44.8%), H⋯C/C⋯H (22.2%), H⋯O/O⋯H (18.7%) and C⋯C (3.9%) inter-actions.
Collapse
Affiliation(s)
- Kateryna Znovjyak
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv 01601, Ukraine
- UkrOrgSyntez Ltd, Chervonotkatska Street 67, Kyiv 02094, Ukraine
| | - Igor O. Fritsky
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv 01601, Ukraine
- UkrOrgSyntez Ltd, Chervonotkatska Street 67, Kyiv 02094, Ukraine
| | - Tatiana Y. Sliva
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv 01601, Ukraine
| | - Vladimir M. Amirkhanov
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv 01601, Ukraine
| | - Maksym Seredyuk
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv 01601, Ukraine
| |
Collapse
|
15
|
Jiang X, Cui W, Ouyang F, Liu X, Chen S, Jia LH. Field-induced slow magnetic relaxation in a double hydrazine bridged iron(II) chain. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Kowalkowska-Zedler D, Dołęga A, Nedelko N, Łyszczek R, Aleshkevych P, Demchenko I, Łuczak J, Slawska-Waniewska A, Pladzyk A. Structural, magnetic and spectral properties of tetrahedral cobalt(ii) silanethiolates: a variety of structures and manifestation of field-induced slow magnetic relaxation. Dalton Trans 2020; 49:697-710. [PMID: 31848544 DOI: 10.1039/c9dt03722e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Blue crystals of five heteroleptic cobalt(ii) silanethiolates 1-5 have been obtained by the reaction of [Co{SSi(tBuO)3}2(NH3)]2 with aminopyridines and aminomethylpyridines at an appropriate molar ratio and their structural, spectral, thermal and magnetic properties have been established and described. All complexes 1-5 contain Co(ii) ions in a tetrahedral CoN2S2 environment formed by (tBuO)3SiS- residues and pyridines and present variable structures. Complexes 1-3 are mononuclear [Co{SSi(tBuO)3}2(L1)2] (L1 = 2-aminopyridine 2AP, 3-aminopyridine 3AP, and 4-aminopyridine 4AP). The application of 3AMP and 4AMP (3-aminomethylpyridine and 4-aminomethylpyridine) allows either dinuclear complex 4 [Co{SSi(tBuO)3}2(μ-3AMP)]2 or 1D coordination polymer 5 with the formula of [Co{SSi(tBuO)3}2(μ-4AMP)]n to be obtained. The molecular structures of 1-5 were determined by single-crystal X-ray and powder diffraction, UV-vis and FTIR spectrocopy for solid samples and their thermal properties were characterized by TG-DSC and TG-FTIR methods. The dc and ac magnetic and EPR studies of polycrystalline samples have been performed. For all complexes, the obtained data show a behavior typical of paramagnetic high-spin Co(ii) ions in a tetrahedral geometry, with a considerable contribution of the ZFS effect in a low temperature range. All complexes were also probed for SIM behavior. The modeling of the magnetic and EPR data was done for samples 1, 3, 4 and 5 to estimate ZFS parameters. The obtained results imply a negative value of the axial parameter D in complex 4 and positive D values for the rest of the compounds. A comparative magneto-structural analysis of complexes 4 and 5 points to the high sensitivity of the single-ion magnetic anisotropy of tetrahedral Co(ii) complexes to subtle changes in the first and second coordination spheres of Co(ii) ions.
Collapse
Affiliation(s)
- D Kowalkowska-Zedler
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Str. 11/12, 80-233 Gdańsk, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gransbury GK, Boulon ME, Mole RA, Gable RW, Moubaraki B, Murray KS, Sorace L, Soncini A, Boskovic C. Single-ion anisotropy and exchange coupling in cobalt(ii)-radical complexes: insights from magnetic and ab initio studies. Chem Sci 2019; 10:8855-8871. [PMID: 31803460 PMCID: PMC6853083 DOI: 10.1039/c9sc00914k] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/27/2019] [Indexed: 01/18/2023] Open
Abstract
The concurrent effects of single-ion anisotropy and exchange interactions on the electronic structure and magnetization dynamics have been analyzed for a cobalt(ii)-semiquinonate complex. Analogs containing diamagnetic catecholate and tropolonate ligands were employed for comparison of the magnetic behavior and zinc congeners assisted with the spectroscopic characterization and assessment of intermolecular interactions in the cobalt(ii) compounds. Low temperature X-band (ν ≈ 9.4 GHz) and W-Band (ν ≈ 94 GHz) electron paramagnetic resonance spectroscopy and static and dynamic magnetic measurements have been used to elucidate the electronic structure of the high spin cobalt(ii) ion in [Co(Me3tpa)(Br4cat)] (1; Me3tpa = tris[(6-methyl-2-pyridyl)methyl]amine, Br4cat2- = tetrabromocatecholate) and [Co(Me3tpa)(trop)](PF6) (2(PF6); trop- = tropolonate), which show slow relaxation of the magnetization in applied field. The cobalt(ii)-semiquinonate exchange interaction in [Co(Me3tpa)(dbsq)](PF6)·tol (3(PF6)·tol; dbsq- = 3,5-di-tert-butylsemiquinonate, tol = toluene) has been determined using an anisotropic exchange Hamiltonian in conjunction with multistate restricted active space self-consistent field ab initio modeling and wavefunction analysis, with comparison to magnetic and inelastic neutron scattering data. Our results demonstrate dominant ferromagnetic exchange for 3+ that is of similar magnitude to the anisotropy parameters of the cobalt(ii) ion and contains a significant contribution from spin-orbit coupling. The nature of the exchange coupling between octahedral high spin cobalt(ii) and semiquinonate ligands is a longstanding question; answering this question for the specific case of 3+ has confirmed the considerable sensitivity of the exchange to the molecular structure. The methodology employed will be generally applicable for elucidating exchange coupling between orbitally-degenerate metal ions and radical ligands and relevant to the development of bistable molecules and their integration into devices.
Collapse
Affiliation(s)
- Gemma K Gransbury
- School of Chemistry , University of Melbourne , Parkville , Victoria 3010 , Australia .
| | - Marie-Emmanuelle Boulon
- UdR INSTM , Department of Chemistry "U. Schiff" , University of Florence , 50019 Sesto Fiorentino (FI) , Italy
| | - Richard A Mole
- Australian Nuclear Science and Technology Organisation , Locked Bag 2001 , Kirrawee DC , New South Wales 2232 , Australia
| | - Robert W Gable
- School of Chemistry , University of Melbourne , Parkville , Victoria 3010 , Australia .
| | - Boujemaa Moubaraki
- School of Chemistry , Monash University , Clayton , Victoria 3800 , Australia
| | - Keith S Murray
- School of Chemistry , Monash University , Clayton , Victoria 3800 , Australia
| | - Lorenzo Sorace
- UdR INSTM , Department of Chemistry "U. Schiff" , University of Florence , 50019 Sesto Fiorentino (FI) , Italy
| | - Alessandro Soncini
- School of Chemistry , University of Melbourne , Parkville , Victoria 3010 , Australia .
| | - Colette Boskovic
- School of Chemistry , University of Melbourne , Parkville , Victoria 3010 , Australia .
| |
Collapse
|
18
|
Kobayashi F, Ohtani R, Nakamura M, Lindoy LF, Hayami S. Slow Magnetic Relaxation Triggered by a Structural Phase Transition in Long-Chain-Alkylated Cobalt(II) Single-Ion Magnets. Inorg Chem 2019; 58:7409-7415. [PMID: 31117627 DOI: 10.1021/acs.inorgchem.9b00543] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The behavior of single-ion magnets (SIMs) that reflects large distortions of their coordination environments caused by the packing of long alkyl chains for two Co(II) complexes of the type [Co(C n-terpy)2](BF4)2 (C n-terpy = 4'-alkoxy-2,2':6',2″-terpyridine; n = 10 (1), 16 (2)) is reported. 1·2MeOH, which features a highly distorted octahedral high-spin Co(II) center, exhibits field-induced slow magnetic relaxation under an applied dc field of 1000 Oe. Further detailed analysis of the relaxation process indicated the prevalence of the Raman process at low temperature. Surprisingly, 2 shows a reverse spin transition (rST) and also exhibits remarkable field-induced SIM behavior, revealing the presence of magnetic anisotropy for this high-spin Co(II) species that is triggered by a structural phase transition. We present here the first examples of the coexistence of field-induced slow magnetic relaxation and rST associated with structural phase transitions involving long-alkyl-chain conformational changes from gauche to anti. These results indicate the prospect of inducing SIM properties in other distorted high-spin Co(II) species bearing long alkyl chains.
Collapse
Affiliation(s)
- Fumiya Kobayashi
- Department of Chemistry, Graduate School of Science and Technology , Kumamoto University , 2-39-1 Kurokami , Chuo-ku, Kumamoto 860-8555 , Japan
| | - Ryo Ohtani
- Department of Chemistry, Graduate School of Science and Technology , Kumamoto University , 2-39-1 Kurokami , Chuo-ku, Kumamoto 860-8555 , Japan
| | - Masaaki Nakamura
- Department of Chemistry, Graduate School of Science and Technology , Kumamoto University , 2-39-1 Kurokami , Chuo-ku, Kumamoto 860-8555 , Japan
| | - Leonard F Lindoy
- School of Chemistry , The University of Sydney , Sydney , New South Wales 2006 , Australia
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology , Kumamoto University , 2-39-1 Kurokami , Chuo-ku, Kumamoto 860-8555 , Japan.,Institute of Pulsed Power Science (IPPS) , Kumamoto University , 2-39-1 Kurokami , Chuo-ku, Kumamoto 860-8555 , Japan
| |
Collapse
|
19
|
Shi L, Shen FX, Shao D, Zhang YQ, Wang XY. Syntheses, structures, and magnetic properties of three two-dimensional cobalt(ii) single-ion magnets with a CoIIN4X2 octahedral geometry. CrystEngComm 2019. [DOI: 10.1039/c9ce00030e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Three two-dimensional CoII SIMs with (4,4) layer structures have been synthesized and characterized structurally and magnetically.
Collapse
Affiliation(s)
- Le Shi
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Advanced Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Fu-Xing Shen
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Advanced Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Dong Shao
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Advanced Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS
- School of Physical Science and Technology
- Nanjing Normal University
- Nanjing 210023
- China
| | - Xin-Yi Wang
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Advanced Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| |
Collapse
|
20
|
A Co(II)-Hydrazone Schiff Base Single Ion Magnet Exhibiting Field Induced Slow Relaxation Dynamics. MAGNETOCHEMISTRY 2018. [DOI: 10.3390/magnetochemistry4040056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An octahedral Co(II) complex with N′-(2-hydroxybenzylidene)acetohydrazide Schiff base ligand [HL] forms a 3D supramolecular assembly supported by non-coordinating ClO4− ions and H2O molecules. Individual spin centres are non-interacting and give rise to significant spin-orbit coupling, resulting in field induced slow magnetisation relaxation; which is characteristic of Single Ion Magnet (SIM) behaviour.
Collapse
|
21
|
Mitsuhashi R, Pedersen KS, Ueda T, Suzuki T, Bendix J, Mikuriya M. Field-induced single-molecule magnet behavior in ideal trigonal antiprismatic cobalt(ii) complexes: precise geometrical control by a hydrogen-bonded rigid metalloligand. Chem Commun (Camb) 2018; 54:8869-8872. [PMID: 30042991 DOI: 10.1039/c8cc04756a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new cobalt(ii) complex bearing a pair of cobalt(iii) tris-chelate complexes as metalloligands was prepared. The CoII ion possesses an ideal trigonal antiprismatic geometry because of the intermolecular hydrogen-bonds between the metalloligands via counter anions. This complex exhibits slow magnetic relaxation under a dc field reminiscent of a single-molecule magnet behavior.
Collapse
Affiliation(s)
- Ryoji Mitsuhashi
- Department of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan.
| | | | | | | | | | | |
Collapse
|
22
|
García-López V, Orts-Mula F, Palacios-Corella M, Clemente-Juan J, Clemente-León M, Coronado E. Field-induced slow relaxation of magnetization in a mononuclear Co(II) complex of 2,6-bis(pyrazol-1-yl)pyridine functionalized with a carboxylic acid. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Zhou J, Song J, Yuan A, Wang Z, Chen L, Ouyang ZW. Slow magnetic relaxation in two octahedral cobalt(II) complexes with positive axial anisotropy. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Vaidya S, Shukla P, Tripathi S, Rivière E, Mallah T, Rajaraman G, Shanmugam M. Substituted versus Naked Thiourea Ligand Containing Pseudotetrahedral Cobalt(II) Complexes: A Comparative Study on Its Magnetization Relaxation Dynamics Phenomenon. Inorg Chem 2018; 57:3371-3386. [DOI: 10.1021/acs.inorgchem.8b00160] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shefali Vaidya
- Department of Chemistry, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai, 400076 Maharashtra, India
| | - Pragya Shukla
- Department of Chemistry, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai, 400076 Maharashtra, India
| | - Shalini Tripathi
- Department of Chemistry, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai, 400076 Maharashtra, India
| | - Eric Rivière
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, CNRS, Université Paris Sud and Université Paris Saclay, Orsay, Cedex 91405, France
| | - Talal Mallah
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, CNRS, Université Paris Sud and Université Paris Saclay, Orsay, Cedex 91405, France
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai, 400076 Maharashtra, India
| | - Maheswaran Shanmugam
- Department of Chemistry, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai, 400076 Maharashtra, India
| |
Collapse
|
25
|
Lemes MA, Magnan F, Gabidullin B, Brusso J. Impact of nuclearity and topology on the single molecule magnet behaviour of hexaazatrinaphtylene-based cobalt complexes. Dalton Trans 2018. [DOI: 10.1039/c8dt00324f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hexaazatrinaphtylene-based transition metal complex that exhibits single molecule magnet behaviour is reported herein. This study reveals the influence of both nuclearity and topology on the magnetic properties of hexaazatrinaphtylene-based complexes.
Collapse
Affiliation(s)
- Maykon A. Lemes
- Department of Chemistry and Biomolecular Sciences
- University of Ottawa
- Ottawa
- Canada
| | - François Magnan
- Department of Chemistry and Biomolecular Sciences
- University of Ottawa
- Ottawa
- Canada
| | - Bulat Gabidullin
- Department of Chemistry and Biomolecular Sciences
- University of Ottawa
- Ottawa
- Canada
| | - Jaclyn Brusso
- Department of Chemistry and Biomolecular Sciences
- University of Ottawa
- Ottawa
- Canada
| |
Collapse
|
26
|
Sertphon D, Murray KS, Phonsri W, Jover J, Ruiz E, Telfer SG, Alkaş A, Harding P, Harding DJ. Slow relaxation of magnetization in a bis-mer-tridentate octahedral Co(ii) complex. Dalton Trans 2018; 47:859-867. [DOI: 10.1039/c7dt04335j] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A field-induced CoII single-ion magnet is described. Supramolecular effects on magnetic anisotropy, and the relaxation mechanism are discussed.
Collapse
Affiliation(s)
- Darunee Sertphon
- Functional Materials and Nanotechnology Centre of Excellence
- Walailak University
- Thasala
- Thailand
| | | | | | - Jesús Jover
- Departament de Química Inorgànica and Institut de Química Teòrica i Computacional
- Universitat de Barcelona
- E-08028 Barcelona
- Spain
| | - Eliseo Ruiz
- Departament de Química Inorgànica and Institut de Química Teòrica i Computacional
- Universitat de Barcelona
- E-08028 Barcelona
- Spain
| | - Shane G. Telfer
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- Institute of Fundamental Sciences
- Massey University
- Palmerston North
- New Zealand
| | - Adil Alkaş
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- Institute of Fundamental Sciences
- Massey University
- Palmerston North
- New Zealand
| | - Phimphaka Harding
- Functional Materials and Nanotechnology Centre of Excellence
- Walailak University
- Thasala
- Thailand
| | - David J. Harding
- Functional Materials and Nanotechnology Centre of Excellence
- Walailak University
- Thasala
- Thailand
| |
Collapse
|
27
|
Liu X, Ma X, Cen P, An F, Wang Z, Song W, Zhang YQ. One-dimensional cobalt(ii) coordination polymer featuring single-ion-magnet-type field-induced slow magnetic relaxation. NEW J CHEM 2018. [DOI: 10.1039/c8nj01236a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single-ion-magnet-type field-induced double magnetic relaxation was observed in a one-dimensional cobalt(ii) coordination polymer which shows easy-axis anisotropy with D = −33.9 cm−1 and an energy barrier of Ueff = 38.8 K.
Collapse
Affiliation(s)
- Xiangyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Xiufang Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Peipei Cen
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Fengqing An
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Zheng Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Weiming Song
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS
- School of Physical Science and Technology
- Nanjing Normal University
- Nanjing 210023
- China
| |
Collapse
|
28
|
Wei HW, Yang QF, Lai XY, Wang XZ, Yang TL, Hou Q, Liu XY. Field-induced slow relaxation of magnetization in a distorted octahedral mononuclear high-spin Co(ii) complex. CrystEngComm 2018. [DOI: 10.1039/c7ce01981e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
By adopting the strategy of mixed rigid ligands, two novel mononuclear complexes with distorted octahedral geometries are obtained. SIM-type slow magnetic relaxation behavior is observed in Co(ii)-based complexes.
Collapse
Affiliation(s)
- Hai-Wen Wei
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- Ningxia University
- Yinchuan
- China
- College of Chemistry and Chemical Engineering
| | - Qing-Feng Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- Ningxia University
- Yinchuan
- China
- College of Chemistry and Chemical Engineering
| | - Xiao-Yong Lai
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- Ningxia University
- Yinchuan
- China
- College of Chemistry and Chemical Engineering
| | - Xiao-Zhong Wang
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan
- China
| | - Tian-Lin Yang
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan
- China
| | - Qin Hou
- College of Chemistry and Material Science
- Shandong Agricultural University
- Taian
- China
| | - Xiang-Yu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- Ningxia University
- Yinchuan
- China
- College of Chemistry and Chemical Engineering
| |
Collapse
|
29
|
Plaul D, Böhme M, Ostrovsky S, Tomkowicz Z, Görls H, Haase W, Plass W. Modeling Spin Interactions in a Triangular Cobalt(II) Complex with Triaminoguanidine Ligand Framework: Synthesis, Structure, and Magnetic Properties. Inorg Chem 2017; 57:106-119. [DOI: 10.1021/acs.inorgchem.7b02229] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel Plaul
- Institut für
Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Michael Böhme
- Institut für
Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Serghei Ostrovsky
- Institute of Applied Physics, Academy of Sciences of Moldova, Academiei str.5, MD-2028, Chisinau, Moldova
| | - Zbigniew Tomkowicz
- Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland
| | - Helmar Görls
- Institut für
Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Wolfgang Haase
- Eduard-Zintl-Institute
of Inorganic and Physical Chemistry, Darmstadt University of Technology, Alarich-Weiss-Str. 4, 64287 Darmstadt, Germany
| | - Winfried Plass
- Institut für
Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| |
Collapse
|
30
|
Ding ZY, Meng YS, Xiao Y, Zhang YQ, Zhu YY, Gao S. Probing the influence of molecular symmetry on the magnetic anisotropy of octahedral cobalt(ii) complexes. Inorg Chem Front 2017. [DOI: 10.1039/c7qi00547d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A series of field-induced cobalt(ii) SIMs exhibit varying axial zero-field splitting parameter D values from positive to negative with the increased distortion of the octahedral geometry.
Collapse
Affiliation(s)
- Zhong-Yu Ding
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei 230009
- China
| | - Yin-Shan Meng
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Yi Xiao
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei 230009
- China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS
- School of Physical Science and Technology
- Nanjing Normal University
- Nanjing 210023
- China
| | - Yuan-Yuan Zhu
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei 230009
- China
- State Key Laboratory of Fine Chemicals
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| |
Collapse
|
31
|
Sakiyama H, Sudo R, Abiko T, Yoshioka D, Mitsuhashi R, Omote M, Mikuriya M, Yoshitake M, Koikawa M. Magneto-structural correlation of hexakis-dmso cobalt(ii) complex. Dalton Trans 2017; 46:16306-16314. [DOI: 10.1039/c7dt03269b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The magnetostructural correlation of the hexakis-dmso cobalt(ii) complex, [Co(dmso)6](BPh4)2 (dmso: dimethylsulfoxide), was investigated by single-crystal X-ray diffraction study and magnetic measurements.
Collapse
Affiliation(s)
- Hiroshi Sakiyama
- Department of Science
- Faculty of Science
- Yamagata University
- Yamagata 990-8560
- Japan
| | - Reiji Sudo
- Department of Science
- Faculty of Science
- Yamagata University
- Yamagata 990-8560
- Japan
| | - Takaaki Abiko
- Department of Science
- Faculty of Science
- Yamagata University
- Yamagata 990-8560
- Japan
| | - Daisuke Yoshioka
- Department of Applied Chemistry for Environment
- School of Science and Technology
- Kwansei Gakuin University
- Sanda 669-1337
- Japan
| | - Ryoji Mitsuhashi
- Department of Applied Chemistry for Environment
- School of Science and Technology
- Kwansei Gakuin University
- Sanda 669-1337
- Japan
| | - Masataka Omote
- Department of Applied Chemistry for Environment
- School of Science and Technology
- Kwansei Gakuin University
- Sanda 669-1337
- Japan
| | - Masahiro Mikuriya
- Department of Applied Chemistry for Environment
- School of Science and Technology
- Kwansei Gakuin University
- Sanda 669-1337
- Japan
| | - Megumi Yoshitake
- Department of Chemistry and Applied Chemistry
- Graduate School of Science and Engineering
- Saga University
- Saga 840-8502
- Japan
| | - Masayuki Koikawa
- Department of Chemistry and Applied Chemistry
- Graduate School of Science and Engineering
- Saga University
- Saga 840-8502
- Japan
| |
Collapse
|