1
|
Singh A, Roy L. Evolution in the Design of Water Oxidation Catalysts with Transition-Metals: A Perspective on Biological, Molecular, Supramolecular, and Hybrid Approaches. ACS OMEGA 2024; 9:9886-9920. [PMID: 38463281 PMCID: PMC10918817 DOI: 10.1021/acsomega.3c07847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 03/12/2024]
Abstract
Increased demand for a carbon-neutral sustainable energy scheme augmented by climatic threats motivates the design and exploration of novel approaches that reserve intermittent solar energy in the form of chemical bonds in molecules and materials. In this context, inspired by biological processes, artificial photosynthesis has garnered significant attention as a promising solution to convert solar power into chemical fuels from abundantly found H2O. Among the two redox half-reactions in artificial photosynthesis, the four-electron oxidation of water according to 2H2O → O2 + 4H+ + 4e- comprises the major bottleneck and is a severe impediment toward sustainable energy production. As such, devising new catalytic platforms, with traditional concepts of molecular, materials and biological catalysis and capable of integrating the functional architectures of the natural oxygen-evolving complex in photosystem II would certainly be a value-addition toward this objective. In this review, we discuss the progress in construction of ideal water oxidation catalysts (WOCs), starting with the ingenuity of the biological design with earth-abundant transition metal ions, which then diverges into molecular, supramolecular and hybrid approaches, blurring any existing chemical or conceptual boundaries. We focus on the geometric, electronic, and mechanistic understanding of state-of-the-art homogeneous transition-metal containing molecular WOCs and summarize the limiting factors such as choice of ligands and predominance of environmentally unrewarding and expensive noble-metals, necessity of high-valency on metal, thermodynamic instability of intermediates, and reversibility of reactions that create challenges in construction of robust and efficient water oxidation catalyst. We highlight how judicious heterogenization of atom-efficient molecular WOCs in supramolecular and hybrid approaches put forth promising avenues to alleviate the existing problems in molecular catalysis, albeit retaining their fascinating intrinsic reactivities. Taken together, our overview is expected to provide guiding principles on opportunities, challenges, and crucial factors for designing novel water oxidation catalysts based on a synergy between conventional and contemporary methodologies that will incite the expansion of the domain of artificial photosynthesis.
Collapse
Affiliation(s)
- Ajeet
Kumar Singh
- Institute of Chemical Technology
Mumbai−IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension
Centre, Bhubaneswar − 751013 India
| | - Lisa Roy
- Institute of Chemical Technology
Mumbai−IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension
Centre, Bhubaneswar − 751013 India
| |
Collapse
|
2
|
Shiau AA, Lee HB, Oyala PH, Agapie T. Coordination Number in High-Spin-Low-Spin Equilibrium in Cluster Models of the S 2 State of the Oxygen Evolving Complex. J Am Chem Soc 2023; 145:14592-14598. [PMID: 37366634 PMCID: PMC10575483 DOI: 10.1021/jacs.3c04464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The S2 state of the Oxygen Evolving Complex (OEC) of Photosystem II (PSII) shows high-spin (HS) and low-spin (LS) EPR signals attributed to distinct structures based on computation. Five-coordinate MnIII centers are proposed in these species but are absent in available spectroscopic model complexes. Herein, we report the synthesis, crystal structure, electrochemistry, SQUID magnetometry, and EPR spectroscopy of a MnIIIMnIV3O4 cuboidal complex featuring five-coordinate MnIII. This cluster displays a spin ground state of S = 5/2, while conversion to a six-coordinate Mn upon treatment with water results in a spin state change to S = 1/2. These results demonstrate that coordination number, without dramatic changes within the Mn4O4 core, has a substantial effect on spectroscopy.
Collapse
Affiliation(s)
- Angela A Shiau
- Department of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd MC 127-72, Pasadena, California 91125, United States
| | - Heui Beom Lee
- Department of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd MC 127-72, Pasadena, California 91125, United States
| | - Paul H Oyala
- Department of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd MC 127-72, Pasadena, California 91125, United States
| | - Theodor Agapie
- Department of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd MC 127-72, Pasadena, California 91125, United States
| |
Collapse
|
3
|
Han R, Luber S, Li Manni G. Magnetic Interactions in a [Co(II) 3Er(III)(OR) 4] Model Cubane through Forefront Multiconfigurational Methods. J Chem Theory Comput 2023; 19:2811-2826. [PMID: 37126736 DOI: 10.1021/acs.jctc.2c01318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Strong electron correlation effects are one of the major challenges in modern quantum chemistry. Polynuclear transition metal clusters are peculiar examples of systems featuring such forms of electron correlation. Multireference strategies, often based on but not limited to the concept of complete active space, are adopted to accurately account for strong electron correlation and to resolve their complex electronic structures. However, transition metal clusters already containing four magnetic centers with multiple unpaired electrons make conventional active space based strategies prohibitively expensive, due to their unfavorable scaling with the size of the active space. In this work, forefront techniques, such as density matrix renormalization group (DMRG), full configuration interaction quantum Monte Carlo (FCIQMC), and multiconfiguration pair-density functional theory (MCPDFT), are employed to overcome the computational limitation of conventional multireference approaches and to accurately investigate the magnetic interactions taking place in a [Co(II)3Er(III)(OR)4] (chemical formula [Co(II)3Er(III)(hmp)4(μ2-OAc)2(OH)3(H2O)], hmp = 2-(hydroxymethyl)-pyridine) model cubane water oxidation catalyst. Complete active spaces with up to 56 electrons in 56 orbitals have been constructed for the seven energetically lowest different spin states. Relative energies, local spin, and spin-spin correlation values are reported and provide crucial insights on the spin interactions for this model system, pivotal in the rationalization of the catalytic activity of this system in the water-splitting reaction. A ferromagnetic ground state is found with a very small, ∼50 cm-1, highest-to-lowest spin gap. Moreover, for the energetically lowest states, S = 3-6, the three Co(II) sites exhibit parallel aligned spins, and for the lower states, S = 0-2, two Co(II) sites retain strong parallel spin alignment.
Collapse
Affiliation(s)
- Ruocheng Han
- Department of Chemistry A, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Sandra Luber
- Department of Chemistry A, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Giovanni Li Manni
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| |
Collapse
|
4
|
Insight into the huge difference in redox potential between the structural OEC analogues Mn3CaO4 and Mn4CaO4. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Gao X, Fan H. The Role of Redox-Inactive Metals in Modulating the Redox Potential of the Mn 4CaO 4 Model Complex. Inorg Chem 2022; 61:11539-11549. [PMID: 35839298 DOI: 10.1021/acs.inorgchem.2c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photosynthetic oxygen-evolving center (OEC), the "engine of life", is a unique Mn4CaO5 cluster catalyzing the water oxidation. The role of redox-inactive component Ca2+, which can only be functionally replaced by Sr2+ in a biological environment, has been under debate for a long time. Recently, its modulating effect on the redox potential of native OEC and artificial structural OEC model complex has received great attention, and linear relationship between the potential and the Lewis acidity of the redox-inactive metal has been proposed for the MMn3O4 model complex. In this work, the modulating effect has been studied in detail using the Mn4CaO4 model complex, which is the closest structural model to OEC to date and has a similar redox potential at the S1-S2 transition. We found the redox-inactive metal only has a weak modulating effect on the potential, which is comparable in strength to that of the ligand environments. Meanwhile, the net charge of the complex, which could be changed along with the redox-inactive metal, has a high impact on the potential and can be unified by protonation, deprotonation, or ligand modification. Although the modulating effect of the redox-inactive metal is not very strong, the linear relationship between the potential and the Lewis acidity is still valid for Mn4MO4 complexes. Our results of strong modulating effects for net charge and weak modulating effects for redox-inactive metal fit with the previous experimental observations on Mn4MO4 (M = Ca2+, Y3+, and Gd3+) model complexes, and suggest that Ca2+ can be structurally and electrochemically replaced with other metal cations, together with proper ligand modifications.
Collapse
Affiliation(s)
- Xianrui Gao
- Shenyang University of Chemical Technology, Shenyang 110142, China.,State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Hongjun Fan
- Shenyang University of Chemical Technology, Shenyang 110142, China.,State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| |
Collapse
|
6
|
Li Manni G. Modeling magnetic interactions in high-valent trinuclear [Mn 3(IV)O 4] 4+ complexes through highly compressed multi-configurational wave functions. Phys Chem Chem Phys 2021; 23:19766-19780. [PMID: 34525156 DOI: 10.1039/d1cp03259c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work we apply a quantum chemical framework, recently designed in our laboratories, to rationalize the low-energy electronic spectrum and the magnetic properties of an homo-valent trinuclear [Mn3(IV)O4]4+ model of the oxygen-evolving center in photosystem II. The method is based on chemically motivated molecular orbital unitary transformations, and the optimization of spin-adapted many-body wave functions, both for ground- and excited-states, in the transformed MO basis. In this basis, the configuration interaction Hamiltonian matrix of exchange-coupled multi-center clusters is extremely sparse and characterized by a unique block diagonal structure. This property leads to highly compressed wave functions (oligo- or single-reference) and crucially enables state-specific optimizations. This work is the first showing that compression and selective targeting of ground- and excited-states wave functions is possible for systems with three magnetic centers that are not exactly half-filled, and that potentially exhibit frustrated spin interactions. The reduced multi-reference character of the wave function greatly simplifies the interpretation of the ground- and excited-state electronic structures, and provides a route for the direct rationalization of magnetic interactions in these compounds, often considered a challenge in polynuclear transition-metal chemistry. In this study, strong electron correlation effects have explicitly been described by conventional and stochastic multiconfigurational methodologies, while dynamic correlation effects have been accounted for by multiconfigurational second order perturbation theory, CASPT2. Ab initio results for the [Mn3(IV)O4]4+ system have been mapped to a three-site Heisenberg model with two magnetic coupling constants. The magnetic coupling constants and the temperature dependence of the effective magnetic moment predicted by the ab initio calculations are in good agreement with the available experimental data, and confirm the antiferromagnetic interaction among the three magnetic centers, while providing a simple and rigorous description of the noncollinearity of the local spins, that characterize most of the low-energy states for this system.
Collapse
Affiliation(s)
- Giovanni Li Manni
- Department of Electronic Structure Theory, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany.
| |
Collapse
|
7
|
Drosou M, Pantazis DA. Redox Isomerism in the S 3 State of the Oxygen-Evolving Complex Resolved by Coupled Cluster Theory. Chemistry 2021; 27:12815-12825. [PMID: 34288176 PMCID: PMC8518824 DOI: 10.1002/chem.202101567] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Indexed: 01/19/2023]
Abstract
The electronic and geometric structures of the water-oxidizing complex of photosystem II in the steps of the catalytic cycle that precede dioxygen evolution remain hotly debated. Recent structural and spectroscopic investigations support contradictory redox formulations for the active-site Mn4 CaOx cofactor in the final metastable S3 state. These range from the widely accepted MnIV 4 oxo-hydroxo model, which presumes that O-O bond formation occurs in the ultimate transient intermediate (S4 ) of the catalytic cycle, to a MnIII 2 MnIV 2 peroxo model representative of the contrasting "early-onset" O-O bond formation hypothesis. Density functional theory energetics of suggested S3 redox isomers are inconclusive because of extreme functional dependence. Here, we use the power of the domain-based local pair natural orbital approach to coupled cluster theory, DLPNO-CCSD(T), to present the first correlated wave function theory calculations of relative stabilities for distinct redox-isomeric forms of the S3 state. Our results enabled us to evaluate conflicting models for the S3 state of the oxygen-evolving complex (OEC) and to quantify the accuracy of lower-level theoretical approaches. Our assessment of the relevance of distinct redox-isomeric forms for the mechanism of biological water oxidation strongly disfavors the scenario of early-onset O-O formation advanced by literal interpretations of certain crystallographic models. This work serves as a case study in the application of modern coupled cluster implementations to redox isomerism problems in oligonuclear transition metal systems.
Collapse
Affiliation(s)
- Maria Drosou
- Inorganic Chemistry LaboratoryNational and Kapodistrian University of AthensPanepistimiopolisZografou15771Greece
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an derRuhrGermany
| |
Collapse
|
8
|
Li Manni G, Dobrautz W, Bogdanov NA, Guther K, Alavi A. Resolution of Low-Energy States in Spin-Exchange Transition-Metal Clusters: Case Study of Singlet States in [Fe(III) 4S 4] Cubanes. J Phys Chem A 2021; 125:4727-4740. [PMID: 34048648 PMCID: PMC8201447 DOI: 10.1021/acs.jpca.1c00397] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Polynuclear transition-metal
(PNTM) clusters owe their catalytic
activity to numerous energetically low-lying spin states and stable
oxidation states. The characterization of their electronic structure
represents one of the greatest challenges of modern chemistry. We
propose a theoretical framework that enables the resolution of targeted
electronic states with ease and apply it to two [Fe(III)4S4] cubanes. Through direct access to their many-body
wave functions, we identify important correlation mechanisms and their
interplay with the geometrical distortions observed in these clusters,
which are core properties in understanding their catalytic activity.
The simulated magnetic coupling constants predicted by our strategy
allow us to make qualitative connections between spin interactions
and geometrical distortions, demonstrating its predictive power. Moreover,
despite its simplicity, the strategy provides magnetic coupling constants
in good agreement with the available experimental ones. The complexes
are intrinsically frustrated anti-ferromagnets, and the obtained spin
structures together with the geometrical distortions represent two
possible ways to release spin frustration (spin-driven Jahn–Teller
distortion). Our paradigm provides a simple, yet rigorous, route to
uncover the electronic structure of PNTM clusters and may be applied
to a wide variety of such clusters.
Collapse
Affiliation(s)
- Giovanni Li Manni
- Department of Electronic Structure Theory, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Werner Dobrautz
- Department of Electronic Structure Theory, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Nikolay A Bogdanov
- Department of Electronic Structure Theory, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Kai Guther
- Department of Electronic Structure Theory, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Ali Alavi
- Department of Electronic Structure Theory, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany.,Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
9
|
Gouré E, Gerey B, Astudillo CN, Pécaut J, Sirach S, Molton F, Fortage J, Collomb MN. Self-Assembled Heterometallic Complexes by Incorporation of Calcium or Strontium Ion into a Manganese(II) 12-Metallacrown-3 Framework Supported by a Tripodal Ligand with Pyridine-Carboxylate Motifs: Stability in Their Manganese(III) Oxidized Form. Inorg Chem 2021; 60:7922-7936. [PMID: 34014651 DOI: 10.1021/acs.inorgchem.1c00457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report on the isolation of a new family of μ-carboxylato-bridged metallocrown (MC) compounds by self-assembly of the recently isolated hexadentate tris(2-pyridylmethyl)amine ligand tpada2- incorporating two carboxylate units with metal cations. Twelve-membered MCs of manganese of the type 12-MC-3, namely, [{MnII(tpada)}3(M)(H2O)n]2+ (Mn3M) (M = Mn2+ (n = 0), Ca2+ (n = 1), or Sr2+ (n = 2)), were structurally characterized. The metallamacrocycles connectivity consisting in three -[Mn-O-C-O]- repeating units is provided by one carboxylate unit of the three tpada2- ligands, while the second carboxylate coordinated a fourth cation in the central cavity of the MC, Mn2+ or an alkaline earth metal, Ca2+ or Sr2+. Mn3Ca and {Mn3Sr}2 join the small family of heterometallic manganese-calcium complexes and even rarer manganese-strontium complexes as models of the OEC of photosystem II (PSII). A 8-MC-4 of strontium of the molecular wheel type with four -[Sr-O]- repeating unit was also isolated by self-assembly of the tpada2- ligand with Sr2+. This complex, namely, [Sr(tpada)(OH2)]4 (Sr4), does not incorporate any cation in the central cavity but instead four water molecules coordinated to each Sr2+. Electrochemical investigations coupled to UV-visible absorption and EPR spectroscopies as well as electrospray mass spectrometry reveal the stability of the 12-MC-3 tetranuclear structures in solution, both in the initial oxidation state, MnII3M, as well as in the three-electrons oxidized state, MnIII3M. Indeed, the cyclic voltammogram of all these complexes exhibits three-successive reversible oxidation waves between +0.5 and +0.9 V corresponding to the successive one-electron oxidation of the Mn(II) ion into Mn(III) of the three {Mn(tpada)} units constituting the ring, which are fully maintained after bulk electrolysis.
Collapse
Affiliation(s)
- Eric Gouré
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| | - Bertrand Gerey
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France.,Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France
| | | | - Jacques Pécaut
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France
| | - Selim Sirach
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| | | | | | | |
Collapse
|
10
|
Drosou M, Zahariou G, Pantazis DA. Orientational Jahn-Teller Isomerism in the Dark-Stable State of Nature's Water Oxidase. Angew Chem Int Ed Engl 2021; 60:13493-13499. [PMID: 33830630 PMCID: PMC8252073 DOI: 10.1002/anie.202103425] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Indexed: 01/31/2023]
Abstract
The tetramanganese–calcium cluster of the oxygen‐evolving complex of photosystem II adopts electronically and magnetically distinct but interconvertible valence isomeric forms in its first light‐driven oxidized catalytic state, S2. This bistability is implicated in gating the final catalytic states preceding O−O bond formation, but it is unknown how the biological system enables its emergence and controls its effect. Here we show that the Mn4CaO5 cluster in the resting (dark‐stable) S1 state adopts orientational Jahn–Teller isomeric forms arising from a directional change in electronic configuration of the “dangler” MnIII ion. The isomers are consistent with available structural data and explain previously unresolved electron paramagnetic resonance spectroscopic observations on the S1 state. This unique isomerism in the resting state is shown to be the electronic origin of valence isomerism in the S2 state, establishing a functional role of orientational Jahn–Teller isomerism unprecedented in biological or artificial catalysis.
Collapse
Affiliation(s)
- Maria Drosou
- Inorganic Chemistry Laboratory, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Greece
| | - Georgia Zahariou
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Athens, 15310, Greece
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
11
|
Drosou M, Zahariou G, Pantazis DA. Orientational Jahn–Teller Isomerism in the Dark‐Stable State of Nature's Water Oxidase. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Maria Drosou
- Inorganic Chemistry Laboratory National and Kapodistrian University of Athens, Panepistimiopolis Zografou 15771 Greece
| | - Georgia Zahariou
- Institute of Nanoscience & Nanotechnology, NCSR “Demokritos” Athens 15310 Greece
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
12
|
Orio M, Pantazis DA. Successes, challenges, and opportunities for quantum chemistry in understanding metalloenzymes for solar fuels research. Chem Commun (Camb) 2021; 57:3952-3974. [DOI: 10.1039/d1cc00705j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Overview of the rich and diverse contributions of quantum chemistry to understanding the structure and function of the biological archetypes for solar fuel research, photosystem II and hydrogenases.
Collapse
Affiliation(s)
- Maylis Orio
- Aix-Marseille Université
- CNRS
- iSm2
- Marseille
- France
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für Kohlenforschung
- Kaiser-Wilhelm-Platz 1
- 45470 Mülheim an der Ruhr
- Germany
| |
Collapse
|
13
|
Johansson MP, Niederegger L, Rauhalahti M, Hess CR, Kaila VRI. Dispersion forces drive water oxidation in molecular ruthenium catalysts. RSC Adv 2020; 11:425-432. [PMID: 35423068 PMCID: PMC8691110 DOI: 10.1039/d0ra09004b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/01/2020] [Indexed: 11/21/2022] Open
Abstract
Rational design of artificial water-splitting catalysts is central for developing new sustainable energy technology. However, the catalytic efficiency of the natural light-driven water-splitting enzyme, photosystem II, has been remarkably difficult to achieve artificially. Here we study the molecular mechanism of ruthenium-based molecular catalysts by integrating quantum chemical calculations with inorganic synthesis and functional studies. By employing correlated ab initio calculations, we show that the thermodynamic driving force for the catalysis is obtained by modulation of π-stacking dispersion interactions within the catalytically active dimer core, supporting recently suggested mechanistic principles of Ru-based water-splitting catalysts. The dioxygen bond forms in a semi-concerted radical coupling mechanism, similar to the suggested water-splitting mechanism in photosystem II. By rationally tuning the dispersion effects, we design a new catalyst with a low activation barrier for the water-splitting. The catalytic principles are probed by synthesis, structural, and electrochemical characterization of the new catalyst, supporting enhanced water-splitting activity under the examined conditions. Our combined findings show that modulation of dispersive interactions provides a rational catalyst design principle for controlling challenging chemistries.
Collapse
Affiliation(s)
- Mikael P Johansson
- Department of Chemistry, University of Helsinki P.O. Box 55 FI-00014 Helsinki Finland.,Department of Chemistry, Technical University of Munich (TUM) Lichtenbergstraße 4 Garching D-85747 Germany .,Helsinki Institute of Sustainability Science (Helsus) FI-00014 Helsinki Finland.,CSC-IT Center for Science P.O. Box 405 FI-02101 Espoo Finland
| | - Lukas Niederegger
- Department of Chemistry, Technical University of Munich (TUM) Lichtenbergstraße 4 Garching D-85747 Germany
| | - Markus Rauhalahti
- Department of Chemistry, University of Helsinki P.O. Box 55 FI-00014 Helsinki Finland
| | - Corinna R Hess
- Department of Chemistry, Technical University of Munich (TUM) Lichtenbergstraße 4 Garching D-85747 Germany
| | - Ville R I Kaila
- Department of Chemistry, Technical University of Munich (TUM) Lichtenbergstraße 4 Garching D-85747 Germany .,Department of Biochemistry and Biophysics, Stockholm University Stockholm Sweden
| |
Collapse
|
14
|
Evaluation of new low-valent computational models for the oxygen-evolving complex of photosystem II. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Abstract
The oxygen-evolving center (OEC) in photosystem II (PSII) of plants, algae and cyanobacteria is a unique natural catalyst that splits water into electrons, protons and dioxygen. The crystallographic studies of PSII have revealed that the OEC is an asymmetric Mn4CaO5-cluster. The understanding of the structure-function relationship of this natural Mn4CaO5-cluster is impeded mainly due to the complexity of the protein environment and lack of a rational chemical model as a reference. Although it has been a great challenge for chemists to synthesize the OEC in the laboratory, significant advances have been achieved recently. Different artificial complexes have been reported, especially a series of artificial Mn4CaO4-clusters that closely mimic both the geometric and electronic structures of the OEC in PSII, which provides a structurally well-defined chemical model to investigate the structure-function relationship of the natural Mn4CaO5-cluster. The deep investigations on this artificial Mn4CaO4-cluster could provide new insights into the mechanism of the water-splitting reaction in natural photosynthesis and may help the development of efficient catalysts for the water-splitting reaction in artificial photosynthesis.
Collapse
|
16
|
Patra SG, Illés E, Mizrahi A, Meyerstein D. Cobalt Carbonate as an Electrocatalyst for Water Oxidation. Chemistry 2019; 26:711-720. [PMID: 31644825 DOI: 10.1002/chem.201904051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/09/2019] [Indexed: 12/22/2022]
Abstract
CoII salts in the presence of HCO3 - /CO3 2- in aqueous solutions act as electrocatalysts for water oxidation. It comprises of several key steps: (i) A relatively small wave at Epa ≈0.71 V (vs. Ag/AgCl) owing to the CoIII/II redox couple. (ii) A second wave is observed at Epa ≈1.10 V with a considerably larger current. In which the CoIII undergoes oxidation to form a CoIV species. The large current is attributed to catalytic oxidation of HCO3 - /CO3 2- to HCO4 - . (iii) A process with very large currents at >1.2 V owing to the formation of CoV (CO3 )3 - , which oxidizes both water and HCO3 - /CO3 2- . These processes depend on [CoII ], [NaHCO3 ], and pH. Chronoamperometry at 1.3 V gives a green deposit. It acts as a heterogeneous catalyst for water oxidation. DFT calculations point out that Con (CO3 )3 n-6 , n=4, 5 are attainable at potentials similar to those experimentally observed.
Collapse
Affiliation(s)
- Shanti G Patra
- Department of Chemical Sciences, The Radical Research Center and the Schlesinger Family Center for, Compact Accelerators, Radiation Sources and Application, Ariel University, 40700, Ariel, Israel
| | - Erzsébet Illés
- Department of Chemical Sciences, The Radical Research Center and the Schlesinger Family Center for, Compact Accelerators, Radiation Sources and Application, Ariel University, 40700, Ariel, Israel
| | - Amir Mizrahi
- Department of Chemistry, Nuclear Research Centre Negev, 84190, Beer-Sheva, Israel
| | - Dan Meyerstein
- Department of Chemical Sciences, The Radical Research Center and the Schlesinger Family Center for, Compact Accelerators, Radiation Sources and Application, Ariel University, 40700, Ariel, Israel.,Department of Chemistry, Ben-Gurion University, 84105, Beer-Sheva, Israel
| |
Collapse
|
17
|
Misawa-Suzuki T, Watanabe T, Okamura M, Nanbu S, Nagao H. Framework Conversion of Oxido-Bridged Dinuclear Ruthenium Complexes. Inorg Chem 2019; 59:612-622. [DOI: 10.1021/acs.inorgchem.9b02850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Tomoyo Misawa-Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Takashi Watanabe
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Mariko Okamura
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Shinkoh Nanbu
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Hirotaka Nagao
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| |
Collapse
|
18
|
|
19
|
Tychengulova A, Capone M, Pitari F, Guidoni L. Molecular Vibrations of an Oxygen-Evolving Complex and Its Synthetic Mimic. Chemistry 2019; 25:13385-13395. [PMID: 31340068 DOI: 10.1002/chem.201902621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/18/2019] [Indexed: 11/07/2022]
Abstract
Bio-inspired catalysis for artificial photosynthesis has been widely studied for decades, in particular, with the purpose of using bio-disposable and non-toxic metals as building blocks. The characterisation of such catalysts has been achieved by using different kinds of spectroscopic methods, from X-ray crystallography to NMR spectroscopy. An artificial Mn4 CaO4 cubane cluster with dangling Mn4 was synthesised in 2015 [Zhang et al. Science 2015, 348, 690-693]; this cluster showed many structural similarities to that of the natural oxygen-evolving complex. An accurate structural and spectroscopic comparison between the natural and artificial systems is highly relevant to understand the catalytic mechanism. Among data from different techniques, the differential FTIR spectra (Sn+1 -Sn ) of photosystem II are still lacking a complete interpretation. The availability of IR data of the artificial cluster offers a unique opportunity to assign absolute absorption spectra on a well-defined and easier to interpret analogous moiety. The present work aims to investigate the novel inorganic compound as a model system for an oxygen-evolving complex through measurement of its spectroscopic properties. The experimental results are compared with calculations by using a variety of theoretical methods (normal mode analysis, effective normal mode analysis) in the S1 state. We underline the similarities and the differences in the computational spectra based on atomistic models of Mn4 CaO5 and Mn4 CaO4 complexes.
Collapse
Affiliation(s)
- Aliya Tychengulova
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Via Scarpa 16, 00161, Rome, Italy
| | - Mateo Capone
- Department of Engineering, Computer Science and Mathematics, University of L'Aquila, Via Vetoio Coppito, 67100, L'Aquila, Italy
| | - Fabio Pitari
- Department of Engineering, Computer Science and Mathematics, University of L'Aquila, Via Vetoio Coppito, 67100, L'Aquila, Italy
- Current address: CINECA High Performance Computing Department, Via Magnanelli, 40033, Casalecchio di Reno, Italy
| | - Leonardo Guidoni
- Department of Physical and Chemical Science, University of L'Aquila, Via Vetoio Coppito, 67100, L'Aquila, Italy
| |
Collapse
|
20
|
Assessment of Double-Hybrid Density Functional Theory for Magnetic Exchange Coupling in Manganese Complexes. INORGANICS 2019. [DOI: 10.3390/inorganics7050057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Molecular systems containing magnetically interacting (exchange-coupled) manganese ions are important in catalysis, biomimetic chemistry, and molecular magnetism. The reliable prediction of exchange coupling constants with quantum chemical methods is key for tracing the relationships between structure and magnetic properties in these systems. Density functional theory (DFT) in the broken-symmetry approach has been employed extensively for this purpose and hybrid functionals with moderate levels of Hartree–Fock exchange admixture have often been shown to perform adequately. Double-hybrid density functionals that introduce a second-order perturbational contribution to the Kohn–Sham energy are generally regarded as a superior approach for most molecular properties, but their performance remains unexplored for exchange-coupled manganese systems. An assessment of various double-hybrid functionals for the prediction of exchange coupling constants is presented here using a set of experimentally characterized dinuclear manganese complexes that cover a wide range of exchange coupling situations. Double-hybrid functionals perform more uniformly compared to conventional DFT methods, but they fail to deliver improved accuracy or reliability in the prediction of exchange coupling constants. Reparametrized double-hybrid density functionals (DHDFs) perform no better, and most often worse, than the original B2-PLYP double-hybrid method. All DHDFs are surpassed by the hybrid-meta-generalized gradient approximation (GGA) TPSSh functional. Possible directions for future methodological developments are discussed.
Collapse
|
21
|
The S3 State of the Oxygen-Evolving Complex: Overview of Spectroscopy and XFEL Crystallography with a Critical Evaluation of Early-Onset Models for O–O Bond Formation. INORGANICS 2019. [DOI: 10.3390/inorganics7040055] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The catalytic cycle of the oxygen-evolving complex (OEC) of photosystem II (PSII) comprises five intermediate states Si (i = 0–4), from the most reduced S0 state to the most oxidized S4, which spontaneously evolves dioxygen. The precise geometric and electronic structure of the Si states, and hence the mechanism of O–O bond formation in the OEC, remain under investigation, particularly for the final steps of the catalytic cycle. Recent advances in protein crystallography based on X-ray free-electron lasers (XFELs) have produced new structural models for the S3 state, which indicate that two of the oxygen atoms of the inorganic Mn4CaO6 core of the OEC are in very close proximity. This has been interpreted as possible evidence for “early-onset” O–O bond formation in the S3 state, as opposed to the more widely accepted view that the O–O bond is formed in the final state of the cycle, S4. Peroxo or superoxo formation in S3 has received partial support from computational studies. Here, a brief overview is provided of spectroscopic information, recent crystallographic results, and computational models for the S3 state. Emphasis is placed on computational S3 models that involve O–O formation, which are discussed with respect to their agreement with structural information, experimental evidence from various spectroscopic studies, and substrate exchange kinetics. Despite seemingly better agreement with some of the available crystallographic interpretations for the S3 state, models that implicate early-onset O–O bond formation are hard to reconcile with the complete line of experimental evidence, especially with X-ray absorption, X-ray emission, and magnetic resonance spectroscopic observations. Specifically with respect to quantum chemical studies, the inconclusive energetics for the possible isoforms of S3 is an acute problem that is probably beyond the capabilities of standard density functional theory.
Collapse
|
22
|
Roemelt M, Pantazis DA. Multireference Approaches to Spin‐State Energetics of Transition Metal Complexes Utilizing the Density Matrix Renormalization Group. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201800201] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Michael Roemelt
- Lehrstuhl für Theoretische ChemieRuhr‐Universität Bochum 44780 Bochum Germany
- Max‐Planck‐Institut für Kohlenforschung Kaiser‐Wilhelm‐Platz 1 45470 Mülheim an der Ruhr Germany
| | - Dimitrios A. Pantazis
- Max‐Planck‐Institut für Kohlenforschung Kaiser‐Wilhelm‐Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
23
|
Abstract
Photosystem II (PSII) uses water as the terminal electron donor, producing oxygen in the Mn4CaO5 oxygen evolving complex (OEC), while cytochrome c oxidase (CcO) reduces O2 to water in its heme–Cu binuclear center (BNC). Each protein is oriented in the membrane to add to the proton gradient. The OEC, which releases protons, is located near the P-side (positive, at low-pH) of the membrane. In contrast, the BNC is in the middle of CcO, so the protons needed for O2 reduction must be transferred from the N-side (negative, at high pH). In addition, CcO pumps protons from N- to P-side, coupled to the O2 reduction chemistry, to store additional energy. Thus, proton transfers are directly coupled to the OEC and BNC redox chemistry, as well as needed for CcO proton pumping. The simulations that study the changes in proton affinity of the redox active sites and the surrounding protein at different states of the reaction cycle, as well as the changes in hydration that modulate proton transfer paths, are described.
Collapse
|
24
|
Pantazis DA. Meeting the Challenge of Magnetic Coupling in a Triply-Bridged Chromium Dimer: Complementary Broken-Symmetry Density Functional Theory and Multireference Density Matrix Renormalization Group Perspectives. J Chem Theory Comput 2019; 15:938-948. [PMID: 30645093 PMCID: PMC6728064 DOI: 10.1021/acs.jctc.8b00969] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
Face-sharing
octahedral dinuclear Cr(III) compounds with d3–d3 electronic configurations represent nontrivial examples of
electronic complexity, posing particular challenges for theoretical
and computational studies. A tris-hydroxy-bridged Cr(III)–Cr(III)
system has proven to be a richly rewarding target for studies of magnetism
and electron paramagnetic resonance spectroscopy. It was also reported
to be a peculiarly difficult system to treat with density functional
theory (DFT). In this work the magnetic coupling problem for this
dimer is approached with broken-symmetry (BS)-DFT and multireference
calculations that utilize the density matrix renormalization group
(DMRG) to handle full-valence active spaces. BS-DFT is shown to recover
the correct ordering and energy spacing of Heisenberg spin states
if used in conjunction with appropriate spin projection procedures,
albeit with pronounced functional sensitivity. The contrasting conclusions
of previous studies are traced to incorrect inclusion of electronically
excited configurations. Analysis of the direct and differential overlap
of corresponding orbital pairs from the BS-DFT solution indicates
that metal–metal through-space interaction is the dominant
contributor to antiferromagnetic coupling. At the DFT level a procedure
that utilizes pseudopotential substitution is demonstrated that allows
evaluation of the direct exchange vs superexchange contributions.
A complementary description is obtained with DMRG-SCF calculations
that enable state-averaged CASSCF calculations with both metal and
bridge orbitals in the active space. A localized orbital subspace
analysis supports the DFT conclusions that in contrast to doubly bridged
isoelectronic analogues, antiferromagnetic coupling in the chromium
dimer arises primarily from direct metal–metal interaction
but is significantly enhanced by ligand-mediated superexchange.
Collapse
Affiliation(s)
- Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1 , 45470 Mülheim an der Ruhr , Germany
| |
Collapse
|
25
|
Lee HB, Shiau AA, Oyala PH, Marchiori DA, Gul S, Chatterjee R, Yano J, Britt RD, Agapie T. Tetranuclear [Mn IIIMn 3IVO 4] Complexes as Spectroscopic Models of the S 2 State of the Oxygen Evolving Complex in Photosystem II. J Am Chem Soc 2018; 140:17175-17187. [PMID: 30407806 DOI: 10.1021/jacs.8b09961] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Despite extensive biochemical, spectroscopic, and computational studies, the mechanism of biological water oxidation by the oxygen evolving complex (OEC) of Photosystem II remains a subject of significant debate. Mechanistic proposals are guided by the characterization of reaction intermediates such as the S2 state, which features two characteristic EPR signals at g = 2 and g = 4.1. Two nearly isoenergetic structural isomers have been proposed as the source of these distinct signals, but relevant structure-electronic structure studies remain rare. Herein, we report the synthesis, crystal structure, electrochemistry, XAS, magnetic susceptibility, variable temperature CW-EPR, and pulse EPR data for a series of [MnIIIMn3IVO4] cuboidal complexes as spectroscopic models of the S2 state of the OEC. Resembling the oxidation state and EPR spectra of the S2 state of the OEC, these model complexes show two EPR signals, a broad low field signal and a multiline signal, that are remarkably similar to the biological system. The effect of systematic changes in the nature of the bridging ligands on spectroscopy were studied. Results show that the electronic structure of tetranuclear Mn complexes is highly sensitive to even small geometric changes and the nature of the bridging ligands. Our model studies suggest that the spectroscopic properties of the OEC may also react very sensitively to small changes in structure; the effect of protonation state and other reorganization processes need to be carefully assessed.
Collapse
Affiliation(s)
- Heui Beom Lee
- Department of Chemistry and Chemical Engineering , California Institute of Technology , 1200 E California Blvd MC 127-72 , Pasadena , California 91125 , United States
| | - Angela A Shiau
- Department of Chemistry and Chemical Engineering , California Institute of Technology , 1200 E California Blvd MC 127-72 , Pasadena , California 91125 , United States
| | - Paul H Oyala
- Department of Chemistry and Chemical Engineering , California Institute of Technology , 1200 E California Blvd MC 127-72 , Pasadena , California 91125 , United States
| | - David A Marchiori
- Department of Chemistry , University of California Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Sheraz Gul
- Molecular Biophysics and Integrated Bioimaging Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Ruchira Chatterjee
- Molecular Biophysics and Integrated Bioimaging Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - R David Britt
- Department of Chemistry , University of California Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Theodor Agapie
- Department of Chemistry and Chemical Engineering , California Institute of Technology , 1200 E California Blvd MC 127-72 , Pasadena , California 91125 , United States
| |
Collapse
|
26
|
Modeling the OEC with Two New Biomimetic Models: Preparations, Structural Characterization, and Water Photolysis Studies of a Ba–Mn Box Type Complex and a Mn4N6 Planar-Diamond Cluster. Catalysts 2018. [DOI: 10.3390/catal8090382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The oxygen-evolving complex (OEC) is the native enzyme that catalyzes the oxidation of water in natural photosynthesis. Two new classes of manganese cluster complexes of formula Ba2Mn2L12(H3L1)2(CH3OH)4 1 and Mn4L26Cl2 2 were prepared (H4L1 = N,N′-(ethane-1,2-diyl)bis(2-hydroxybenzamide); L2 = methyl picolinimidate) and characterized by standard techniques including microanalysis, IR spectroscopy, ESI spectrometry, and magnetic susceptibility measurements. X-ray diffraction studies of these complexes revealed (i) a box-type structure for 1 formed by two redox-active manganese(III) ions and two barium(II) ions connected by two bridging bisamido-bisphenoxy ligand molecules; and (ii) a planar-diamond array for Mn4N6 cluster 2 where the picolinimidates act as chelating ligands through the two nitrogen atoms. The ability of 1 and 2 to split water has been studied by means of water photolysis experiments. In these experiments, the oxygen evolution was measured in aqueous media in the presence of p-benzoquinone (acting as the hydrogen acceptor), the reduction of which was followed by UV-spectroscopy. The relevant photolytic activity found for 1 is in contrast to the inactivity of 2 in the photolytic experiments. This different behavior is discussed on the basis of the structure of the biomimetic models and the proposed reaction mechanism for this process supported by DFT calculations.
Collapse
|
27
|
Affiliation(s)
- Dimitrios A. Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
28
|
Kawakami T, Miyagawa K, Isobe H, Shoji M, Yamanaka S, Katouda M, Nakajima T, Nakatani K, Okumura M, Yamaguchi K. Relative stability between the manganese hydroxide- and oxo-models for water oxidation by CCSD, DMRG CASCI, CASSCF, CASPT2 and CASDFT methods; Importance of static and dynamical electron correlation effects for OEC of PSII. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.05.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
29
|
Abstract
New perspectives for dinitrogen activation: an overview of photochemical pathways to cleave the strong N–N bond.
Collapse
|
30
|
Roemelt M, Krewald V, Pantazis DA. Exchange Coupling Interactions from the Density Matrix Renormalization Group and N-Electron Valence Perturbation Theory: Application to a Biomimetic Mixed-Valence Manganese Complex. J Chem Theory Comput 2017; 14:166-179. [PMID: 29211960 DOI: 10.1021/acs.jctc.7b01035] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The accurate description of magnetic level energetics in oligonuclear exchange-coupled transition-metal complexes remains a formidable challenge for quantum chemistry. The density matrix renormalization group (DMRG) brings such systems for the first time easily within reach of multireference wave function methods by enabling the use of unprecedentedly large active spaces. But does this guarantee systematic improvement in predictive ability and, if so, under which conditions? We identify operational parameters in the use of DMRG using as a test system an experimentally characterized mixed-valence bis-μ-oxo/μ-acetato Mn(III,IV) dimer, a model for the oxygen-evolving complex of photosystem II. A complete active space of all metal 3d and bridge 2p orbitals proved to be the smallest meaningful starting point; this is readily accessible with DMRG and greatly improves on the unrealistic metal-only configuration interaction or complete active space self-consistent field (CASSCF) values. Orbital optimization is critical for stabilizing the antiferromagnetic state, while a state-averaged approach over all spin states involved is required to avoid artificial deviations from isotropic behavior that are associated with state-specific calculations. Selective inclusion of localized orbital subspaces enables probing the relative contributions of different ligands and distinct superexchange pathways. Overall, however, full-valence DMRG-CASSCF calculations fall short of providing a quantitative description of the exchange coupling owing to insufficient recovery of dynamic correlation. Quantitatively accurate results can be achieved through a DMRG implementation of second order N-electron valence perturbation theory (NEVPT2) in conjunction with a full-valence metal and ligand active space. Perspectives for future applications of DMRG-CASSCF/NEVPT2 to exchange coupling in oligonuclear clusters are discussed.
Collapse
Affiliation(s)
- Michael Roemelt
- Lehrstuhl für Theoretische Chemie, Ruhr-University Bochum , 44780 Bochum, Germany.,Max Planck Institute for Coal Research, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Vera Krewald
- Department of Chemistry, University of Bath , Bath BA2 7AY, United Kingdom
| | - Dimitrios A Pantazis
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
31
|
Liao RZ, Siegbahn PEM. Quantum Chemical Modeling of Homogeneous Water Oxidation Catalysis. CHEMSUSCHEM 2017; 10:4236-4263. [PMID: 28875583 DOI: 10.1002/cssc.201701374] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/31/2017] [Indexed: 06/07/2023]
Abstract
The design of efficient and robust water oxidation catalysts has proven challenging in the development of artificial photosynthetic systems for solar energy harnessing and storage. Tremendous progress has been made in the development of homogeneous transition-metal complexes capable of mediating water oxidation. To improve the efficiency of the catalyst and to design new catalysts, a detailed mechanistic understanding is necessary. Quantum chemical modeling calculations have been successfully used to complement the experimental techniques to suggest a catalytic mechanism and identify all stationary points, including transition states for both O-O bond formation and O2 release. In this review, recent progress in the applications of quantum chemical methods for the modeling of homogeneous water oxidation catalysis, covering various transition metals, including manganese, iron, cobalt, nickel, copper, ruthenium, and iridium, is discussed.
Collapse
Affiliation(s)
- Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Per E M Siegbahn
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| |
Collapse
|
32
|
Chen C, Li Y, Zhao G, Yao R, Zhang C. Natural and Artificial Mn 4 Ca Cluster for the Water Splitting Reaction. CHEMSUSCHEM 2017; 10:4403-4408. [PMID: 28921879 DOI: 10.1002/cssc.201701371] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/10/2017] [Indexed: 06/07/2023]
Abstract
The oxygen-evolving center (OEC) in photosystem II (PSII) is a unique biological catalyst that splits water into electrons, protons, and O2 by using solar energy. Recent crystallographic studies have revealed that the structure of the OEC is an asymmetric Mn4 Ca cluster, which provides a blueprint to develop man-made water-splitting catalysts for artificial photosynthesis. Although it is a great challenge to mimic the whole structure and function of the OEC in the laboratory, significant advances have recently been achieved. In this Minireview, recent progress on mimicking the natural OEC is discussed. New strategies are suggested to construct more stable and efficient new generation of catalytic materials for the water splitting reaction based on the artificial Mn4 Ca cluster in the future.
Collapse
Affiliation(s)
- Changhui Chen
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanxi Li
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guoqing Zhao
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ruoqing Yao
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Chunxi Zhang
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
33
|
Liao RZ, Siegbahn PE. Possible water association and oxidation mechanisms for a recently synthesized Mn4Ca-complex. J Catal 2017. [DOI: 10.1016/j.jcat.2017.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Siegbahn PEM, Li X. Cluster size convergence for the energetics of the oxygen evolving complex in PSII. J Comput Chem 2017; 38:2157-2160. [PMID: 28667689 PMCID: PMC5575486 DOI: 10.1002/jcc.24863] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/26/2017] [Accepted: 05/25/2017] [Indexed: 12/31/2022]
Abstract
Density functional theory calculations have been made to investigate the stability of the energetics for the oxygen evolving complex of photosystem II. Results published elsewhere have given excellent agreement with experiments for both energetics and structures, where many of the experimental results were obtained several years after the calculations were done. The computational results were obtained after a careful extension from small models to a size of about 200 atoms, where stability of the results was demonstrated. However, recently results were published by Isobe et al., suggesting that very different results could be obtained if the model was extended from 200 to 340 atoms. The present study aims at understanding where this difference comes from. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Per E M Siegbahn
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Xichen Li
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|