1
|
Simms CH, Nielsen VRM, Sørensen TJ, Faulkner S, Langton MJ. Photoswitchable luminescent lanthanide complexes controlled and interrogated by four orthogonal wavelengths of light. Phys Chem Chem Phys 2024; 26:18683-18691. [PMID: 38922672 DOI: 10.1039/d4cp02243b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Optical information storage requires careful control of excitation and emission wavelengths in a reversible and orthogonal manner to enable efficient reading, writing, and erasing of information. Photochromic systems, in which a photoswitch is typcially coupled to an emissive organic fluorophore, have much promise in this regard. However, these suffer from considerable spectral overlap between the switch and fluorophore, such that their emissive and photoswitchable properties are not orthogonal. Here, we overcome this limitation by coupling visible/NIR emissive lanthanide complexes with molecular photoswitches, enabling reversible and orthogonal photoswitching with visible light. Crucially, photoswitching does not lead to sensitised emission from the lanthanide, while excitation of the lanthanide does not induce photoswitching, enabling the state of the system to be probed without perturbation of the switch. This opens up the possibility of developing multi-colour read-write methods for information storage using emissive photoswitches.
Collapse
Affiliation(s)
- Charlie H Simms
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, Mansfield road, Oxford, OX1 3TA, UK.
| | - Villads R M Nielsen
- Nano-Science Centre and Department of Chemistry University of Copenhagen Universitetsparken 5, 2100 København Ø, Denmark
| | - Thomas Just Sørensen
- Nano-Science Centre and Department of Chemistry University of Copenhagen Universitetsparken 5, 2100 København Ø, Denmark
| | - Stephen Faulkner
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, Mansfield road, Oxford, OX1 3TA, UK.
| | - Matthew J Langton
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, Mansfield road, Oxford, OX1 3TA, UK.
| |
Collapse
|
2
|
Malik S, Jakhar K, Singh D, Dalal S, Hooda A, Nehra K, Kumar S, Malik RS, Kumar P. Exploring the role of neutral ligands in modulating the photoluminescence of samarium complexes with 1,1,1,5,5,5-hexafluoro-2,4-pentanedione. LUMINESCENCE 2024; 39:e4810. [PMID: 38965929 DOI: 10.1002/bio.4810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/13/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024]
Abstract
Four eight-coordinated luminescent samarium complexes of type [Sm(hfpd)3L2] and [Sm(hfpd)3L'] [where hfpd = 1,1,1,5,5,5-Hexafluoro-2,4-pentanedione L = tri-octyl-phosphine oxide (TOPO) and L' = 1,10-phenanthroline (phen), neocuproine (neoc) and bathocuproine (bathoc) were synthesized via a stoichiometrically controlled approach. This allows for precise control over the stoichiometry of the complexes, leading to reproducible properties. This investigation focuses on understanding the impact of secondary ligands on the luminescent properties of these complexes. Infrared (IR) spectra provided information about the molecular structures, whereas 1H and 13C nuclear magnetic resonance (NMR) spectra confirmed these structural details along with the coordination of ligands to trivalent Sm ion. The UV-vis spectra revealed the molar absorption coefficient and absorption bands associated with the hfpd ligand and photoluminescence (PL) spectroscopy demonstrated intense orange-red emission (648 nm relative to 4G5/2 → 6H9/2) from the complexes. The Commission Internationale de l'Éclairage (CIE) triangles indicated that the complexes emitted warm orange red light with color coordinates (x, y) ranging from (0.62, 0.36) to (0.40, 0.27). The investigation of the band gap as well as color parameters confirms the utility of these complexes in displays and LEDs.
Collapse
Affiliation(s)
- Sofia Malik
- Department of Chemistry, Maharshi Dayanand University, Rohtak, India
| | - Komal Jakhar
- Department of Chemistry, Maharshi Dayanand University, Rohtak, India
| | - Devender Singh
- Department of Chemistry, Maharshi Dayanand University, Rohtak, India
| | - Swati Dalal
- Department of Chemistry, Maharshi Dayanand University, Rohtak, India
| | - Anjli Hooda
- Department of Chemistry, Maharshi Dayanand University, Rohtak, India
| | - Kapeesha Nehra
- Department of Chemistry, Maharshi Dayanand University, Rohtak, India
| | - Sumit Kumar
- Department of Chemistry, DCR University of Science & Technology, Murthal, India
| | | | - Parvin Kumar
- Department of Chemistry, Kurukshetra University Kurukshetra, Thanesar, India
| |
Collapse
|
3
|
Nagar A, Srivastava A, Sengupta A, Sk MA, Goyal P, Verma PK, Mohapatra PK. Experimental and Theoretical Insight into the Ionic Liquid-Mediated Complexation of Trivalent Lanthanides with β-Diketone and Its Fluorinated Analogue. Inorg Chem 2024; 63:2533-2552. [PMID: 38272469 DOI: 10.1021/acs.inorgchem.3c03731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
A multitechnique approach with theoretical insights has been employed to understand the complexation of trivalent lanthanides with two β-diketones, viz. 1-phenyl-1,3-butanedione (L1) and 4,4,4-trifluoro-1-phenyl-1,3-butanedione (L2), in an ionic liquid (C6mim·NTf2). UV-vis spectral analysis of complexation using Nd3+ revealed the predominance of ML2+ and ML4- species. The stability constants for the PB complexes were higher (β2 ∼ 10.45 ± 0.05, β4 ∼ 15.51 ± 0.05) than those for the TPB (β2 ∼ 7.56 ± 0.05, β4 ∼ 13.19 ± 0.06). The photoluminescence titration using Eu3+ corroborated the same observations with slightly higher stability constants, probably due to the higher ionic potential of Eu3+. The more asymmetric (AL2ML4 ∼ 5.2) Eu-L2 complex was found to contain one water molecule in the primary coordination sphere of Eu3+ with more covalency of the Eu3+-O bond (Ω2L1 = 8.5 × 10-20, Ω4L1 = 1.3 × 10-20) compared to the less asymmetric Eu-L1 complex (AL1ML4 ∼ 3.5) with two water molecules having less Eu-O covalency (Judd-Offelt parameters: Ω2L1 = 7.3 × 10-20, Ω4L1 = 1.0 × 10-20). Liquid-liquid extraction studies involving Nd3+ and Eu3+ revealed the formation of the ML4- complex following an 'anion exchange' mechanism. The shift of the enol peak from 1176 to 1138 cm-1 on the complexation of the β-diketones with Eu3+ was confirmed from the FTIR spectra. 1H NMR titration of the β-diketones with La(NTf2)3 evidenced the participation of α-H of the β-diketones and protons at C2, C4, and C5 positions of the methylimidazolium ring. For the ML2 complex, 4 donor O atoms are suggested to coordinate to the trivalent lanthanides with bond distances of 2.3297-2.411 Å for La-O, 2.206-2.236 Å for Eu-O, and 2.217-2.268 Å for Nd-O, respectively, while for the ML4 complex, 8 donor O atoms were coordinated with bond lengths of 2.506-2.559 Å for La-O, 2.367-2.447 Å for Eu-O, and 2.408-2.476 Å for Nd-O. The Nd3+ ion was higher by 9.7 kcal·mol-1 than that of the La3+ ion for the 1:4 complex. The complexation energy with L1 was quite higher than that with L2 for both 1:2 and 1:4 complexes. Using cyclic voltammetry, the redox behavior of trivalent lanthanides Eu and Gd with β-diketonate in ionic liquid medium was probed and their redox energetic and kinetic parameters were determined.
Collapse
Affiliation(s)
- Adityamani Nagar
- UM-DAE Centre for Excellence in Basic Sciences, Mumbai 400098, India
| | - Ashutosh Srivastava
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Arijit Sengupta
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Musharaf Ali Sk
- Homi Bhabha National Institute, Mumbai 400094, India
- Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Priya Goyal
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Parveen K Verma
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Prasanta K Mohapatra
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
4
|
Hou Z, Huang Y, Ruan Y, Xu H, Tan Y, Lin LR, Wu ZY. Reversible trans-to- cis photoisomerization and irreversible photocyclization reactions of a Co-coordinated stilbene derivative on chiral di-β-diketonate lanthanide complexes. RSC Adv 2023; 13:2269-2282. [PMID: 36741132 PMCID: PMC9837704 DOI: 10.1039/d2ra07133a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
Six lanthanide complexes constructed from two chiral β-diketonates (d/l-fbc = 3-heptafluorobutyryl-(+)/(-)-camphorate), the stilbene derivative (E)-N',N'-bis(pyridin-2-ylmethyl)-4-styrylbenzoyl hydrazide (L), a trifluoroacetate anion (CF3CO2 -), and one water molecule, namely [Ln(d/l-fbc)2(L)(CF3CO2)]·H2O (LnC57H54F17N4O8, Ln = La (1, d-fbc), La (2, l-fbc), Sm (3, d-fbc), Eu (4, d-fbc), Eu (5, l-fbc), and Tb (6, d-fbc), were synthesized and characterized by single-crystal X-ray diffraction, 1H-NMR, elemental analysis, IR and UV-vis spectroscopy, and thermal gravimetric analysis. The photoisomerization reactions of these complexes were systematically studied by means of experimental and theoretical calculations. Crystals of complexes 1, 2, 3, and 4 were obtained and belong to the monoclinic crystal system and the C2 chiral space group. The Λ- and Δ-diastereomers coexist in their crystals and no apparent bisignate couplets are observed in their ECD spectra. Among the complexes, the photocyclization reaction is followed by the trans-to-cis photoisomerization reaction and competes with the trans-to-cis photoisomerization, then the photocyclization reaction continues. The photocyclization reaction is irreversible in this stilbene derivative and is delayed in the lanthanide complexes. These results provide a viable strategy for the design of promising new stilbene-attached dual-functional lanthanide-based optical-switching materials.
Collapse
Affiliation(s)
- Ziting Hou
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen UniversityXiamen361005P. R. China
| | - Yanji Huang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen UniversityXiamen361005P. R. China
| | - Yushan Ruan
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen UniversityXiamen361005P. R. China
| | - Han Xu
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical UniversityKunming650500P. R. China
| | - Yu Tan
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen UniversityXiamen361005P. R. China
| | - Li-Rong Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen UniversityXiamen361005P. R. China
| | - Zhen-yi Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen UniversityXiamen361005P. R. China
| |
Collapse
|
5
|
Shi YS, Yang DD, Zheng HW, Liang QF, Fang YH, Xiao T, Zheng XJ. Solvent-Modulated Self-Assembly of Naphthalenediimide-Based Cd(II) Complexes and the Controllable Photochromism via Conformational Isomerization. Inorg Chem 2022; 61:15973-15982. [PMID: 36173106 DOI: 10.1021/acs.inorgchem.2c02249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rational regulation of the properties of photochromic materials is a challenging and meaningful work. In the present work, NDI-based complexes, namely, [Cd0.5(NDI)(HBDC)]·H2O (1) and a series of conformational isomers of {[Cd(NDI)0.5(BDC)]·MeCN}n (2), were synthesized by varying the solvent conditions (H2BDC = terephthalic acid, NDI = N,N'-bis(3-pyridylcarbonylhydrazine)-1,4,5,8-naphthalene diimide). Complex 1 exhibits a 0D mononuclear structure without photochromic behavior due to the bad conjugation of the naphthalene diimide moiety. The conformational isomers of complex 2 manifest a 3D network, showing ultra-fast photo-induced intermolecular electron transfer photochromic behavior under X-ray, UV, and visible light. However, they show different photochromic rates and coloring contrast upon photoirradiation, which originates from their difference in the distances of lone pair(COO)···π(NDI). This was realized via controlling the solvent ratio in the reaction system. In addition, compared to UV/X-ray light, 2 exhibits greater sensitivity to visible light and is an organic-inorganic hybrid material with photomodulated luminescence. Based on the excellent performance, complex 2 can be applied to filter paper, showing potential applications as an inkless printing medium and selective perception of ammonia and amine vapors in the solid state via different visual color changes.
Collapse
Affiliation(s)
- Yong-Sheng Shi
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Dong-Dong Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Han-Wen Zheng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Qiong-Fang Liang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yu-Hui Fang
- Beijing National Laboratory of Molecular Science, Beijing Key Laboratory of Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tong Xiao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xiang-Jun Zheng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
6
|
Khan J, Sadia M, Wadood Ali Shah S, Zahoor M, Alsharif KF, Al-Joufi FA. Development of [(2E,6E)-2,6-bis(4-(dimethylamino)benzylidene)cyclohexanone] as fluorescence-on probe for Hg2+ ion detection: Computational aided experimental studies. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
7
|
Chuasaard T, Thammakan S, Semakul N, Konno T, Rujiwatra A. Structure and photoluminescence of two-dimensional lanthanide coordination polymers of mixed phthalate and azobenzene dicarboxylate. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Tang Q, Liu S, Liu J, Wang Y, Wang Y, Wang S, Du Z, Huang L, Belfiore LA, Tang J. Novel Cuboid-like Crystalline Complexes (CLCCs), Photon Emission, Fluorescent Fibers, and Bright Red Fabrics of Eu 3+ Complexes Adjusted by Amphiphilic Molecules. Polymers (Basel) 2022; 14:905. [PMID: 35267728 PMCID: PMC8912808 DOI: 10.3390/polym14050905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 12/10/2022] Open
Abstract
With the growing needs for flexible fluorescence emission materials, emission fibers and related wearable fabrics with bright emission properties have become key factors for wearable applications. In this article, novel cuboid-like crystals of Eu3+ complexes were generated. Except for light-energy-harvesting ligands of thenoyltrifluoroacetone (TTA) and 1,10-phenanthroline hydrate (Phen), the crystal structures were adjusted by other functional amphiphilic molecules. Not only does ETPC-SA, adjusted by stearic acid, have a regular cuboid-like crystal with a size of about 2 μm size, but it also generates the best photon emission property, with a fluorescence quantum yield of 98.4% fluorescence quantum yield in this report. Furthermore, we succeeded in producing novel fluorescent fibers by mini-twin-screw extrusion, and it was easy to form bright red fabrics, which are equipped with strong fluorescence intensity, flexibility, and a smooth hand feeling, with the normal fabricating method in our work. It is worth noting that ETPC-HQ fibers, which carry a crystal complex adjusted by hydroquinone, possess the lowest quantum yield but have the longest average fluorescence lifetime of 1259 µs. This result means that a low-density polyethylene (LDPE) matrix could make excited electrons stand in the excited state for a relatively long time when adjusted by hydroquinone, so as to increase the afterglow property of fluorescent fibers.
Collapse
Affiliation(s)
- Qinglin Tang
- National Center of International Joint Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Q.T.); (S.L.); (J.L.); (Y.W.); (Y.W.); (S.W.); (Z.D.); (L.H.); (L.A.B.)
| | - Shasha Liu
- National Center of International Joint Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Q.T.); (S.L.); (J.L.); (Y.W.); (Y.W.); (S.W.); (Z.D.); (L.H.); (L.A.B.)
| | - Jin Liu
- National Center of International Joint Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Q.T.); (S.L.); (J.L.); (Y.W.); (Y.W.); (S.W.); (Z.D.); (L.H.); (L.A.B.)
| | - Yao Wang
- National Center of International Joint Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Q.T.); (S.L.); (J.L.); (Y.W.); (Y.W.); (S.W.); (Z.D.); (L.H.); (L.A.B.)
| | - Yanxin Wang
- National Center of International Joint Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Q.T.); (S.L.); (J.L.); (Y.W.); (Y.W.); (S.W.); (Z.D.); (L.H.); (L.A.B.)
| | - Shichao Wang
- National Center of International Joint Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Q.T.); (S.L.); (J.L.); (Y.W.); (Y.W.); (S.W.); (Z.D.); (L.H.); (L.A.B.)
| | - Zhonglin Du
- National Center of International Joint Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Q.T.); (S.L.); (J.L.); (Y.W.); (Y.W.); (S.W.); (Z.D.); (L.H.); (L.A.B.)
| | - Linjun Huang
- National Center of International Joint Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Q.T.); (S.L.); (J.L.); (Y.W.); (Y.W.); (S.W.); (Z.D.); (L.H.); (L.A.B.)
| | - Laurence A. Belfiore
- National Center of International Joint Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Q.T.); (S.L.); (J.L.); (Y.W.); (Y.W.); (S.W.); (Z.D.); (L.H.); (L.A.B.)
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Jianguo Tang
- National Center of International Joint Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Q.T.); (S.L.); (J.L.); (Y.W.); (Y.W.); (S.W.); (Z.D.); (L.H.); (L.A.B.)
| |
Collapse
|
9
|
Xu H, Tan Y, Hou Z, Fu C, Lin LR. Insights into the Effect of Trans-to-Cis Photoisomerization of a Co-coordinated Stilbene Derivative on the Luminescence of Di-β-diketonate Lanthanide Complexes. ACS OMEGA 2022; 7:947-958. [PMID: 35036758 PMCID: PMC8757447 DOI: 10.1021/acsomega.1c05557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Five lanthanide complexes constructed from a stilbene derivative, (E)-N',N'-bis(pyridin-2-ylmethyl)-4-styrylbenzoyl hydrazide (HL), and two β-diketonates (2-thenoyltrifluoroacetonate, tta), with or without a trifluoroacetate anion (CF3CO2 -), namely, [Ln(tta)2(HL) (CF3CO2)] [LnC45H32F9N4O7S2, Ln = La (1), Nd (2), Eu (3), or Gd (4)] and [Yb(tta)2(L)] (YbC43H31F6N4O5S2 (5), L = deprotonated HL), were synthesized and characterized. Crystals of these five complexes were obtained and analyzed by single-crystal X-ray diffraction. These complexes all belonged to the monoclinic P21/c space group. For La3+, Nd3+, Eu3+, and Gd3+, the central lanthanide ion was nine-coordinate with a monocapped twisted square antiprism polyhedron geometry. The central Yb3+ ion of complex 5 was eight-coordinate with a distorted double-capped triangular prism polyhedron geometry. Among the five complexes, trans-to-cis photoisomerization of the stilbene group in gadolinium complex 4 showed the largest quantum yield. Complexes 2, 3, and 4 showed dual luminescence and photoisomerization functions. The luminescence change of complex 3 was reversible upon the trans-to-cis photoisomerization process. The sensitization efficiencies of luminescent europium complex 3 in acetonitrile solutions and in the solid state were 49.9 and 42.6%, respectively. These medium sensitization efficiencies led to the observation of simultaneous photoisomerization and luminescence, which further confirmed our previous report that photoisomerization of the stilbene group within complexes was related to the lanthanide ion energy level and whether a ligand-to-metal center or ligand-to-ligand charge-transfer process was present. In complexes 1-5, in addition to the intramolecular absorption transition of the ligand itself (IL, πHL-πHL * and πtta-πtta*), the presence of a ligand-to-ligand charge-transfer transition between tta and HL (LLCT, πtta-πHL * or πHL-πtta *) indicated whether the triplet-state energy of HL was able to transfer to the excited energy level of the lanthanide ions, leading to different extents of HL photoisomerization. These results provide an important route for the design of new dual-function lanthanide-based optical switching materials.
Collapse
|
10
|
Musib D, Ramu V, Raza MK, Upadhyay A, Pal M, Kunwar A, Roy M. La(iii)–curcumin-functionalized gold nanocomposite as a red light-activatable mitochondria-targeting PDT agent. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01045j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functionalization of La(iii)–curcumin to gold nanoparticles resulted in remarkable red-shifted UV-visible absorption and exhibited remarkable differential photodynamic ability towards cancer cells upon red-light activation.
Collapse
Affiliation(s)
- Dulal Musib
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal West, 795004, Manipur, India
| | - Vanitha Ramu
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore, Bangalore-560012, India
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore, Bangalore-560012, India
| | - Aarti Upadhyay
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore, Bangalore-560012, India
| | - Maynak Pal
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal West, 795004, Manipur, India
| | - Amit Kunwar
- Radiation and Photochemistry Division, Bhaba Atomic Research Centre, Anushaktinagar, Mumbai-400094, India
| | - Mithun Roy
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal West, 795004, Manipur, India
| |
Collapse
|
11
|
De A, Bala S, Saha S, Das KS, Akhtar S, Adhikary A, Ghosh A, Huang GZ, Chowdhuri SP, Das BB, Tong ML, Mondal R. Lanthanide clusters of phenanthroline containing a pyridine-pyrazole based ligand: magnetism and cell imaging. Dalton Trans 2021; 50:3593-3609. [PMID: 33624673 DOI: 10.1039/d0dt04122j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this contribution, we report the synthesis, characterization and luminescence-magnetic properties of Ln-clusters (Ln = Gd3+, Eu3+ and Tb3+) using a new pyridine-pyrazole functionalized ligand fitted with a chromophoric phenanthroline backbone. The unorthodox N-rich ligand forms isostructural trinuclear lanthanide complexes with a topology that closely resembles two interdigitating hairpins. The clusters crystallize in chiral space groups and also exhibit chirality for bulk samples, which were further confirmed using solid state CD spectra. Magnetic studies on the complexes reveal their interesting features while the Gd cluster shows a significant cryogenic magnetic cooling behaviour with a moderately high magnetic entropy change of -23.42 J kg-1 K-1 at 7 T and 2 K. On the other hand, Eu and Tb complexes exhibit interesting fluorescence properties. The compounds were subsequently used as fluorescent probes for the imaging of human breast adenocarcinoma (MCF7) cells. Live cell confocal microscopy images show that the complexes penetrate beyond the usual cytoplasm region and can be useful in imaging the nucleus region of MCF7 cells.
Collapse
Affiliation(s)
- Avik De
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Sukhen Bala
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Sayan Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Krishna Sundar Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Sohel Akhtar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Amit Adhikary
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Arijit Ghosh
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Guo-Zhang Huang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Srijita Paul Chowdhuri
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Benu Brata Das
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Raju Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
12
|
Wang JX, Li C, Tian H. Energy manipulation and metal-assisted photochromism in photochromic metal complex. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213579] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Chen L, Tan Y, Xu H, Wang K, Chen ZH, Zheng N, Li YQ, Lin LR. Enhanced E/ Z-photoisomerization and luminescence of stilbene derivative co-coordinated in di-β-diketonate lanthanide complexes. Dalton Trans 2020; 49:16745-16761. [PMID: 33146650 DOI: 10.1039/d0dt03383a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A new tetradentate chelating ligand appending a stilbene derivative, E-N',N'-bis(pyridin-2-ylmethyl)-4-styrylbenzohydrazide (HL) was synthesized, together with two β-diketonates (4,4,4-trifluoro-1-phenylbutane-1,3-dionate, tfd), with or without the trifluoroacetate anion present as a ligand for coordination with lanthanide(iii) ions to form [Ln(tfd)2(HL)(CF3CO2)] (LnC49H36F9N4O7, Ln = La (1), Nd (2), Eu (3), Gd (4)) and [Yb(tfd)2(L)] (YbC47H35F6N4O5 (5), L = deprotonated HL). All five complexes were structurally characterized, and five crystals were obtained and analyzed by single-crystal X-ray diffraction. The quantum yield of trans-to-cis photoisomerization of the stilbene group in gadolinium complex 4 was enhanced about five-fold compared with that of HL itself. Other complexes showed slightly enhanced or depressed photoisomerization. The total luminescence quantum yield/sensitization efficiency of europium complex 3 in the solid state and acetonitrile solution were 22.1%/96.7% and 19.3%/97.9%, respectively. The transfer of ligand energy to the Eu3+ ion was highly efficient. This enhanced photoisomerization and luminescence of the stilbene group within complexes was found to be related to the energy level of lanthanide ions and whether a ligand-to-metal center or ligand-to-ligand charge transfer process was present. The interpretation of experimental results is rationally supported by time-dependent density-functional theory calculations. In complex 4, except for the intramolecular absorption transition of HL ligand itself (IL, πHL-π*HL), the presence of the ligand-to-ligand charge transfer transition from tfd to HL (LLCT, πtfd-π*HL) and the triplet state energy of HL being unable to transfer to the higher 6P7/2 excited energy level of the Gd3+ ion would facilitate HL photoisomerization. For complex 3, this was due to reversed ligand-to-ligand charge transfer transition from HL to tfd (LLCT, πHL-π*tfd) and its energy transfer to the metal center. Although the observed radiative lifetimes of NIR luminescent complexes 2 and 5 were around 10 μs, these systems contained only two diketone ligands, indicating that HL still had a certain promoting effect compared with tris(diketonate) lanthanide complexes. These results offer an important route for the design of new lanthanide-based molecular switching materials.
Collapse
Affiliation(s)
- Lu Chen
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Xie J, Wu T, Wang X, Yu C, Huang W, Wu D. Azo-Label Heterometal-Organic Rhomboids Exhibiting Photoswitchable NIR Luminescence in Crystalline State. Inorg Chem 2020; 59:15460-15466. [PMID: 32990428 DOI: 10.1021/acs.inorgchem.0c02488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photochromism is an important strategy for realizing reversible light-controllable fluorescence switching. In spite of several reports on fluorescence switching via a photochromic process, the success of photochromic multimetallic complexes reversibly showing fluorescence switching in the solid or crystalline state has been limited for their application importance. Here, we report a photoswitchable near-infrared (NIR) fluorescence based on photochromism in the azo-label 3d/4f heterometal-organic rhomboids, azo-Zn2Ln2 (Ln = Eu (1), Yb (2), and Er (3)), in the crystalline state. An individual metallorhomboid contains up to four azobenzene fragments, which is prepared via the three-component assembly of a trans-azobenzene-grafted multifunctional ligand, and 3d and 4f metal ions. The photoisomerization quantum yields of azo-Zn2Ln2 complexes can be retained or even higher when compared to the free ligand due to the modification of electronic structure. The impressive crystalline-state NIR luminescence is observed for the complexes of azo-Zn2Yb2 (2) and azo-Zn2Er2 (3) at room temperature. Intriguingly, the switchable NIR luminescence can be effectively regulated by photochromism in the crystalline state. These features endow the self-assembly of the 3d/4f metallorhomboid with synergetic multifunctional behavior between photochromism and NIR luminescence.
Collapse
Affiliation(s)
- Jing Xie
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Ting Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Xiaoling Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Chengfeng Yu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Wei Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Dayu Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| |
Collapse
|
15
|
Chen P, Kong J, Wang X, Ma W, Yang X, Qin Y, Hu X. Development of Light-Responsive Poly(γ-Benzyl-L-Glutamate) as Photo Switches by a One-Step NCA Method. Front Chem 2020; 8:591. [PMID: 32850629 PMCID: PMC7417769 DOI: 10.3389/fchem.2020.00591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/08/2020] [Indexed: 01/20/2023] Open
Abstract
Synthesized polypeptide is attracting an increased interests due to its excellent biological characteristic and adjustable chemical properties in bio-related fields. But polypeptide itself has no switching properties, which is harmful to the development of its application as a control component. Herein, light-responsive poly(γ-benzyl-L-glutamate)s (PBLGs) is synthesized by a one-step NCA method using p-aminoazobenzene (m-AZO) and p-diaminoazobenzene (m-DAZO) as initiators. PBLGs exhibit amorphous characteristics with obvious Tg transition, which are 14°C for PBLG1 and 21°C for PBLG2. In order to forecast the structure-property information of PBLGs, theoretical UV-vis spectra as well as the energy gap between HOMO and LUMO is calculated by DFT calculation. Experimental results of UV-vis spectra exhibit similar characteristics to those of theorical UV-vis spectra except for the 40–50 nm red-shifting of absorbance peak. Furthermore, the absorbance intensities of PBLGs have a good linear relationship with their concentration, but their linearity range depending on concentration is completely different. Then, trans–cis transition under a different excitation source and cis–trans recovery in a dark environment are tracked in real-time by UV-vis spectra to evaluate the light response performances. It is found that UV light is the only effective excitation source for PBLG1, and blue light is another effective excitation source for PBLG2 besides UV light. Furthermore, the addition of alcohol and water as cosolvents has little effect on trans→cis transition in UV-light-excited systems, but it shortens recovery time of the cis→trans process in a dark environment. By contrast, the detectable isomerization process becomes unclear with the addition of alcohol in blue-light-excited system. Furthermore, either alcohol or water in solvents accelerate both the trans→cis and cis→trans process in a blue-light-excited system.
Collapse
Affiliation(s)
- Pin Chen
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
| | - Jingyang Kong
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
| | - Xin Wang
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
| | - Weiye Ma
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
| | - Xia Yang
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
| | - Yuqing Qin
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
| | - Xiaohong Hu
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
| |
Collapse
|
16
|
Han G, Zhou Y, Yao Y, Cheng Z, Gao T, Li H, Yan P. Preorganized helical chirality controlled homochiral self-assembly and circularly polarized luminescence of a quadruple-stranded Eu 2L 4 helicate. Dalton Trans 2020; 49:3312-3320. [PMID: 32101214 DOI: 10.1039/d0dt00062k] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
β-Diketones are one of the most widely used ligands for sensitizing the luminescence of lanthanide complexes due to their excellent sensitization abilities. However, the difficulties in introducing chiral groups to take part in the electronic transitions of conjugated systems limit their application in lanthanide circularly polarized luminescence (CPL) materials. In view of the inherent chirality of the helical structure, herein, a pair of homochiral quadruple-stranded helicates, Eu2L4, is assembled based on chiral bis-β-diketonate ligands, wherein the two point chirality centers in the spacer preorganize the helical conformation of the ligand (3S,4S)/(3R,4R)-3,4-bis(4,4'-bis(4,4,4-trifluoro-1,3-dioxobutyl)phenoxyl)-1-benzylpyrrolidine, LSS/LRR. X-ray crystallographic analyses reveal that the R,R configurations of the chiral carbons in the spacer induce the M helical sense of the ligand, while the S,S configurations induce the P helical sense. Through the comprehensive spectral characterization in combination with semiempirical geometry optimization using the Sparkle/RM1 model, it is confirmed that the preorganized ligands successfully control the homochirality of the helicates. Moreover, the mirror-image CD and CPL spectra and NMR measurements confirm the formation of enantiomeric pairs and their diastereopurities in solution. Detailed photophysical and chiroptical characterization studies reveal that the helicates not only exhibit intense circularly polarized luminescence (CPL) with |glum| values reaching 0.10, but also show a high luminescence quantum yield of 34%. This study effectively combines the helical chirality of the helicates with the excellent sensitization ability of the β-diketones, providing an effective strategy for the syntheses of chiral lanthanide CPL materials.
Collapse
Affiliation(s)
- Guoying Han
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Hyre AS, Doerrer LH. A structural and spectroscopic overview of molecular lanthanide complexes with fluorinated O-donor ligands. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Cinà V, Carbonell E, Fusaro L, García H, Gruttadauria M, Giacalone F, Aprile C. Tuneable Emission of Polyhedral Oligomeric Silsesquioxane Based Nanostructures that Self-Assemble in the Presence of Europium(III) Ions: Reversible trans-to-cis Isomerization. Chempluschem 2019; 85:391-398. [PMID: 32118361 DOI: 10.1002/cplu.201900575] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/11/2019] [Indexed: 11/10/2022]
Abstract
Hybrid nanostructures with switchable and reversible "blue-red-green" emission were efficiently synthesized. These nanostructures comprise polyhedral oligomeric silsesquioxanes (POSS) that behave as a nanocage that can be functionalized with terpyridine-based organic ligands, which can be easily complexed with europium (III) ions. The complexes were characterized by UV-Vis and fluorescence spectroscopy and their stoichiometry was also confirmed by 1 H NMR spectroscopy. In the presence of the Eu(III) ions, the octafunctionalized nanocages self-assemble to form 3D architectures that display an intense red-emission, especially in the solid state. The presence of an alkenyl group bridging the inorganic core to the organic moiety was employed to tune the emission properties by trans-cis isomerization of the double bond. In the case of the octafunctionalized nanocages (O-POSS), this isomerization was monitored in the presence of Eu(III) cations and was accompanied by an evident colour change from blue (trans-O-POSS) to red (Eu@trans-O-POSS) and finally to green (cis-O-POSS) as consequence of the release of the metal cations. This behaviour, together with the easy dispersion of the dry powder and the possibility of coating as a film in presence of small amounts of solvent, makes the emissive solid promising for applications in materials science.
Collapse
Affiliation(s)
- Valerio Cinà
- Laboratory of Applied Material Chemistry (CMA), University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium.,Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo, Italy
| | - Esther Carbonell
- Laboratory of Applied Material Chemistry (CMA), University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Luca Fusaro
- Laboratory of Applied Material Chemistry (CMA), University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Hermenegildo García
- Department of Chemistry, Instituto de Tecnología Química CSIC-UPV, Universitat Politècnica de València, Av. de los Naranjos s/n, 46022, Valencia, Spain
| | - Michelangelo Gruttadauria
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo, Italy
| | - Francesco Giacalone
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo, Italy
| | - Carmela Aprile
- Laboratory of Applied Material Chemistry (CMA), University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium
| |
Collapse
|
19
|
Fu CY, Chen L, Wang X, Lin LR. Synthesis of Bis-β-Diketonate Lanthanide Complexes with an Azobenzene Bridge and Studies of Their Reversible Photo/Thermal Isomerization Properties. ACS OMEGA 2019; 4:15530-15538. [PMID: 31572854 PMCID: PMC6761611 DOI: 10.1021/acsomega.9b01817] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/27/2019] [Indexed: 06/02/2023]
Abstract
The ligand, bis-β-diketone with an azobenzene bridge (4,4'-(4,4,4-trifluoro-1,3-butanedione)azobenzene, H 2 L), was prepared for the synthesis of a series of dinuclear lanthanide complexes with the formula [Ln 2 L 3 (DMSO) 4 ] (Ln = Eu3+, Gd3+, Tb3+, and DMSO = dimethyl sulfoxide). X-ray crystallographic analysis reveals that the three complexes are triple-stranded dinuclear structures formed by three bis-β-diketonate ligands with two lanthanide ions (Ln3+). The trans-to-cis photoisomerization rates of the azobenzene group of the three [Ln 2 L 3 (DMSO) 4 ] complexes in ethanol and acetonitrile solutions are similar to those of the pure H 2 L ligand and other azobenzene-containing mononuclear lanthanide complexes, but the trans-to-cis quantum yields (Φt→c = 10-3) are 1 order of magnitude smaller. The first-order rate constant for the cis-to-trans thermal isomerization at 50 °C of the H 2 L ligand is similar to those of azobenzene derivatives, while those for the [Ln 2 L 3 (DMSO) 4 ] complexes (k iso = 10-4 s-1) are higher than those of the mononuclear azobenzene-containing lanthanide complexes. Furthermore, as the lanthanide ionic radius becomes smaller from Eu3+ to Gd3+ to Tb3+, the thermal isomerization rate constant decreases and the half-life increases. All these results are proposed to arise from the rigidity at both ends of the azo group by coordination to the dinuclear lanthanide ions and the different isomerization mechanisms. These are the first examples of bis-β-diketonate dinuclear lanthanide complexes with an azobenzene bridge and help illustrate the mechanism of azobenzene isomerization.
Collapse
Affiliation(s)
- Cai-Ye Fu
- Department of Chemistry, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, P. R. China
| | - Lu Chen
- Department of Chemistry, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, P. R. China
| | - Xuan Wang
- Department of Chemistry, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, P. R. China
| | - Li-Rong Lin
- Department of Chemistry, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, P. R. China
| |
Collapse
|
20
|
Gámez-Heredia RG, Cruz-Enríquez A, Aceves R, Höpfl H, Parra-Hake M, Navarro RE, Campos-Gaxiola JJ. Synthesis, structural characterization and photoluminescence properties of mononuclear Eu3+, Gd3+ and Tb3+ complexes derived from cis-(±)-2,4,5-tris(pyridin-2-yl)-imidazoline as ligand. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.10.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Bazhin DN, Kudyakova YS, Bogomyakov AS, Slepukhin PA, Kim GA, Burgart YV, Saloutin VI. Dinuclear lanthanide–lithium complexes based on fluorinated β-diketonate with acetal group: magnetism and effect of crystal packing on mechanoluminescence. Inorg Chem Front 2019. [DOI: 10.1039/c8qi00772a] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A convenient and straightforward synthesis of a novel type of Ln–Li β-diketonates with a discrete molecular structure is presented.
Collapse
Affiliation(s)
- Denis N. Bazhin
- Postovsky Institute of Organic Synthesis
- the Ural Branch of the Russian Academy of Sciences
- 620990 Ekaterinburg
- Russian Federation
- Ural Federal University named after the First President of Russia B.N. Eltsin
| | - Yulia S. Kudyakova
- Postovsky Institute of Organic Synthesis
- the Ural Branch of the Russian Academy of Sciences
- 620990 Ekaterinburg
- Russian Federation
| | - Artem S. Bogomyakov
- International Tomography Center
- Siberian Branch of the Russian Academy of Sciences
- 630090 Novosibirsk
- Russian Federation
| | - Pavel A. Slepukhin
- Postovsky Institute of Organic Synthesis
- the Ural Branch of the Russian Academy of Sciences
- 620990 Ekaterinburg
- Russian Federation
- Ural Federal University named after the First President of Russia B.N. Eltsin
| | - Grigory A. Kim
- Postovsky Institute of Organic Synthesis
- the Ural Branch of the Russian Academy of Sciences
- 620990 Ekaterinburg
- Russian Federation
| | - Yanina V. Burgart
- Postovsky Institute of Organic Synthesis
- the Ural Branch of the Russian Academy of Sciences
- 620990 Ekaterinburg
- Russian Federation
- Ural Federal University named after the First President of Russia B.N. Eltsin
| | - Victor I. Saloutin
- Postovsky Institute of Organic Synthesis
- the Ural Branch of the Russian Academy of Sciences
- 620990 Ekaterinburg
- Russian Federation
- Ural Federal University named after the First President of Russia B.N. Eltsin
| |
Collapse
|
22
|
Huang G, Yi X, Gendron F, Le Guennic B, Guizouarn T, Daiguebonne C, Calvez G, Suffren Y, Guillou O, Bernot K. A supramolecular chain of dimeric Dy single molecule magnets decorated with azobenzene ligands. Dalton Trans 2019; 48:16053-16061. [DOI: 10.1039/c9dt03540k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
DyIII dimers decorated with photo-isomerizable azobenzene ligands behave as single-molecule magnets and self-organize into a supramolecular chain. Ab initio calculations, magnetic and optical properties are reported.
Collapse
|
23
|
Wang N, Wang J, Zhao D, Mellerup SK, Peng T, Wang H, Wang S. Lanthanide Complexes with Photochromic Organoboron Ligand: Synthesis and Luminescence Study. Inorg Chem 2018; 57:10040-10049. [DOI: 10.1021/acs.inorgchem.8b01209] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Nan Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Junwei Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Dan Zhao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Soren K. Mellerup
- Department of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Tai Peng
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Hongbo Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, Hubei 430056, P. R. China
| | - Suning Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
- Department of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
24
|
Pang J, Gao Z, Zhang L, Wang H, Hu X. Synthesis and Characterization of Photoresponsive Macromolecule for Biomedical Application. Front Chem 2018; 6:217. [PMID: 30013963 PMCID: PMC6036227 DOI: 10.3389/fchem.2018.00217] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/25/2018] [Indexed: 01/28/2023] Open
Abstract
Azobenzene, a photo switcher, has attracted increasing interest due to its structural response to photo stimulus in the field of information science and chemical sensing in the recent decades. However, limited water solubility and cytotoxicity restrained their applications in the biomedical field. In research, HA-AZO has been designed as a water soluble photo switcher in biomedical application. Synthesized HA-AZO had good water-solubility and a stable π-π* transition absorbance peak trans-isomer. With exposure to UV, transformation from trans-isomer to cis-isomer of HA-AZO could be realized according to UV spectra. Reversely, trans-isomer could be gradually recovered from cis-isomer in the dark. Simultaneously, quick response and slow recovery could be detected in the process of structural change. Moreover, repeated illumination was further used to detect the antifatigue property of HA-AZO, which showed no sign of fatigue during 20 circles. The influence of pH value on UV spectrum for HA-AZO was investigated in the work. Importantly, in acid solution, HA-AZO no longer showed any photoresponsive property. Additionally, the status of HA-AZO under the effect of UV light was investigated by DLS results and TEM image. Finally, in vitro cytotoxicity evaluations were performed to show the effects of photoresponsive macromolecule on cells.
Collapse
Affiliation(s)
- Juan Pang
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
| | - Ziyu Gao
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
| | - Long Zhang
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
| | - Huiming Wang
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
| | - Xiaohong Hu
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
| |
Collapse
|
25
|
Yang F, Yang GP, Wu Y, Yan Y, Liu J, Gao R, Zhang WY, Wang YY. Ln(III)-MOFs (Ln = Tb, Eu, Dy, and Sm) based on triazole carboxylic ligand with carboxylate and nitrogen donors with applications as chemical sensors and magnetic materials. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1485018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
| | - Guo-Ping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi’an, P. R. China
| | - Yunlong Wu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi’an, P. R. China
| | - Yangtian Yan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi’an, P. R. China
| | - Jiao Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi’an, P. R. China
| | - Ruicheng Gao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi’an, P. R. China
| | - Wen-Yan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi’an, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi’an, P. R. China
| |
Collapse
|
26
|
Coban MB. Hydrothermal synthesis, crystal structure, luminescent and magnetic properties of a new mononuclear Gd III coordination complex. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.02.089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Wang YG, Li YQ, Tang HH, Lin LR, Ma LH. Near-Infrared Photoluminescence and Reversible Trans-to-Cis Photoisomerization of Mononuclear and Binuclear Ytterbium(III) Complexes Functionalized by Azobenzene Groups. ACS OMEGA 2018; 3:5480-5490. [PMID: 31458752 PMCID: PMC6641697 DOI: 10.1021/acsomega.8b00386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/03/2018] [Indexed: 06/02/2023]
Abstract
Two mononuclear and one binuclear ytterbium complexes with dual near-infrared (NIR) photoluminescence and reversible trans-to-cis photoisomerization functions were synthesized and characterized. The central ytterbium(III) ion coordinates with two β-diketonate (4,4,4-trifluoro-1-phenylbutane-1,3-dionate (tfd)) ligands and one deprotonated azobenzene-containing tetradentate ligand [(E)-4-(phenyldiazenyl)-N,N-bis(pyridin-2-ylmethyl) benzohydrazide (HL), (E)-4-((4-(dimethylamino)phenyl)diazenyl)-N,N-bis(pyridin-2-ylmethyl)benzohydrazide (HNL), or (E)-4,4'-N',N'-bis(pyridin-2-ylmethyl)benzohydrazide azobenzene (H2DL)] to form a neutral ternary complex ([Yb(tfd)2L], [Yb(tfd)2(NL)], or [Yb2(tfd)4(DL)], respectively), where the ytterbium(III) ion is eight-coordinated to N3O5 donor sets. X-ray crystallographic analysis shows that all three complexes form a trigonal dodecahedron geometry with similar -N=N- distances that are slightly longer than those of the pure azobenzene-containing ligands. The NIR luminescence properties of the Yb(III) complexes were determined at a wavelength of about 980 nm with quantum yields in the range of 0.4-0.6% in ethanol and acetonitrile solutions at room temperature, and trans-to-cis photoisomerization was determined with the quantum yields (Φt→c = 10-2) at the same level as their pure ligands. The trans-to-cis photoisomerization rates of the complexes (10-4 s-1) are slightly higher than those of the pure ligands and similar to azobenzene (10-5 to 10-4 s-1). From time-dependent density functional theory calculations of the energy levels of the first excited triplet states of the ligands, the energies of the lowest excited triplet states of all of the ligands are higher than the resonance level of Yb3+ (2F5/2, 1.2722 eV). We suggest that these azo-containing ligands may participate in energy transfer to the ytterbium ion, in addition to the main "antenna effect" ligand tfd. This is the first report of azobenzene group-functionalized ytterbium complexes with dual NIR luminescence and photoisomerization properties, indicating that azobenzene-containing lanthanide(III) complexes have potential applications as dual function materials in biological systems.
Collapse
Affiliation(s)
- Yun-Guang Wang
- Department
of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yu-Qian Li
- Department
of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Hui-Hui Tang
- Department
of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Li-Rong Lin
- Department
of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Li-Hua Ma
- Department
of Chemistry, College of Science and Computer Engineering, University of Houston-Clear Lake, 2700 Bay Area Blvd, Houston, Texas 77058, United States
| |
Collapse
|
28
|
Near-infrared emissive lanthanide hybridized nanofibrillated cellulose nanopaper as ultraviolet filter. Carbohydr Polym 2018; 186:176-183. [DOI: 10.1016/j.carbpol.2017.12.088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/25/2017] [Accepted: 12/31/2017] [Indexed: 11/23/2022]
|
29
|
Cui C, He X, Lin Q, Luo X, Xu Y. Two nanosized cage-like Ln20Ni21 clusters exhibiting antiferromagnetic properties. INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2018.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|