1
|
Prasad P, Hunt LA, Pall AE, Ranasinghe M, Williams AE, Stemmler TL, Demeler B, Hammer NI, Chakraborty S. Photocatalytic Hydrogen Evolution by a De Novo Designed Metalloprotein that Undergoes Ni-Mediated Oligomerization Shift. Chemistry 2023; 29:e202202902. [PMID: 36440875 PMCID: PMC10308963 DOI: 10.1002/chem.202202902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 11/29/2022]
Abstract
De novo metalloprotein design involves the construction of proteins guided by specific repeat patterns of polar and apolar residues, which, upon self-assembly, provide a suitable environment to bind metals and produce artificial metalloenzymes. While a wide range of functionalities have been realized in de novo designed metalloproteins, the functional repertoire of such constructs towards alternative energy-relevant catalysis is currently limited. Here we show the application of de novo approach to design a functional H2 evolving protein. The design involved the assembly of an amphiphilic peptide featuring cysteines at tandem a/d sites of each helix. Intriguingly, upon NiII addition, the oligomers shift from a major trimeric assembly to a mix of dimers and trimers. The metalloprotein produced H2 photocatalytically with a bell-shape pH dependence, having a maximum activity at pH 5.5. Transient absorption spectroscopy is used to determine the timescales of electron transfer as a function of pH. Selective outer sphere mutations are made to probe how the local environment tunes activity. A preferential enhancement of activity is observed via steric modulation above the NiII site, towards the N-termini, compared to below the NiII site towards the C-termini.
Collapse
Affiliation(s)
- Pallavi Prasad
- Department of Chemistry and Biochemistry, The University of Mississippi, University, MS, 38677 (USA)
| | - Leigh Anna Hunt
- Department of Chemistry and Biochemistry, The University of Mississippi, University, MS, 38677 (USA)
| | - Ashley E. Pall
- Department of Pharmaceutical Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201-2417 (USA)
| | - Maduni Ranasinghe
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401,University Dr W, Lethbridge, AB T1K 6T5 (CA)
| | - Ashley E. Williams
- Department of Chemistry and Biochemistry, The University of Mississippi, University, MS, 38677 (USA)
| | - Timothy L. Stemmler
- Department of Pharmaceutical Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201-2417 (USA)
| | - Borries Demeler
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401,University Dr W, Lethbridge, AB T1K 6T5 (CA)
| | - Nathan I. Hammer
- Department of Chemistry and Biochemistry, The University of Mississippi, University, MS, 38677 (USA)
| | - Saumen Chakraborty
- Department of Chemistry and Biochemistry, The University of Mississippi, University, MS, 38677 (USA)
| |
Collapse
|
2
|
Truong PT, Broering EP, Dzul SP, Chakraborty I, Stemmler TL, Harrop TC. Simultaneous nitrosylation and N-nitrosation of a Ni-thiolate model complex of Ni-containing SOD. Chem Sci 2018; 9:8567-8574. [PMID: 30568781 PMCID: PMC6253683 DOI: 10.1039/c8sc03321h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/17/2018] [Indexed: 11/21/2022] Open
Abstract
Nitric oxide (NO) is used as a substrate analogue/spectroscopic probe of metal sites that bind and activate oxygen and its derivatives. To assess the interaction of superoxide with the Ni center in Ni-containing superoxide dismutase (NiSOD), we studied the reaction of NO+ and NO with the model complex, Et4N[Ni(nmp)(SPh-o-NH2-p-CF3)] (1; nmp2- = dianion of N-(2-mercaptoethyl)picolinamide; -SPh-o-NH2-p-CF3 = 2-amino-4-(trifluoromethyl)benzenethiolate) and its oxidized analogue 1ox , respectively. The ultimate products of these reactions are the disulfide of -SPh-o-NH2-p-CF3 and the S,S-bridged tetrameric complex [Ni4(nmp)4], a result of S-based redox activity. However, introduction of NO to 1 affords the green dimeric {NiNO}10 complex (Et4N)2[{Ni(κ2-SPh-o-NNO-p-CF3)(NO)}2] (2) via NO-induced loss of nmp2- as the disulfide and N-nitrosation of the aromatic thiolate. Complex 2 was characterized by X-ray crystallography and several spectroscopies. These measurements are in-line with other tetrahedral complexes in the {NiNO}10 classification. In contrast to the established stability of this metal-nitrosyl class, the Ni-NO bond of 2 is labile and release of NO from this unit was quantified by trapping the NO with a CoII-porphyrin (70-80% yield). In the process, the Ni ends up coordinated by two o-nitrosaminobenzenethiolato ligands to result in the structurally characterized trans-(Et4N)2[Ni(SPh-o-NNO-p-CF3)2] (3), likely by a disproportionation mechanism. The isolation and characterization of 2 and 3 suggest that: (i) the strongly donating thiolates dominate the electronic structure of Ni-nitrosyls that result in less covalent Ni-NO bonds, and (ii) superoxide undergoes disproportionation via an outer-sphere mechanism in NiSOD as complexes in the {NiNO}9/8 state have yet to be isolated.
Collapse
Affiliation(s)
- Phan T Truong
- Department of Chemistry , Center for Metalloenzyme Studies , The University of Georgia , Athens , Georgia 30602 , USA .
| | - Ellen P Broering
- Department of Chemistry , Center for Metalloenzyme Studies , The University of Georgia , Athens , Georgia 30602 , USA .
| | - Stephen P Dzul
- Departments of Pharmaceutical Sciences, Biochemistry, and Molecular Biology , Wayne State University , Detroit , Michigan 48201 , USA
| | - Indranil Chakraborty
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , USA
| | - Timothy L Stemmler
- Departments of Pharmaceutical Sciences, Biochemistry, and Molecular Biology , Wayne State University , Detroit , Michigan 48201 , USA
| | - Todd C Harrop
- Department of Chemistry , Center for Metalloenzyme Studies , The University of Georgia , Athens , Georgia 30602 , USA .
| |
Collapse
|
3
|
Blahut M, Dzul S, Wang S, Kandegedara A, Grossoehme NE, Stemmler T, Outten FW. Conserved cysteine residues are necessary for nickel-induced allosteric regulation of the metalloregulatory protein YqjI (NfeR) in E. coli. J Inorg Biochem 2018; 184:123-133. [PMID: 29723740 DOI: 10.1016/j.jinorgbio.2018.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 04/19/2018] [Accepted: 04/22/2018] [Indexed: 11/28/2022]
Abstract
Transition metal homeostasis is necessary to sustain life. First row transition metals act as cofactors within the cell, performing vital functions ranging from DNA repair to respiration. However, intracellular metal concentrations exceeding physiological requirements may be toxic. In E. coli, the YqjH flavoprotein is thought to play a role in iron homeostasis. YqjH is transcriptionally regulated by the ferric uptake regulator and a newly discovered regulator encoded by yqjI. The apo-form of YqjI is a transcriptional repressor of both the yqjH and yqjI genes. YqjI repressor function is disrupted upon binding of nickel. The YqjI N-terminus is homologous to nickel-binding proteins, implicating this region as a nickel-binding domain. Based on function, yqjI and yqjH should be renamed Ni-responsive Fe-uptake regulator (nfeR) and Ni-responsive Fe-uptake flavoprotein (nfeF), respectively. X-ray Absorption Spectroscopy was employed to characterize the nickel binding site(s) within YqjI. Putative nickel binding ligands were targeted by site-directed mutagenesis and resulting variants were analyzed in vivo for repressor function. Isothermal titration calorimetry and competitive binding assays were used to further quantify nickel interactions with wild-type YqjI and its mutant derivatives. Results indicate plasticity in the nickel binding domain of YqjI. Residues C42 and C43 were found to be required for in vivo response of YqjI to nickel stress, though these residues are not required for in vitro nickel binding. We propose that YqjI may contain a vicinal disulfide bond between C42 and C43 that is important for nickel-responsive allosteric interactions between YqjI domains.
Collapse
Affiliation(s)
- Matthew Blahut
- University of South Carolina, Department of Chemistry and Biochemistry, Columbia, SC 29208, USA
| | - Stephen Dzul
- Wayne State University, Department of Pharmaceutical Sciences, Detroit, MI 48201, USA
| | - Suning Wang
- University of South Carolina, Department of Chemistry and Biochemistry, Columbia, SC 29208, USA
| | - Ashoka Kandegedara
- Wayne State University, Department of Pharmaceutical Sciences, Detroit, MI 48201, USA
| | - Nicholas E Grossoehme
- Winthrop University, Department of Chemistry, Physics, and Geology, Rock Hill, SC 29733, USA
| | - Timothy Stemmler
- Wayne State University, Department of Pharmaceutical Sciences, Detroit, MI 48201, USA
| | - F Wayne Outten
- University of South Carolina, Department of Chemistry and Biochemistry, Columbia, SC 29208, USA.
| |
Collapse
|
4
|
Meng S, Zhao Y, Xue J, Zheng X. Environment-dependent conformation investigation of 3-amino-1,2,4-triazole (3-AT): Raman Spectroscopy and density functional theory. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 190:478-485. [PMID: 28963972 DOI: 10.1016/j.saa.2017.09.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
In the paper, diverse tautomers of 3-amino-1,2,4-triazole (3AT) in solid and polar solvent have been explored by FT-IR, FT-Raman and 488nm Raman experiments combing with quantum chemical theoretical calculation using PCM solvent model and normal mode analysis. The vibrational spectra prefer the 3-amino-1,2,4-2H-triazole (2H-3AT) dimer in solid, while in a polar solvent 3AT is apt to the 3-amino-1,2,4-2H-triazole (2H-3AT) monomer. The significant wavenumber difference and Raman intensity patterns in solid and different solvents are induced by hydrogen bond perturbation along >NH⋯N≤ hydrogen bonds on five-membered N-heterocyclic ring. The ground state proton transfer reaction mechanism along the five-membered N-heterocyclic ring is supported by intermolecular hydrogen bonding between 3AT and protonic solvent molecules.
Collapse
Affiliation(s)
- Shuang Meng
- Department of Chemistry and Engineering Research Center for Eco-dyeing and Finishing of Textiles, Key Laboratory of Advanced Textiles Materials and Manufacture Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yanying Zhao
- Department of Chemistry and Engineering Research Center for Eco-dyeing and Finishing of Textiles, Key Laboratory of Advanced Textiles Materials and Manufacture Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Jiadan Xue
- Department of Chemistry and Engineering Research Center for Eco-dyeing and Finishing of Textiles, Key Laboratory of Advanced Textiles Materials and Manufacture Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xuming Zheng
- Department of Chemistry and Engineering Research Center for Eco-dyeing and Finishing of Textiles, Key Laboratory of Advanced Textiles Materials and Manufacture Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
5
|
Tietze D, Sartorius J, Koley Seth B, Herr K, Heimer P, Imhof D, Mollenhauer D, Buntkowsky G. New insights into the mechanism of nickel superoxide degradation from studies of model peptides. Sci Rep 2017; 7:17194. [PMID: 29222438 PMCID: PMC5722923 DOI: 10.1038/s41598-017-17446-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/27/2017] [Indexed: 12/27/2022] Open
Abstract
A series of small, catalytically active metallopeptides, which were derived from the nickel superoxide dismutase (NiSOD) active site were employed to study the mechanism of superoxide degradation especially focusing on the role of the axial imidazole ligand. In the literature, there are contradicting propositions about the catalytic importance of the N-terminal histidine. Therefore, we studied the stability and activity of a set of eight NiSOD model peptides, which represent the major model systems discussed in the literature to date, yet differing in their length and their Ni-coordination. UV-Vis-coupled stopped-flow kinetic measurements and mass spectrometry analysis unveiled their high oxidation sensitivity in the presence of oxygen and superoxide resulting into a much faster Ni(II)-peptide degradation for the amine/amide Ni(II) coordination than for the catalytically inactive bis-amidate Ni(II) coordination. With respect to these results we determined the catalytic activities for all NiSOD mimics studied herein, which turned out to be in almost the same range of about 2 × 106 M-1 s-1. From these experiments, we concluded that the amine/amide Ni(II) coordination is clearly the key factor for catalytic activity. Finally, we were able to clarify the role of the N-terminal histidine and to resolve the contradictory literature propositions, reported in previous studies.
Collapse
Affiliation(s)
- Daniel Tietze
- Eduard-Zintl Institute for Physical and Inorganic Chemistry, Darmstadt University of Technology, Alarich-Weiss-Str. 8, 64287, Darmstadt, Germany.
| | - Jana Sartorius
- Eduard-Zintl Institute for Physical and Inorganic Chemistry, Darmstadt University of Technology, Alarich-Weiss-Str. 8, 64287, Darmstadt, Germany
| | - Banabithi Koley Seth
- Eduard-Zintl Institute for Physical and Inorganic Chemistry, Darmstadt University of Technology, Alarich-Weiss-Str. 8, 64287, Darmstadt, Germany
| | - Kevin Herr
- Eduard-Zintl Institute for Physical and Inorganic Chemistry, Darmstadt University of Technology, Alarich-Weiss-Str. 8, 64287, Darmstadt, Germany
| | - Pascal Heimer
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53119, Bonn, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53119, Bonn, Germany
| | - Doreen Mollenhauer
- Institute of Physical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, D-35392, Giessen, Germany
| | - Gerd Buntkowsky
- Eduard-Zintl Institute for Physical and Inorganic Chemistry, Darmstadt University of Technology, Alarich-Weiss-Str. 8, 64287, Darmstadt, Germany.
| |
Collapse
|