1
|
Juráková J, Santana VT, Pavlik J, Moncoľ J, Nemec I, Clemente-León M, Kuppusamy SK, Ruben M, Čižmár E, Šalitroš I. Magnetic anisotropy and slow relaxation of magnetisation in double salts containing four- and six-coordinate cobalt(II) complex ions. Dalton Trans 2024; 53:12962-12972. [PMID: 39026489 DOI: 10.1039/d4dt01509f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Four novel Co(II) coordination compounds 1-4 of the general formula [Co(Ln)2][Co(NCY)4]·mCH3CN (where Ln are tridentate ligands L1 = 2,6-bis(1-hexyl-1H-benzimidazol-2-yl)pyridine for 1 and 2; L2 = 2,6-bis(1-octyl-1H-benzimidazol-2-yl)pyridine for 3; L3 = 2,6-bis(1-dodecyl-1H-benzimidazol-2-yl)pyridine for 4, Y = O for 1, 3, and 4 and Y = S for 2; m = 0 for 1 and 3, m = 0.5 for 2 and m = 2 for 4) were prepared and characterised. The molecular structures of all four compounds consist of the hexacoordinate complex cation [Co(Ln)2]2+ and tetracoordinate complex anion [Co(NCY)4]2-, with distorted octahedral and tetrahedral symmetry of coordination polyhedra, respectively. The electronic structures of all compounds feature an orbitally non-degenerate ground state well-separated from the lowest excited state, which allows the analysis of the magnetic anisotropy by the spin Hamiltonian model. ZFS parameters, derived from both CASSCF-NEVPT2 calculations and magnetic data analysis, indicate that tetrahedral anions [Co(NCY)4]2- exhibit small axial parameters |D| spanning the range of 2.2 to 7.7 cm-1, while octahedral cations [Co(Ln)2]2+ display significantly larger |D| parameters in the range of 37 to 95 cm-1. For 1-3, the Fourier-transform infrared magnetic spectroscopy (FIRMS) revealed a reasonable transmission with a magnetic absorption around the expected value for the ZFS accompanied by features allowing to identify phonon frequencies and simulate spin-phonon couplings. Dynamic magnetic investigations unveiled the field-induced slow relaxation of magnetisation, with maximal relaxation times (τ) of 92(2) μs for 2 at 2 K and BDC = 0.3 T. The temperature evolution of τ was analysed using a combination of Orbach, direct and Raman relaxations (Ueff = 8(1) K (5.6 cm-1)) or Orbach, direct and spin-phonon induced relaxations (Ueff = 10.3(9) K (7.2 cm-1)). The rest of the complexes, namely 1, 3, and 4 show field-induced slow relaxation of magnetisation with τ smaller than 16 μs.
Collapse
Affiliation(s)
- Jana Juráková
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia.
| | - Vinicius Tadeu Santana
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Ján Pavlik
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia.
| | - Ján Moncoľ
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia.
| | - Ivan Nemec
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Miguel Clemente-León
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2, 46980 Paterna, Spain
| | - Senthil Kumar Kuppusamy
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Mario Ruben
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Erik Čižmár
- Institute of Physics, Faculty of Science, P.J. Šafárik University, Park Angelinum 9, 04154 Košice, Slovakia
| | - Ivan Šalitroš
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia.
| |
Collapse
|
2
|
Dey A, Ali J, Moorthy S, Gonzalez JF, Pointillart F, Singh SK, Chandrasekhar V. Field induced single ion magnet behavior in Co II complexes in a distorted square pyramidal geometry. Dalton Trans 2023; 52:14807-14821. [PMID: 37791680 DOI: 10.1039/d3dt01769a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
We report three CoII-based complexes with the general formula [CoII(L)(X)2] by changing the halide/pseudo-halide ions [X = NCSe (1SeCN); Cl (2Cl) and Br (3Br)]. The obtained τ5 and CShM values confirm a distorted square pyramidal geometry around the CoII ion in all these complexes. In these three complexes, the central CoII ion is situated above the basal plane of the square pyramidal geometry. The extent of distortion from the ideal SPY-5 geometry differs upon changing the coordinating halide/pseudo-halide ion in these complexes. This essentially results in the alteration of the anisotropic parameter D and hence impacts the magnetic properties in these complexes. This phenomenon has been corroborated with the aid of theoretical investigations. All these complexes display field-induced SIM behaviour with magnetic relaxation occurring through a combination of processes depending on the applied dc magnetic field values and dilution.
Collapse
Affiliation(s)
- Atanu Dey
- Department of Chemistry, Gandhi Institute of Technology and Management (GITAM), NH 207, Nagadenehalli, Doddaballapur Taluk, Bengaluru 561203, India.
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500 046, India.
| | - Junaid Ali
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500 046, India.
| | - Shruti Moorthy
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India.
| | - Jessica Flores Gonzalez
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, 35000 Rennes, France.
| | - Fabrice Pointillart
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, 35000 Rennes, France.
| | - Saurabh Kumar Singh
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India.
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500 046, India.
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
3
|
Hegde V, O SC, Kulkarni NV, Mathew J. Synthesis and Characterization of Cobalt (II) Pincer Complexes and their Application as Dyes in Dye-Sensitized Solar Cells. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
4
|
Kumar Sahu P, Kharel R, Shome S, Goswami S, Konar S. Understanding the unceasing evolution of Co(II) based single-ion magnets. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Bhunia S, Chattopadhyay S. Mono-anionic succinic acid bridged cationic cobalt(III/II/III) compounds of N2O2 donor ‘reduced Schiff base’ ligands containing perchlorate counter ions: Synthesis, structures and different non-covalent interactions in self-assembly. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
6
|
Novitchi G, Shova S, Train C. Investigation by Chemical Substitution within 2p-3d-4f Clusters of the Cobalt(II) Role in the Magnetic Behavior of [vdCoLn] 2 (vd = Verdazyl Radical). Inorg Chem 2022; 61:17037-17048. [PMID: 36240010 DOI: 10.1021/acs.inorgchem.2c01742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1,5-Dimethyl-3-(3'-(hydroxymethyl)-2'-pyridine)-6-oxotetrazane (H3vdpyCH2OH) or its oxidized verdazyl form (vdpyCH2OH) reacted with transition metal and/or lanthanide acetates to yield [(vdpyCH2O)2Co2Ln2(acO)8] (Ln = Y(III): ICo,Y; Gd(III): ICo,Gd), [(vdpyCH2O)2M3(acO)4] (M = Zn(II): IIZn; Co(II): IICo) and [(vdpyCH2OH)Zn(acO)2] (IIIZn) through self-assembly implying a complex-as-ligand intermediate. Single-crystal diffraction reveals that IMT,Ln are composed of 2p-3d-4f centrosymmetric clusters with verdazyl radicals at the two ends coordinated to the transition-metal ion in a tridentate mode and to the {Ln2(acO)4} lanthanide central core in a monodentate mode through its alkoxo moiety. In ICo,Gd, the transition-metal ions adopt an irregular octahedral environment, and the {Ln2(acO)4} core adopts a paddlewheel motif, whereas in ICo,Y, the transition metal is pentacoordinated, and the central core contains only two acetate bridges. Going from ICo,Y to IICo, the central {Y2(acO)4} core is replaced by an axially compressed octahedral cobalt(II) center, whereas the outer parts of the molecule remain still. The dc magnetic studies revealed that the alternate π-stacking of the verdazyl radicals in IIZn led to the formation of alternate antiferromagnetically coupled 1D chains with Jvd-vd = -8.2(1) cm-1 and Jvd-vd' = -7.6(1) cm-1 (-2J convention). In ICo,Y, a complex fitting procedure allowed us to retrieve a complete set of magnetic parameters to take into account both the magnetic anisotropy of the cobalt(II) centers and intra- and inter-molecular exchange effects. For ICo,Y, it led to gCo = 2.13(4), DCo = 100(2) cm-1, ECo = 19.9(5) cm-1, JCo-vd = +26.5(4) cm-1, and Jvd-vd = -7.95(4) cm-1. ac magnetic susceptibility of ICo,Y, ICo,Gd and IICo did not reveal any slow relaxation of the magnetization even when a dc external magnetic field up to 2000 Oe was applied.
Collapse
Affiliation(s)
- Ghénadie Novitchi
- Laboratoire National des Champs Magnétiques Intenses (LNCMI) Université Grenoble Alpes, INSA Toulouse, Université Toulouse Paul Sabatier, EMFL, CNRS F-38042 Grenoble, France
| | - Sergiu Shova
- "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania
| | - Cyrille Train
- Laboratoire National des Champs Magnétiques Intenses (LNCMI) Université Grenoble Alpes, INSA Toulouse, Université Toulouse Paul Sabatier, EMFL, CNRS F-38042 Grenoble, France
| |
Collapse
|
7
|
Synthesis and Structural Investigation of Mononuclear Penta- and Hexa-Coordinated Co Complexes of 8-hydroxyquinoline Derived Ligands. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Field-Induced Single Molecule Magnetic Behavior of Mononuclear Cobalt(II) Schiff Base Complex Derived from 5-Bromo Vanillin. INORGANICS 2022. [DOI: 10.3390/inorganics10080105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A mononuclear Co(II) complex of a Schiff base ligand derived from 5-Bromo-vanillin and 4-aminoantipyrine, that has a compressed tetragonal bipyramidal geometry and exhibiting field-induced slow magnetic relaxation, has been synthesized and characterized by single crystal X-ray diffraction, elemental analysis and molecular spectroscopy. In the crystal packing, a hydrogen-bonded dimer structural topology has been observed with two distinct metal centers having slightly different bond parameters. The complex has been further investigated for its magnetic nature on a SQUID magnetometer. The DC magnetic data confirm that the complex behaves as a typical S = 3/2 spin system with a sizable axial zero-field splitting parameter D/hc = 38 cm−1. The AC susceptibility data reveal that the relaxation time for the single-mode relaxation process is τ = 0.16(1) ms at T = 2.0 K and BDC = 0.12 T.
Collapse
|
9
|
Juráková J, Šalitroš I. Co(II) single-ion magnets: synthesis, structure, and magnetic properties. MONATSHEFTE FUR CHEMIE 2022; 153:1001-1036. [PMID: 35615113 PMCID: PMC9123880 DOI: 10.1007/s00706-022-02920-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/25/2022] [Indexed: 01/01/2023]
Abstract
Magnetoactive coordination compounds exhibiting bi- or multistability between two or more magnetic stable states present an attractive example of molecular switches. Currently, the research is focused on molecular nanomagnets, especially single molecule magnets (SMMs), which are molecules, where the slow relaxation of the magnetization based on the purely molecular origin is observed. Contrary to ferromagnets, the magnetic bistability of SMMs does not require intermolecular interactions, which makes them particularly interesting in terms of application potential, especially in the high-density storage of data. This paper aims to introduce the readers into a basic understanding of SMM behaviour, and furthermore, it provides an overview of the attractive Co(II) SMMs with emphasis on the relation between structural features, magnetic anisotropy, and slow relaxation of magnetization in tetra-, penta-, and hexacoordinate complexes. Graphical abstract
Collapse
Affiliation(s)
- Jana Juráková
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Ivan Šalitroš
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, 81237 Slovakia
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| |
Collapse
|
10
|
Xia Z, Li Y, Ji C, Jiang Y, Ma C, Gao J, Zhang J. Slow-Relaxation Behavior of a Mononuclear Co(II) Complex Featuring Long Axial Co-O Bond. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:707. [PMID: 35215035 PMCID: PMC8875892 DOI: 10.3390/nano12040707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023]
Abstract
Co(II) mononuclear complex with different coordination geometry would display various of field-induced single-ion magnet (SIM) behaviors. Here, we identify a field-induced single-ion magnet in a mononuclear complex Co(H2DPA)2·H2O (H2DPA = 2,6-pyridine-dicarboxylic acid) by the hydrothermal method. The long axial Co-O coordination bond (Co1‧‧‧O3) can be formed by Co1 and O3. Therefore, Co(II) ion is six-coordinated in a distorted elongated octahedron. AC magnetization susceptibilities show that the effective energy barrier is up to 43.28 K. This is much larger than most mononuclear Co(II). The distorted elongated octahedron caused by the axial Co-O coordination bond is responsible for the high effective energy barrier. The distribution of electron density in Co1 and O3 atoms in the long axial bond would influence the magnetic relaxation process in turn. Our work deepens the relationship between the effective energy barrier and the weak change of ligand field by long axial bonds, which would facilitate constructing SIM with high energy temperature.
Collapse
Affiliation(s)
- Zhengyao Xia
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China; (Z.X.); (C.J.); (C.M.)
| | - Yan Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China;
| | - Cheng Ji
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China; (Z.X.); (C.J.); (C.M.)
| | - Yucheng Jiang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China; (Z.X.); (C.J.); (C.M.)
| | - Chunlan Ma
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China; (Z.X.); (C.J.); (C.M.)
| | - Ju Gao
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China; (Z.X.); (C.J.); (C.M.)
- School of Optoelect Engn, Zaozhuang University, Zaozhuang 277160, China
| | - Jinlei Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China; (Z.X.); (C.J.); (C.M.)
| |
Collapse
|
11
|
Juráková J, Midlikova J, Hrubý J, Kliuikov A, Santana VT, Pavlik J, Moncol J, Cizmar E, Orlita M, Mohelsky I, Neugebauer P, Gentili D, Cavallini M, Salitros I. Pentacoordinate Cobalt(II) Single Ion Magnets with Pendant Alkyl Chains: Shall We Go for Chloride or Bromide? Inorg Chem Front 2022. [DOI: 10.1039/d1qi01350e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four pentacoordinate complexes 1-4 of the type [Co(L1)X2] and [Co(L2)X2] (where L1=2,6-bis(1-octyl-1H-benzimidazol-2-yl)pyridine for 1 and 2, L2=2,6-bis(1-dodecyl-1H-benzimidazol -2-yl)-pyridine for 3 and 4; X = Cl- for 1 and 3, X...
Collapse
|
12
|
Bikas R, Korabik M, Sanchiz J, Noshiranzadeh N, Mirzakhani P, Gałkowska A, Szeliga D, Kozakiewicz-Piekarz A. Crystal structure and magnetic interactions of a new alkoxido and azido bridged 1D copper(II) coordination polymer. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Chen Y, Yang Q, Peng G, Zhang YQ, Ren XM. Influence of F-position and solvent on coordination geometry and single ion magnet behavior of Co(II) complexes. Dalton Trans 2021; 50:13830-13840. [PMID: 34522941 DOI: 10.1039/d1dt02148f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Three mononuclear Co(II) complexes with the compositions of [Co(L1)2] (1), [Co(L2)2(CH3CN)] (2) and [Co(L3)2] (3) (HL1 = 2-((E)-(2-fluorobenzylimino)methyl)-4,6-dibromophenol, HL2 = 2-((E)-(3-fluorobenzylimino)methyl)-4,6-dibromophenol and HL3 = 2-((E)-(4-fluorobenzylimino)methyl)-4,6-dibromophenol) were prepared and structurally determined. The changes in the F-positions in the ligands and solvents led to the formation of these products with various coordination geometries. Both complexes 1 and 3 are four-coordinated and their coordination geometries can be described as tetrahedron and seesaw, whereas complex 2 is five coordinated with a coordination configuration in between trigonal bipyramid and square pyramid. Static magnetic studies reveal that all these complexes exhibit considerable easy-axis magnetic anisotropy. The easy-axis magnetic anisotropy of 1 and 3 mainly derives from the first quartet excited state, whereas that of 2 primarily originates from the first, third and fourth quartet excited states established by theoretical calculations. All the resulting complexes display field-induced slow magnetic relaxation. Complex 3 represents the first Co(II) single ion magnet with a seesaw coordination geometry. Ab initio calculations predict that the magnetic anisotropy will enhance when the seesaw coordination geometry varies from distortion to regulation.
Collapse
Affiliation(s)
- Yue Chen
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Qi Yang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Guo Peng
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Xiao-Ming Ren
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| |
Collapse
|
14
|
Kharwar AK, Mondal A, Sarkar A, Rajaraman G, Konar S. Modulation of Magnetic Anisotropy and Exchange Interaction in Phenoxide-Bridged Dinuclear Co(II) Complexes. Inorg Chem 2021; 60:11948-11956. [PMID: 34314144 DOI: 10.1021/acs.inorgchem.1c00956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a new class of four dimeric Co(II) complexes [Co2(bbpen)(X)2] (H2bbpen = N,N'-bis(2-hydroxybenzyl)-N,N'-bis(2-methylpyridyl)ethylenediamine) [X- = SCN (1), Cl (2), Br (3), and I (4)] with different coordination geometry of two Co(II) centers (trigonal-prismatic and pseudo-tetrahedral) and their magnetic study. Interestingly, the two Co(II) centers show two different types of magnetic anisotropy. State of the art ab initio CASSCF analysis reveals that the six-coordinate or the trigonal-prismatic Co(II) center possesses a consistently large negative axial zero-field splitting (negative D) parameter (∼-60 cm-1), while the four-coordinate or the pseudo-tetrahedral Co(II) center exhibits a range of D values from +13 to -23 cm-1. Ab initio calculations employing the lines model were used to estimate the magnetic exchange as both the Co(II) centers possess significant magnetic anisotropy. All the complexes display rare ferromagnetic interaction, and the strength of this interaction decreases as the ligand field on the pseudo-tetrahedral Co(II) center decreases from SCN- > Cl- > Br- > I-.
Collapse
Affiliation(s)
- Ajit Kumar Kharwar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Bypass Road, Bhauri, Bhopal 462066, India
| | - Arpan Mondal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Bypass Road, Bhauri, Bhopal 462066, India
| | - Arup Sarkar
- Department of Chemistry, Indian Institute of Technology, Bombay, Powai, Mumbai 400076, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology, Bombay, Powai, Mumbai 400076, India
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Bypass Road, Bhauri, Bhopal 462066, India
| |
Collapse
|
15
|
Cirulli M, Salvadori E, Zhang Z, Dommett M, Tuna F, Bamberger H, Lewis JEM, Kaur A, Tizzard GJ, van Slageren J, Crespo‐Otero R, Goldup SM, Roessler MM. Rotaxane Co II Complexes as Field-Induced Single-Ion Magnets. Angew Chem Int Ed Engl 2021; 60:16051-16058. [PMID: 33901329 PMCID: PMC8361961 DOI: 10.1002/anie.202103596] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 12/02/2022]
Abstract
Mechanically chelating ligands have untapped potential for the engineering of metal ion properties. Here we demonstrate this principle in the context of CoII -based single-ion magnets. Using multi-frequency EPR, susceptibility and magnetization measurements we found that these complexes show some of the highest zero field splittings reported for five-coordinate CoII complexes to date. The predictable coordination behaviour of the interlocked ligands allowed the magnetic properties of their CoII complexes to be evaluated computationally a priori and our combined experimental and theoretical approach enabled us to rationalize the observed trends. The predictable magnetic behaviour of the rotaxane CoII complexes demonstrates that interlocked ligands offer a new strategy to design metal complexes with interesting functionality.
Collapse
Affiliation(s)
- Martina Cirulli
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Enrico Salvadori
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
- Department of ChemistryUniversity of TorinoVia Giuria 710125TorinoItaly
| | - Zhi‐Hui Zhang
- ChemistryUniversity of SouthamptonHighfieldSO 17 1BJUK
| | - Michael Dommett
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Floriana Tuna
- Department of Chemistry and Photon Science InstituteUniversity of ManchesterOxford RoadManchesterM13 0PLUK
| | - Heiko Bamberger
- Institut für Physikalische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - James E. M. Lewis
- ChemistryUniversity of SouthamptonHighfieldSO 17 1BJUK
- Department of ChemistryImperial College LondonMolecular Sciences Research HubWood LaneLondonW12 0BZUK
| | | | - Graham J. Tizzard
- EPSRC National Crystallographic ServiceUniversity of SouthamptonHighfieldSouthamptonSO17 1BJUK
| | - Joris van Slageren
- Institut für Physikalische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Rachel Crespo‐Otero
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | | | - Maxie M. Roessler
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
- Department of ChemistryImperial College LondonMolecular Sciences Research HubWood LaneLondonW12 0BZUK
| |
Collapse
|
16
|
Cirulli M, Salvadori E, Zhang Z, Dommett M, Tuna F, Bamberger H, Lewis JEM, Kaur A, Tizzard GJ, Slageren J, Crespo‐Otero R, Goldup SM, Roessler MM. Rotaxane Co
II
Complexes as Field‐Induced Single‐Ion Magnets. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Martina Cirulli
- School of Biological and Chemical Sciences Queen Mary University of London Mile End Road London E1 4NS UK
| | - Enrico Salvadori
- School of Biological and Chemical Sciences Queen Mary University of London Mile End Road London E1 4NS UK
- Department of Chemistry University of Torino Via Giuria 7 10125 Torino Italy
| | - Zhi‐Hui Zhang
- Chemistry University of Southampton Highfield SO 17 1BJ UK
| | - Michael Dommett
- School of Biological and Chemical Sciences Queen Mary University of London Mile End Road London E1 4NS UK
| | - Floriana Tuna
- Department of Chemistry and Photon Science Institute University of Manchester Oxford Road Manchester M13 0PL UK
| | - Heiko Bamberger
- Institut für Physikalische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - James E. M. Lewis
- Chemistry University of Southampton Highfield SO 17 1BJ UK
- Department of Chemistry Imperial College London Molecular Sciences Research Hub Wood Lane London W12 0BZ UK
| | - Amanpreet Kaur
- Chemistry University of Southampton Highfield SO 17 1BJ UK
| | - Graham J. Tizzard
- EPSRC National Crystallographic Service University of Southampton Highfield Southampton SO17 1BJ UK
| | - Joris Slageren
- Institut für Physikalische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Rachel Crespo‐Otero
- School of Biological and Chemical Sciences Queen Mary University of London Mile End Road London E1 4NS UK
| | | | - Maxie M. Roessler
- School of Biological and Chemical Sciences Queen Mary University of London Mile End Road London E1 4NS UK
- Department of Chemistry Imperial College London Molecular Sciences Research Hub Wood Lane London W12 0BZ UK
| |
Collapse
|
17
|
Świtlicka A, Machura B, Cano J, Lloret F, Julve M. A Study of the Lack of Slow Magnetic Relaxation in Mononuclear Trigonal Bipyramidal Cobalt(II) Complexes. ChemistrySelect 2021. [DOI: 10.1002/slct.202100061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Anna Świtlicka
- Department Of Crystallography, Institute of Chemistry University of Silesia 9th Szkolna St., 40–006 Katowice Poland
| | - Barbara Machura
- Department Of Crystallography, Institute of Chemistry University of Silesia 9th Szkolna St., 40–006 Katowice Poland
| | - Joan Cano
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol) Facultat de Quimica de la Universitat de València C/ Catedrático Jose Beltrán 2 46980 Paterna, València Spain
| | - Francesc Lloret
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol) Facultat de Quimica de la Universitat de València C/ Catedrático Jose Beltrán 2 46980 Paterna, València Spain
| | - Miguel Julve
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol) Facultat de Quimica de la Universitat de València C/ Catedrático Jose Beltrán 2 46980 Paterna, València Spain
| |
Collapse
|
18
|
Kharwar AK, Mondal A, Konar S. Alignment of axial anisotropy of a mononuclear hexa-coordinated Co(ii) complex in a lattice shows improved single molecule magnetic behavior over a 2D coordination polymer having a similar ligand field. Dalton Trans 2021; 50:2832-2840. [DOI: 10.1039/d0dt04065g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The parallel orientation of the anisotropic axes minimizes the transverse component and slow down the relaxation process and results in a higher energy barrier in 0D complex as compared to 2D framework where anisotropic axes are randomly oriented.
Collapse
Affiliation(s)
- Ajit Kumar Kharwar
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhouri
- India
| | - Arpan Mondal
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhouri
- India
| | - Sanjit Konar
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhouri
- India
| |
Collapse
|
19
|
Structural diversity and luminescent properties of coordination complexes obtained from trivalent lanthanide ions with the ligands: tris((1H-benzo[d]imidazol-2-yl)methyl)amine and 2,6-bis(1H-benzo[d]imidazol-2-yl)pyridine. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213587] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Kumar P, SantaLucia DJ, Kaniewska-Laskowska K, Lindeman SV, Ozarowski A, Krzystek J, Ozerov M, Telser J, Berry JF, Fiedler AT. Probing the Magnetic Anisotropy of Co(II) Complexes Featuring Redox-Active Ligands. Inorg Chem 2020; 59:16178-16193. [DOI: 10.1021/acs.inorgchem.0c01812] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Praveen Kumar
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Daniel J. SantaLucia
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Kinga Kaniewska-Laskowska
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk PL-80-233, Poland
| | - Sergey V. Lindeman
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - J. Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Mykhaylo Ozerov
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Joshua Telser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| | - John F. Berry
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Adam T. Fiedler
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| |
Collapse
|
21
|
Cui HH, Ding MM, Zhang XD, Lv W, Zhang YQ, Chen XT, Wang Z, Ouyang ZW, Xue ZL. Magnetic anisotropy in square pyramidal cobalt(II) complexes supported by a tetraazo macrocyclic ligand. Dalton Trans 2020; 49:14837-14846. [PMID: 33034595 DOI: 10.1039/d0dt01954b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two five-coordinate mononuclear Co(ii) complexes [Co(12-TMC)X][B(C6H5)4] (L = 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane (12-TMC), X = Cl- (1), Br- (2)) have been studied by X-ray single crystallography, magnetic measurements, high-frequency and -field EPR (HF-EPR) spectroscopy and theoretical calculations. Both complexes have a distorted square pyramidal geometry with the Co(ii) ion lying above the basal plane constrained by the rigid tetradentate macrocyclic ligand. In contrast to the reported five-coordinate Co(ii) complex [Co(12-TMC)(NCO)][B(C6H5)4] (3) exhibiting easy-axis anisotropy, an easy-plane magnetic anisotropy was found for 1 and 2via the analyses of the direct-current magnetic data and HF-EPR spectroscopy. Frequency- and temperature-dependent alternating-current magnetic susceptibility measurements demonstrated that complexes 1 and 2 show slow magnetic relaxation at an applied dc field. Ab initio calculations were performed to reveal the impact of the terminal ligands on the nature of the magnetic anisotropies of this series of five-coordinate Co(ii) complexes.
Collapse
Affiliation(s)
- Hui-Hui Cui
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Slow Magnetic Relaxation in a One-Dimensional Coordination Polymer Constructed from Hepta-Coordinate Cobalt(II) Nodes. MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6040045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A one-dimensional coordination polymer was synthesized employing hepta-coordinate CoII as nodes and dicyanamide as linkers. Detailed direct current (DC) and alternating current (AC) magnetic susceptibility measurements reveal the presence of field-induced slow magnetic relaxation behavior of the magnetically isolated seven-coordinate CoII center with an easy-plane magnetic anisotropy. Detailed ab initio calculations were performed to understand the magnetic relaxation processes. To our knowledge, the reported complex represents the first example of slow magnetic relaxation in a one-dimensional coordination polymer constructed from hepta-coordinate CoII nodes and dicyanamide linkers.
Collapse
|
23
|
Kupko N, Meehan KL, Witkos FE, Hutcheson H, Monroe JC, Landee CP, Dickie DA, Turnbull MM, Xiao F. Cobalt halide complexes of 2-, 3- and 4-methoxyaniline: Syntheses, structures and magnetic behavior. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Modak R, Mondal B, Sikdar Y, Banerjee J, Colacio E, Oyarzabal I, Cano J, Goswami S. Slow magnetic relaxation and water oxidation activity of dinuclear Co IICo III and unique triangular Co IICo IICo III mixed-valence complexes. Dalton Trans 2020; 49:6328-6340. [PMID: 32342075 DOI: 10.1039/d0dt00036a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Construction of efficient multifunctional materials is one of the greatest challenges of our time. We herein report the magnetic and catalytic characterization of dinuclear [CoIIICoII(HL1)2(EtOH)(H2O)]Cl·2H2O (1) and trinuclear [CoIIICoII2(HL2)2(L2)Cl2]·3H2O (2) mixed valence complexes. Relevant structural features of the complexes have been mentioned to correlate with their magnetic and catalytic properties. Unique structural features, especially in terms of significant distortions around the CoII centre(s), prompted us to test both spin-orbit coupling (SOC) and zero field splitting (ZFS) methodologies for the systems. The positive sign of D values has been established from X-band EPR spectra recorded in the 5-40 K temperature range and reaffirmed by CAS/NEVPT2 calculations. ZFS tensors are also extracted for the compounds along with CoIIGaIII and CoIIZnIICoIII model species. Interestingly, 1 shows slow relaxation of magnetization below 6.5 K in the presence of a 1000 Oe external dc field with two relaxation processes (Ueff = 37.0 K with τ0 = 1.57 × 10-8 s for the SR process and Ueff = 7 K with τ0 = 1.66 × 10-6 s for the FR process). As mixed valence cobalt complexes with various nuclearities are central to the quest for water oxidation catalysts, we were prompted to explore their features and to our surprise, water oxidation ability has been realized for both 1 and 2 with significant nuclearity control.
Collapse
Affiliation(s)
- Ritwik Modak
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India.
| | - Biswajit Mondal
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Yeasin Sikdar
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India.
| | - Jayisha Banerjee
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India.
| | - Enrique Colacio
- Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain.
| | - Itziar Oyarzabal
- Departamento de Química Aplicada, Facultad de Química, UPV/EHU, Paseo Manuel Lardizabal, n° 3, 20018, Donostia-San Sebastián, Spain
| | - Joan Cano
- Fundació General de la Universitat de València (FGUV), Universitat de València, 46980 Paterna, València, Spain.
| | - Sanchita Goswami
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India.
| |
Collapse
|
25
|
Peng G, Chen Y, Li B, Zhang YQ, Ren XM. Bulky Schiff-base ligand supported Co(ii) single-ion magnets with zero-field slow magnetic relaxation. Dalton Trans 2020; 49:5798-5802. [PMID: 32338258 DOI: 10.1039/d0dt00790k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two mononuclear Co(ii) complexes with tetrahedral coordination geometry have been constructed from different bulky Schiff-base ligands. Both complexes exhibit slow magnetic relaxation without a static field and their relaxation behaviors can be tuned by ligand substitution. Clear magnetic hysteresis loops were observed for both complexes at 2 K.
Collapse
Affiliation(s)
- Guo Peng
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | | | | | | | | |
Collapse
|
26
|
Ghosh S, Kamilya S, Das M, Mehta S, Boulon ME, Nemec I, Rouzières M, Herchel R, Mondal A. Effect of Coordination Geometry on Magnetic Properties in a Series of Cobalt(II) Complexes and Structural Transformation in Mother Liquor. Inorg Chem 2020; 59:7067-7081. [DOI: 10.1021/acs.inorgchem.0c00538] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Subrata Ghosh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, Bangalore 560012, India
| | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, Bangalore 560012, India
| | - Mayurika Das
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, Bangalore 560012, India
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, Bangalore 560012, India
| | - Marie-Emmanuelle Boulon
- Photon Science Institute, Alan Turing Building, office 3.315, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Ivan Nemec
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic
- Central European Institute of Technology, CEITEC BUT, Technická 3058/10, 61600 Brno, Czech Republic
| | - Mathieu Rouzières
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, CRPP, UMR 5031, 33600 Pessac, France
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, Bangalore 560012, India
| |
Collapse
|
27
|
Acharya J, Sarkar A, Kumar P, Kumar V, Flores Gonzalez J, Cador O, Pointillart F, Rajaraman G, Chandrasekhar V. Influence of ligand field on magnetic anisotropy in a family of pentacoordinate Co II complexes. Dalton Trans 2020; 49:4785-4796. [PMID: 32211713 DOI: 10.1039/d0dt00315h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A family of mononuclear penta-coordinated CoII complexes, [Co(L)Cl2]·CH3OH (1), [Co(L)Br2] (2) and [Co(L)(NCS)2] (3) (where L is 1-mesityl-N,N-bis(pyridin-2-ylmethyl)methanamine) were synthesized and characterized. In these complexes, the neutral non-planar ligand, L, binds to three coordination sites around the metal center while two others are bound by anionic halide/pseudo halide ligands. The coordination geometry of the complexes is dictated by the coordinated anionic ligands. Thus, the coordination geometry around the metal ion is distorted trigonal bipyramidal for complexes 1 and 3, while it is distorted square pyramidal for complex 2. Ab initio CASSCF/NEVPT2 calculations on the complexes reveal the presence of an easy plane magnetic anisotropy with the D and E/D values being, 13.3 and 0.14 cm-1 for 1; 36.1 and 0.24 cm-1 for 2 and ±8.6 and 0.32 cm-1 for 3. These values are in good agreement with the values that were extracted from the experimental DC data. AC magnetic measurements reveal the presence of a field-induced slow relaxation of magnetization. However, clear maxima in the out-of-phase susceptibility curves were not observed for 1 and 3. For complex 2, peak maxima were observed when the measurements were carried out under an applied field of 1400 Oe which allowed an analysis of the dynamics of the slow relaxation of magnetization. This revealed that the relaxation is mainly controlled by the Raman and direct processes with the values of the parameters found to be: B = 0.77(15) s-1 K-6.35, n = 6.35(12) and A = 3.41(4) × 10-10 s-1 Oe-4 K-1 and m = 4 (fixed). The ab initio calculation which showed the multifunctional nature of the electronic states of the complexes justifies the absence of zero-field SIM behaviour of the complexes. The magnitude and sign of the D and E values and their relationship with the covalency of the metal-ligand bonds was analysed by the CASSCF/NEVPT2 as well as AILFT calculations.
Collapse
Affiliation(s)
- Joydev Acharya
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Arup Sarkar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400 076, India.
| | - Pawan Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Vierandra Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Jessica Flores Gonzalez
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Olivier Cador
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Fabrice Pointillart
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400 076, India.
| | - Vadapalli Chandrasekhar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India. and Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500107, India
| |
Collapse
|
28
|
Mondal A, Wu S, Sato O, Konar S. Effect of Axial Ligands on Easy‐Axis Anisotropy and Field‐Induced Slow Magnetic Relaxation in Heptacoordinated Fe
II
Complexes. Chemistry 2020; 26:4780-4789. [DOI: 10.1002/chem.201905166] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Arpan Mondal
- Department of ChemistryIndian Institute of, Science Education and Research, Bhopal Bhopal By-pass Road, Bhauri Bhopal 462066 Madhya Pradesh India
| | - Shu‐Qi Wu
- Institute for Materials Chemistry and Engineering & IRCCSKyushu University 744 Motooka Nishi-ku 819-0395 Fukuoka Japan
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering & IRCCSKyushu University 744 Motooka Nishi-ku 819-0395 Fukuoka Japan
| | - Sanjit Konar
- Department of ChemistryIndian Institute of, Science Education and Research, Bhopal Bhopal By-pass Road, Bhauri Bhopal 462066 Madhya Pradesh India
| |
Collapse
|
29
|
Brachňaková B, Matejová S, Moncol J, Herchel R, Pavlik J, Moreno-Pineda E, Ruben M, Šalitroš I. Stereochemistry of coordination polyhedra vs. single ion magnetism in penta- and hexacoordinated Co(ii) complexes with tridentate rigid ligands. Dalton Trans 2020; 49:1249-1264. [PMID: 31904039 DOI: 10.1039/c9dt04592a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tridentate ligand L (2,6-bis(1-(3,5-di-tert-butylbenzyl)-1H-benzimidazol-2-yl)pyridine) was synthesized and used for the preparation of three pentacoordinated Co(ii) complexes of formula [Co(L)X2] (where X = NCS- for 1, X = Cl- for 2 and X = Br- for 3) and one ionic compound 4 ([Co(L)2]Br2·2CH3OH·H2O) containing a hexacoordinated Co(ii) centre. Static magnetic data were analysed with respect to the spin (1-3) or the Griffith-Figgis (4) Hamiltonian. Ab initio calculations enable us to identify the positive axial magnetic anisotropy parameter D accompanied by a significant degree of rhombicity in the reported complexes. Also, magneto-structural correlation was outlined for this class of compounds. Moreover, all four compounds exhibit slow relaxation of magnetisation at an applied static magnetic field with either both low- and high-frequency relaxation channels (3) or a single high-frequency relaxation process (1, 2 and 4). The interplay between the stereochemistry of coordination polyhedra, magnetic anisotropy and the relaxation processes was investigated and discussed in detail.
Collapse
Affiliation(s)
- Barbora Brachňaková
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia.
| | - Simona Matejová
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia.
| | - Ján Moncol
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia.
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Ján Pavlik
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia.
| | - Eufemio Moreno-Pineda
- Institut für Nanotechnologie, Karlsruher Institut für Technologie, Postfach 3640, Karlsruhe 76021, Germany
| | - Mario Ruben
- Institut für Nanotechnologie, Karlsruher Institut für Technologie, Postfach 3640, Karlsruhe 76021, Germany and Institute de Physique et Chimie de Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg, 23, rue du Loess, BP 43, 67034 Strasbourg cedex 2, France
| | - Ivan Šalitroš
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia. and Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic and Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| |
Collapse
|
30
|
Kharwar AK, Konar S. Exchange coupled Co(ii) based layered and porous metal-organic frameworks: structural diversity, gas adsorption, and magnetic properties. Dalton Trans 2020; 49:4012-4021. [PMID: 32154532 DOI: 10.1039/d0dt00211a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four new Co(ii) based metal-organic frameworks (MOFs) ({[Co3(L)(TDCA)3(DMF)2]n·2nCH3CN}) (1), ({[Co3(L)2(BDCA)3]n·2nCH3CN}) (2), {[Co2(L)2(CA)2]n·4nCH3CN} (3) and {[Co2(L)(OBBA)2]n·3nCH3CN} (4) are synthesized, where L is [4'-(4-methoxyphenyl)-4,2':6',4''-terpyridine], a V-shaped flexible neutral spacer, and the four dicarboxylates are TDCA = thiophene 2,5-dicarboxylic acid, BDCA = benzene 1,4-dicarboxylic acid, CA = (1R,3S)-(+)-camphoric acid and OBBA = 4,4'-oxybisbenzoic acid. Structural analysis reveals that 1 and 2 are two dimensional (2D) layered structures having interesting sql and hxl topologies respectively with trinuclear SBUs (secondary building units). Compound 3 has a 3D structure, whereas 4 has a 2-fold interpenetrated 3D packing structure with a paddlewheel dinuclear SBU and both have pcu topology. Magnetic investigation revealed that 1, 3 and 4 show dominant antiferromagnetic behavior, while 2 shows ferromagnetic interaction at very low temperature. Interestingly 4 shows a sharp decrease in the χMT value from room temperature and this may be because of the direct Co(ii)Co(ii) interaction. Gas sorption studies reveal that 1, 2 and 3 show surface areas of 11.8 m2 g-1, 8.3 m2 g-1 and 28.5 m2 g-1 respectively and better adsorption behavior for CO2 over CH4, whereas 4 is nonporous in nature due to its 2-fold interpenetrated structure.
Collapse
Affiliation(s)
- Ajit Kumar Kharwar
- Department of Chemistry, Indian Institute of Science Education and Research, (IISER), Bhopal By-pass Road, Bhauri, Bhopal-462066, India.
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research, (IISER), Bhopal By-pass Road, Bhauri, Bhopal-462066, India.
| |
Collapse
|
31
|
Świtlicka A, Machura B, Kruszynski R, Moliner N, Carbonell JM, Cano J, Lloret F, Julve M. Magneto-structural diversity of Co(ii) compounds with 1-benzylimidazole induced by linear pseudohalide coligands. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00752h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The magneto-structural diversity of 1-benzylimidazole-containing cobalt(ii) compounds with linear pseudohalide ions (NCS−, NCO−, and N3−) is explored.
Collapse
Affiliation(s)
- Anna Świtlicka
- Department of Crystallography
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Barbara Machura
- Department of Crystallography
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Rafał Kruszynski
- Department of X-ray Crystallography and Crystal Chemistry
- Institute of General and Ecological Chemistry
- Lodz University of Technology
- 90-924 Łodz
- Poland
| | - Nicolás Moliner
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
| | - José Miguel Carbonell
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
| | - Joan Cano
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
| | - Francesc Lloret
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
| | - Miguel Julve
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
| |
Collapse
|
32
|
Massoud SS, Perez ZE, Courson JR, Fischer RC, Mautner FA, Vančo J, Čajan M, Trávníček Z. Slow magnetic relaxation in penta-coordinate cobalt(ii) field-induced single-ion magnets (SIMs) with easy-axis magnetic anisotropy. Dalton Trans 2020; 49:11715-11726. [DOI: 10.1039/d0dt02338h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two penta-coordinate [Co(Ln)(NCS)]ClO4 with substituted pyridyl based bispyrazolyl ligands have been structurally characterized. The complexes show an easy-axis magnetic anisotropy, large rhombicity and slow relaxation of magnetization.
Collapse
Affiliation(s)
- Salah S. Massoud
- Department of Chemistry
- University of Louisiana at Lafayette
- Lafayette
- USA
- Department of Chemistry
| | - Zoe E. Perez
- Department of Chemistry
- University of Louisiana at Lafayette
- Lafayette
- USA
| | | | - Roland C. Fischer
- Institut für Anorganische Chemie
- Technische Universität Graz
- A-8010 Graz
- Austria
| | - Franz A. Mautner
- Institut für Physikalische and Theoretische Chemie
- Technische Universität Graz
- A-8010 Graz
- Austria
| | - Ján Vančo
- Regional Centre of Advanced Technologies and Materials
- Division of Biologically Active Complexes and Molecular Magnets
- Palacký University in Olomouc
- CZ-783 71 Olomouc
- Czech Republic
| | - Michal Čajan
- Regional Centre of Advanced Technologies and Materials
- Division of Biologically Active Complexes and Molecular Magnets
- Palacký University in Olomouc
- CZ-783 71 Olomouc
- Czech Republic
| | - Zdeněk Trávníček
- Regional Centre of Advanced Technologies and Materials
- Division of Biologically Active Complexes and Molecular Magnets
- Palacký University in Olomouc
- CZ-783 71 Olomouc
- Czech Republic
| |
Collapse
|
33
|
Cui Y, Ge Y, Li Y, Tao J, Yao J, Dong Y. Single-ion magnet behavior of two pentacoordinate CoII complexes with a pincer ligand 2,6-bis(imidazo[1,5-a] pyridin-3-yl)pyridine. Struct Chem 2019. [DOI: 10.1007/s11224-019-01429-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Bhunia M, Sahoo SR, Shaw BK, Vaidya S, Pariyar A, Vijaykumar G, Adhikari D, Mandal SK. Storing redox equivalent in the phenalenyl backbone towards catalytic multi-electron reduction. Chem Sci 2019; 10:7433-7441. [PMID: 31489166 PMCID: PMC6713874 DOI: 10.1039/c9sc02057h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/07/2019] [Indexed: 12/26/2022] Open
Abstract
Storing and transferring electrons for multi-electron reduction processes are considered to be the key steps in various important chemical and biological transformations. In this work, we accomplished multi-electron reduction of a carboxylic acid via a hydrosilylation pathway where a redox-active phenalenyl backbone in Co(PLY-O,O)2(THF)2, stores electrons and plays a preponderant role in the entire process. This reduction proceeds by single electron transfer (SET) from the mono-reduced ligand backbone leading to the cleavage of the Si-H bond. Several important intermediates along the catalytic reduction reaction have been isolated and well characterized to prove that the redox equivalent is stored in the form of a C-H bond in the PLY backbone via a ligand dearomatization process. The ligand's extensive participation in storing a hydride equivalent has been conclusively elucidated via a deuterium labelling experiment. This is a rare example where the ligand orchestrates the multielectron reduction process leaving only the metal to maintain the conformational requirements and fine tunes the electronics of the catalyst.
Collapse
Affiliation(s)
- Mrinal Bhunia
- Department of Chemical Sciences , Indian Institute of Science Education and Research-Kolkata , Mohanpur-741246 , India .
| | - Sumeet Ranjan Sahoo
- Department of Chemical Sciences , Indian Institute of Science Education and Research-Kolkata , Mohanpur-741246 , India .
| | - Bikash Kumar Shaw
- Department of Chemical Sciences , Indian Institute of Science Education and Research-Kolkata , Mohanpur-741246 , India .
| | - Shefali Vaidya
- Department of Chemical Sciences , Indian Institute of Science Education and Research-Mohali , SAS Nagar-140306 , India .
| | - Anand Pariyar
- Department of Chemical Sciences , Indian Institute of Science Education and Research-Kolkata , Mohanpur-741246 , India .
| | - Gonela Vijaykumar
- Department of Chemical Sciences , Indian Institute of Science Education and Research-Kolkata , Mohanpur-741246 , India .
| | - Debashis Adhikari
- Department of Chemical Sciences , Indian Institute of Science Education and Research-Mohali , SAS Nagar-140306 , India .
| | - Swadhin K Mandal
- Department of Chemical Sciences , Indian Institute of Science Education and Research-Kolkata , Mohanpur-741246 , India .
| |
Collapse
|
35
|
Mondal A, Kharwar AK, Konar S. Sizeable Effect of Lattice Solvent on Field Induced Slow Magnetic Relaxation in Seven Coordinated CoII Complexes. Inorg Chem 2019; 58:10686-10693. [DOI: 10.1021/acs.inorgchem.9b00615] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arpan Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Ajit Kumar Kharwar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| |
Collapse
|
36
|
Cui Y, Xu Y, Liu X, Li Y, Wang BL, Dong Y, Li W, Lei S. Field-Induced Single-Ion Magnetic Behavior in Two Mononuclear Cobalt(II) Complexes. Chem Asian J 2019; 14:2620-2628. [PMID: 31066179 DOI: 10.1002/asia.201900258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/30/2019] [Indexed: 11/08/2022]
Abstract
The employment of a new rigid N-tridentate ligand, bis(1-chloroimidazo[1,5-a]pyridin-3-yl)pyridine (bcpp), in the construction of cobalt(II) single-ion magnets is reported. Two cobalt(II) complexes, [Co(bcpp)Cl2 ] (1) and [Co(bcpp)Br2 ] (2), have been prepared and characterized. Single-crystal XRD analyses reveal that complexes 1 and 2 are isostructural. They are pentacoordinated mononuclear cobalt(II) compounds with expected trigonal bipyramidal geometry. Both analysis of the magnetic data and ab initio calculations reveal easy-plane magnetic anisotropy (D>0) for 1 and 2. Detailed alternating current magnetic susceptibility measurements reveal the occurrence of slow magnetic relaxation behavior for the cobalt(II) centers of 1 and 2; thus indicating that both complexes are field-induced single-ion magnets.
Collapse
Affiliation(s)
- Yanfeng Cui
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P.R. China.,Key Laboratory of Salt Lake Resources and Chemistry, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, P.R. China
| | - Yameng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P.R. China
| | - Xin Liu
- Key Laboratory of Salt Lake Resources and Chemistry, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, P.R. China
| | - Yahong Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P.R. China
| | - Bao-Lin Wang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing, 210023, P.R. China
| | - Yaping Dong
- Key Laboratory of Salt Lake Resources and Chemistry, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, P.R. China
| | - Wu Li
- Key Laboratory of Salt Lake Resources and Chemistry, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, P.R. China
| | - Shiming Lei
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
37
|
Cui HH, Zhang YQ, Chen XT, Wang Z, Xue ZL. Magnetic anisotropy and slow magnetic relaxation processes of cobalt(ii)-pseudohalide complexes. Dalton Trans 2019; 48:10743-10752. [PMID: 31250855 DOI: 10.1039/c9dt00644c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three mononuclear six-coordinate Co(ii)-pseudohalide complexes [Co(L)X2] with two N-donor pseudohalido coligands occupying the cis-positions (X = NCS- (1), NCSe- (2) or N(CN)2- (3)), and a five-coordinate complex [Co(L)(NCO)][B(C6H5)4] (4) [L = 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane (12-TMC)] have been prepared and structurally characterized. Easy-plane magnetic anisotropy for 1-3 and easy-axis anisotropy for 4 were revealed via the analyses of the direct-current magnetic data, high-frequency and -field EPR (HFEPR) spectra and ab initio theoretical calculations. They display slow magnetic relaxations under an external applied dc field. Typically, two slow relaxation processes were found in 1 and 2 while only one relaxation process occurs in 3 and 4. The Raman-like mechanism is found to be dominant in the studied temperature range in 1. For 2-4, the Raman process is dominant in the low temperature region, while the Orbach mechanism dominates in the high temperature range.
Collapse
Affiliation(s)
- Hui-Hui Cui
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China
| | - Xue-Tai Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Zhenxing Wang
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zi-Ling Xue
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
38
|
Hay MA, Sarkar A, Craig GA, Bhaskaran L, Nehrkorn J, Ozerov M, Marriott KER, Wilson C, Rajaraman G, Hill S, Murrie M. In-depth investigation of large axial magnetic anisotropy in monometallic 3d complexes using frequency domain magnetic resonance and ab initio methods: a study of trigonal bipyramidal Co(ii). Chem Sci 2019; 10:6354-6361. [PMID: 31341591 PMCID: PMC6601423 DOI: 10.1039/c9sc00987f] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/19/2019] [Indexed: 11/21/2022] Open
Abstract
The magnetic properties of 3d monometallic complexes can be tuned through geometric control, owing to their synthetic accessibility and relative structural simplicity. Monodentate ligands offer great potential for fine-tuning the coordination environment to engineer both the axial and rhombic zero-field splitting (ZFS) parameters. In [CoCl3(DABCO)(HDABCO)] (1), the trigonal bipyramidal Co(ii) centre has two bulky axial ligands and three equatorial chloride ligands. An in-depth experimental and theoretical study of 1 reveals a large easy-plane magnetic anisotropy (+ve D) with a negligible rhombic zero-field splitting (E) due to the strict axial symmetry imposed by the C 3 symmetric ligand and trigonal space group. The large easy-plane magnetic anisotropy (D = +44.5 cm-1) is directly deduced using high-field EPR and frequency-domain magnetic resonance (FDMR) studies. Ab initio calculations reveal a large positive contribution to the D term arising from ground state/excited state mixing of the 4E'' states at ∼4085 cm-1 and a minor contribution from the spin-flip transition as well. The nature of the slow relaxation in 1 is elucidated through analysis of the rates of relaxation of magnetisation, taking into account Raman and direct spin-lattice relaxation processes and Quantum Tunnelling of the Magnetisation (QTM). The terms relating to the direct process and QTM were found based on the fit of the field-dependence of τ at 2 K. Subsequently, these were used as fixed parameters in the fit of the temperature-dependence of τ to obtain the Raman terms. This experimental-theoretical investigation provides further insight into the power of FDMR and ab initio methods for the thorough investigation of magnetic anisotropy. Thus, these results contribute to design criteria for high magnetic anisotropy systems.
Collapse
Affiliation(s)
- Moya A Hay
- WestCHEM , School of Chemistry , University of Glasgow , University Avenue , Glasgow , G12 8QQ , UK .
| | - Arup Sarkar
- Department of Chemistry , Institute of Technology Bombay , Powai , Mumbai , Maharashtra 400 076 , India .
| | - Gavin A Craig
- WestCHEM , School of Chemistry , University of Glasgow , University Avenue , Glasgow , G12 8QQ , UK .
| | - Lakshmi Bhaskaran
- Department of Physics , Florida State University , Tallahassee , FL 32306 , USA .
- National High Magnetic Field Laboratory , 1800 E. Paul Dirac Drive Tallahassee , FL 32310 , USA
| | - Joscha Nehrkorn
- National High Magnetic Field Laboratory , 1800 E. Paul Dirac Drive Tallahassee , FL 32310 , USA
- Max Planck Institute for Chemical Energy Conversion , Stiftstr. 34-36 , 45470 Mülheim an der Ruhr , Germany
| | - Mykhailo Ozerov
- National High Magnetic Field Laboratory , 1800 E. Paul Dirac Drive Tallahassee , FL 32310 , USA
| | - Katie E R Marriott
- WestCHEM , School of Chemistry , University of Glasgow , University Avenue , Glasgow , G12 8QQ , UK .
| | - Claire Wilson
- WestCHEM , School of Chemistry , University of Glasgow , University Avenue , Glasgow , G12 8QQ , UK .
| | - Gopalan Rajaraman
- Department of Chemistry , Institute of Technology Bombay , Powai , Mumbai , Maharashtra 400 076 , India .
| | - Stephen Hill
- Department of Physics , Florida State University , Tallahassee , FL 32306 , USA .
- National High Magnetic Field Laboratory , 1800 E. Paul Dirac Drive Tallahassee , FL 32310 , USA
| | - Mark Murrie
- WestCHEM , School of Chemistry , University of Glasgow , University Avenue , Glasgow , G12 8QQ , UK .
| |
Collapse
|
39
|
Yang RC, Wang DR, Liu JL, Wang YF, Lin WQ, Leng JD, Zhou AJ. Phosphine Oxide Ligand Based Tetrahedral Co II Complexes with Field-induced Slow Magnetic Relaxation Behavior Modified by Terminal Ligands. Chem Asian J 2019; 14:1467-1471. [PMID: 30865374 DOI: 10.1002/asia.201900280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/12/2019] [Indexed: 11/08/2022]
Abstract
Two isostructural mononuclear CoII complexes, [Co(xantpo)(NCE)2 ] (E=S (1) and O (2); xantpo=9,9-dimethyl-4,5-bis(diphenylphosphoryl) xanthene), supported by a bidentate phosphine oxide ligand are reported. The cobalt complexes exhibit characteristic tetrahedral structures coordinated with two oxygen and two nitrogen atoms. Magnetic property measurements show their similar static magnetic behaviours but very different dynamic magnetic behaviours. Both complexes show field-induced slow magnetic relaxation behaviours, but the relaxation of 2 is much slower than that of 1. Fittings to the magnetic data and ab initio CASSCF calculations reveal significant changes in the zero field splitting (ZFS) parameters (D and E), which can be attributed to the small geometrical changes of the Co ions and the different ligand field strength of the two terminal ligands.
Collapse
Affiliation(s)
- Rui-Chong Yang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Dan-Ru Wang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Jun-Liang Liu
- Key Lab of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yu-Fei Wang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China.,Analytical and Testing Center of Guangzhou University, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Wei-Quan Lin
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China.,Analytical and Testing Center of Guangzhou University, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Ji-Dong Leng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Ai-Ju Zhou
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| |
Collapse
|
40
|
Field Induced Single Ion Magnetic Behaviour in Square-Pyramidal Cobalt(II) Complexes with Easy-Plane Magnetic Anisotropy. MAGNETOCHEMISTRY 2019. [DOI: 10.3390/magnetochemistry5010012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Two penta-coordinate CoII complexes with formulae [Co(14-TMC)Cl](BF4) (1, 14-TMC = 1,4,8,11-Tetramethyl-1,4,8,11-tetraazacyclotetradecane) and [Co(12-TBC)Cl](ClO4)·(MeCN) (2, 12-TBC = 1,4,7,10-Tetrabenzyl-1,4,7,10-tetraazacyclododecane) were synthesized and characterized. Structural analysis revealed that ligand coordinates to the CoII centre in a tetradentate fashion and the fifth position is occupied by chloride ion and the geometries around CoII centres are best described as distorted square pyramidal. Detailed magnetic measurements disclose the presence of significant easy-plane magnetic anisotropy and field induced slow magnetic relaxation behaviours of the studied complexes. More insight into the magnetic anisotropy has been given using ab initio theory calculations, which agree well with the experimental values and further confirmed the easy-plane magnetic anisotropy.
Collapse
|
41
|
Ferentinos E, Xu M, Grigoropoulos A, Bratsos I, Raptopoulou CP, Psycharis V, Jiang SD, Kyritsis P. Field-induced slow relaxation of magnetization in the S = 3/2 octahedral complexes trans-[Co{(OPPh 2)(EPPh 2)N} 2(dmf) 2], E = S, Se: effects of Co–Se vs. Co–S coordination. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00135b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetometry studies on octahedral trans-[Co{(OPPh2)(EPPh2)N}2(dmf)2], E = S, Se, complexes.
Collapse
Affiliation(s)
- Eleftherios Ferentinos
- Inorganic Chemistry Laboratory
- Department of Chemistry
- National and Kapodistrian University of Athens
- GR-15771 Athens
- Greece
| | - Meixing Xu
- College of Chemistry and Molecular Engineering
- Beijing National Laboratory for Molecular Sciences
- Beijing Key Laboratory of Magnetoelectric Materials and Devices
- Peking University
- Beijing 100871
| | - Alexios Grigoropoulos
- Inorganic Chemistry Laboratory
- Department of Chemistry
- National and Kapodistrian University of Athens
- GR-15771 Athens
- Greece
| | - Ioannis Bratsos
- NCSR “Demokritos”
- Institute of Nanoscience and Nanotechnology
- Athens
- Greece
| | | | - Vassilis Psycharis
- NCSR “Demokritos”
- Institute of Nanoscience and Nanotechnology
- Athens
- Greece
| | - Shang-Da Jiang
- College of Chemistry and Molecular Engineering
- Beijing National Laboratory for Molecular Sciences
- Beijing Key Laboratory of Magnetoelectric Materials and Devices
- Peking University
- Beijing 100871
| | - Panayotis Kyritsis
- Inorganic Chemistry Laboratory
- Department of Chemistry
- National and Kapodistrian University of Athens
- GR-15771 Athens
- Greece
| |
Collapse
|
42
|
Świtlicka A, Palion-Gazda J, Machura B, Cano J, Lloret F, Julve M. Field-induced slow magnetic relaxation in pseudooctahedral cobalt(ii) complexes with positive axial and large rhombic anisotropy. Dalton Trans 2019; 48:1404-1417. [DOI: 10.1039/c8dt03965h] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation, X-ray crystal structure, spectroscopic and variable-temperature dc and ac magnetic properties of two six-coordinate cobalt(ii) complexes of formula [Co(bim)4(tcm)2] (1) and [Co(bmim)4(tcm)2] (2) are reported.
Collapse
Affiliation(s)
- Anna Świtlicka
- Department of Crystallography
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Joanna Palion-Gazda
- Department of Crystallography
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Barbara Machura
- Department of Crystallography
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Joan Cano
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
- Fundació General de la Universitat de València (FGUV)
| | - Francesc Lloret
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
| | - Miguel Julve
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
| |
Collapse
|
43
|
Mondal AK, Jover J, Ruiz E, Konar S. Single-ion magnetic anisotropy in a vacant octahedral Co(ii) complex. Dalton Trans 2018; 48:25-29. [PMID: 30417181 DOI: 10.1039/c8dt03862g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first example of a pentacoordinate CoII single-ion magnet based on a P-donor ligand with vacant octahedral coordination geometry is reported here. Thorough magnetic measurements reveal the presence of field induced slow relaxation behavior with an easy-plane magnetic anisotropy. The combined theoretical and experimental studies disclose that direct and quantum tunneling processes become dominant at low temperature to relax the magnetization; however, from the thermal dependence of relaxation time it can be observed that the optical or acoustic Raman processes become important to the overall relaxation process.
Collapse
Affiliation(s)
- Amit Kumar Mondal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal-462066, India.
| | | | | | | |
Collapse
|
44
|
Świtlicka A, Machura B, Penkala M, Bieńko A, Bieńko DC, Titiš J, Rajnák C, Boča R, Ozarowski A, Ozerov M. Slow Magnetic Relaxation in Cobalt(II) Field-Induced Single-Ion Magnets with Positive Large Anisotropy. Inorg Chem 2018; 57:12740-12755. [DOI: 10.1021/acs.inorgchem.8b01906] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
| | | | | | - Alina Bieńko
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Dariusz C. Bieńko
- Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Ján Titiš
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Cyril Rajnák
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Roman Boča
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Mykhaylo Ozerov
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| |
Collapse
|
45
|
Mondal AK, Mondal A, Dey B, Konar S. Influence of the Coordination Environment on Easy-Plane Magnetic Anisotropy of Pentagonal Bipyramidal Cobalt(II) Complexes. Inorg Chem 2018; 57:9999-10008. [DOI: 10.1021/acs.inorgchem.8b01162] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amit Kumar Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066 Madhya Pradesh, India
| | - Arpan Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066 Madhya Pradesh, India
| | - Bijoy Dey
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066 Madhya Pradesh, India
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066 Madhya Pradesh, India
| |
Collapse
|
46
|
Collet A, Craig GA, Heras Ojea MJ, Bhaskaran L, Wilson C, Hill S, Murrie M. Slow magnetic relaxation in a {Co IICo} complex containing a high magnetic anisotropy trigonal bipyramidal Co II centre. Dalton Trans 2018; 47:9237-9240. [PMID: 29953164 DOI: 10.1039/c8dt01997e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We report a trinuclear mixed-valence {CoIICoIII2} complex, where the CoII centre adopts a trigonal bipyramidal geometry, leading to a large, easy-plane magnetic anisotropy and field-induced slow magnetic relaxation with a Raman-like relaxation process.
Collapse
Affiliation(s)
- Alexandra Collet
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK.
| | | | | | | | | | | | | |
Collapse
|
47
|
Böhme M, Ziegenbalg S, Aliabadi A, Schnegg A, Görls H, Plass W. Magnetic relaxation in cobalt(ii)-based single-ion magnets influenced by distortion of the pseudotetrahedral [N2O2] coordination environment. Dalton Trans 2018; 47:10861-10873. [DOI: 10.1039/c8dt01530a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cobalt(ii) complexes with different dihedral angles between the bidentate ligands show a significant variation in their magnetic relaxation behavior.
Collapse
Affiliation(s)
- Michael Böhme
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07745 Jena
- Germany
| | - Sven Ziegenbalg
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07745 Jena
- Germany
| | - Azar Aliabadi
- Berlin Joint EPR Lab
- Institute for Nanospectroscopy
- Helmholtz-Zentrum Berlin für Materialien und Energie
- 12489 Berlin
- Germany
| | - Alexander Schnegg
- Berlin Joint EPR Lab
- Institute for Nanospectroscopy
- Helmholtz-Zentrum Berlin für Materialien und Energie
- 12489 Berlin
- Germany
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07745 Jena
- Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07745 Jena
- Germany
| |
Collapse
|
48
|
|
49
|
Mondal AK, Sundararajan M, Konar S. A new series of tetrahedral Co(ii) complexes [CoLX2] (X = NCS, Cl, Br, I) manifesting single-ion magnet features. Dalton Trans 2018; 47:3745-3754. [DOI: 10.1039/c7dt04007e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The influence of ligand field strength on the magnetic anisotropy of a series of isostructural tetrahedral CoII complexes has been investigated by using a combined experimental and theoretical approach.
Collapse
Affiliation(s)
- Amit Kumar Mondal
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhauri
- India
| | - Mahesh Sundararajan
- Theoretical Chemistry Section
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
| | - Sanjit Konar
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhauri
- India
| |
Collapse
|
50
|
Mandal S, Mondal S, Rajnák C, Titiš J, Boča R, Mohanta S. Syntheses, crystal structures and magnetic properties of two mixed-valence Co(iii)Co(ii) compounds derived from Schiff base ligands: field-supported single-ion-magnet behavior with easy-plane anisotropy. Dalton Trans 2017; 46:13135-13144. [PMID: 28945256 DOI: 10.1039/c7dt02455j] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two μ-phenoxo-μ1,1-azide dinuclear CoIIICoII complexes [CoIII(N3)2L1(μ1,1-N3)CoII(N3)]·MeOH (1) and [CoIII(N3)2L2(μ1,1-N3)CoII(N3)]·MeOH (2) (HL1 and HL2 are two Schiff base ligands having N2O-N2O compartments) both possess one hexacoordinate Co(iii) and one pentacoordinate Co(ii) center. DC magnetic susceptibility and magnetization measurements show an appreciable amount of positive magnetic anisotropy (D/hc∼ 40 cm-1) that is also confirmed by ab initio CASSCF calculations. AC susceptibility measurements of 1 reveal that it exhibits a slow magnetic relaxation with two relaxation channels. The external magnetic field supports the low-frequency (LF) channel that escapes on heating more progressively than the high-frequency (HF) branch. The relaxation time is as slow as τ = 255 ms at T = 1.9 K and BDC = 0.6 T, where the LF mole fraction is 69%. The complex 2 also displays similar field-supported slow magnetic relaxation with two relaxation channels.
Collapse
Affiliation(s)
- Shuvankar Mandal
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700 009, India.
| | | | | | | | | | | |
Collapse
|