1
|
Ramle AQ, Tiekink ER, Basirun WJ. Synthesis, functionalization and coordination chemistry of dibenzotetraaza[14]annulenes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
2
|
Savchenkov AV, Uhanov AS, Grigoriev MS, Fedoseev AM, Pushkin DV, Serezhkina LB, Serezhkin VN. Halogen bonding in uranyl and neptunyl trichloroacetates with alkali metals and improved crystal chemical formulae for coordination compounds. Dalton Trans 2021; 50:4210-4218. [PMID: 33687039 DOI: 10.1039/d0dt04083e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structures of the single crystals of compounds K2UO2(tca)4(tcaH)2 (I), K4NpO2(tca)6(tcaH)(H2O)3 (II), Rb4UO2(tca)6(tcaH)(H2O)3 (III), and Cs3UO2(tca)5(tcaH)2·H2O (IV), where tca is the trichloroacetate ion, were established by X-ray diffraction analysis. The crystals of II-IV have a framework structure, whereas in the layered crystals of I, neighboring layers are connected to each other via halogen bonds. In this regard, the crystals of I possess perfect cleavage along the (001) plane: the crystals are easily cut into stacks of very thin layers. Halogen bonds in the structures of all title compounds were characterized using the method of molecular Voronoi-Dirichlet polyhedra. The donor-acceptor halogen bond synthon, where the same halogen atom is both the donor towards one halogen atom and the acceptor from the second halogen atom, is recognized for its usefulness in the crystal design. The description of the ligand coordination modes and crystal chemical formulae of complexes is adapted for cases when ligands have chemically non-equivalent and unobvious donor atoms (for example, oxygen and halogen atoms in halogen-substituted carboxylate anions).
Collapse
|
3
|
Kent GT, Murillo J, Wu G, Fortier S, Hayton TW. Coordination of Uranyl to the Redox-Active Calix[4]pyrrole Ligand. Inorg Chem 2020; 59:8629-8634. [PMID: 32492338 DOI: 10.1021/acs.inorgchem.0c01224] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Reaction of [Li(THF)]4[L] (L = Me8-calix[4]pyrrole]) with 0.5 equiv of [UVIO2Cl2(THF)2]2 results in formation of the oxidized calix[4]pyrrole product, [Li(THF)]2[LΔ] (1), concomitant with formation of reduced uranium oxide byproducts. Complex 1 can also be generated by reaction of [Li(THF)]4[L] with 1 equiv of I2. We hypothesize that formation of 1 proceeds via formation of a highly oxidizing cis-uranyl intermediate, [Li]2[cis-UVIO2(calix[4]pyrrole)]. To test this hypothesis, we explored the reaction of 1 with either 0.5 equiv of [UVIO2Cl2(THF)2]2 or 1 equiv of [UVIO2(OTf)2(THF)3], which affords the isostructural uranyl complexes, [Li(THF)][UVIO2(LΔ)Cl(THF)] (2) and [Li(THF)][UVIO2(LΔ)(OTf)(THF)] (3), respectively. In the solid state, 2 and 3 feature unprecedented uranyl-η5-pyrrole interactions, making them rare examples of uranyl organometallic complexes. In addition, 2 and 3 exhibit some of the smallest O-U-O angles reported to date (2: 162.0(7) and 162.7(7)°; 3: 164.5(5)°). Importantly, the O-U-O bending observed in these complexes suggests that the oxidation of [Li(THF)]4[L] does indeed occur via an unobserved cis-uranyl intermediate.
Collapse
Affiliation(s)
- Greggory T Kent
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Jesse Murillo
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Skye Fortier
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
4
|
Assefa MK, Wu G, Hayton TW. Uranyl Oxo Silylation Promoted by Silsesquioxane Coordination. J Am Chem Soc 2020; 142:8738-8747. [PMID: 32292028 DOI: 10.1021/jacs.0c00990] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mikiyas K. Assefa
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Trevor W. Hayton
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
5
|
Riedhammer J, Aguilar-Calderón JR, Miehlich M, Halter DP, Munz D, Heinemann FW, Fortier S, Meyer K, Mindiola DJ. Werner-Type Complexes of Uranium(III) and (IV). Inorg Chem 2020; 59:2443-2449. [DOI: 10.1021/acs.inorgchem.9b03229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Judith Riedhammer
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen 91058, Germany
| | - J. Rolando Aguilar-Calderón
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Matthias Miehlich
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen 91058, Germany
| | - Dominik P. Halter
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen 91058, Germany
| | - Dominik Munz
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen 91058, Germany
| | - Frank W. Heinemann
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen 91058, Germany
| | - Skye Fortier
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Karsten Meyer
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen 91058, Germany
| | - Daniel J. Mindiola
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen 91058, Germany
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
6
|
Cowie BE, Purkis JM, Austin J, Love JB, Arnold PL. Thermal and Photochemical Reduction and Functionalization Chemistry of the Uranyl Dication, [UVIO2]2+. Chem Rev 2019; 119:10595-10637. [DOI: 10.1021/acs.chemrev.9b00048] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Bradley E. Cowie
- EaStCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, The King’s Buildings, Edinburgh EH9 3FJ, U.K
| | - Jamie M. Purkis
- EaStCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, The King’s Buildings, Edinburgh EH9 3FJ, U.K
| | - Jonathan Austin
- National Nuclear Laboratory, Chadwick House,
Warrington Road, Birchwood Park, Warrington WA3 6AE, U.K
| | - Jason B. Love
- EaStCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, The King’s Buildings, Edinburgh EH9 3FJ, U.K
| | - Polly L. Arnold
- EaStCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, The King’s Buildings, Edinburgh EH9 3FJ, U.K
| |
Collapse
|
7
|
Saha S, Eisen MS. Catalytic Recycling of a Th–H Bond via Single or Double Hydroboration of Inactivated Imines or Nitriles. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01399] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sayantani Saha
- Schulich Faculty of Chemistry, Technion—Israel Institute of Technology, Haifa City 32000, Israel
| | - Moris S. Eisen
- Schulich Faculty of Chemistry, Technion—Israel Institute of Technology, Haifa City 32000, Israel
| |
Collapse
|
8
|
Hohloch S, Garner ME, Booth CH, Lukens WW, Gould CA, Lussier DJ, Maron L, Arnold J. Isolation of a TMTAA-Based Radical in Uranium bis-TMTAA Complexes. Angew Chem Int Ed Engl 2018; 57:16136-16140. [PMID: 30328669 DOI: 10.1002/anie.201810971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Indexed: 01/02/2023]
Abstract
We report the synthesis, characterization, and electronic structure studies of a series of thorium(IV) and uranium(IV) bis-tetramethyltetraazaannulene complexes. These sandwich complexes show remarkable stability towards air and moisture, even at elevated temperatures. Electrochemical studies show the uranium complex to be stable in three different oxidation states; isolation of the oxidized species reveals a rare case of a non-innocent tetramethyltetraazaannulene (TMTAA) ligand.
Collapse
Affiliation(s)
- Stephan Hohloch
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA.,University of Paderborn, Warburger Straße 100, 33098, Paderborn, Germany
| | - Mary E Garner
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Corwin H Booth
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Wayne W Lukens
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Colin A Gould
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Daniel J Lussier
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA.,Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Laurent Maron
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA.,Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
9
|
Hohloch S, Garner ME, Booth CH, Lukens WW, Gould CA, Lussier DJ, Maron L, Arnold J. Isolation of a TMTAA‐Based Radical in Uranium bis‐TMTAA Complexes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Stephan Hohloch
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
- University of Paderborn Warburger Straße 100 33098 Paderborn Germany
| | - Mary E. Garner
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| | - Corwin H. Booth
- Chemical Science Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Wayne W. Lukens
- Chemical Science Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Colin A. Gould
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| | - Daniel J. Lussier
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
- Chemical Science Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Laurent Maron
- LPCNO Université de Toulouse, INSA Toulouse 135 Avenue de Rangueil 31077 Toulouse France
| | - John Arnold
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
- Chemical Science Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| |
Collapse
|
10
|
Assefa MK, Pedrick EA, Wakefield ME, Wu G, Hayton TW. Oxidation of the 14-Membered Macrocycle Dibenzotetramethyltetraaza[14]annulene upon Ligation to the Uranyl Ion. Inorg Chem 2018; 57:8317-8324. [DOI: 10.1021/acs.inorgchem.8b00966] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mikiyas K. Assefa
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Elizabeth A. Pedrick
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Megan E. Wakefield
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Trevor W. Hayton
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
11
|
Gardinier JR, Hewage JS, Bennett B, Wang D, Lindeman SV. Tricarbonylrhenium(I) Complexes of Dinucleating Redox-Active Pincer Ligands. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- James R. Gardinier
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Jeewantha S. Hewage
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Brian Bennett
- Department of Physics, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Denan Wang
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Sergey V. Lindeman
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| |
Collapse
|
12
|
Hohloch S, Garner ME, Parker BF, Arnold J. New supporting ligands in actinide chemistry: tetramethyltetraazaannulene complexes with thorium and uranium. Dalton Trans 2018; 46:13768-13782. [PMID: 28959804 DOI: 10.1039/c7dt02682j] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report the synthesis, characterization, and preliminary reactivity of new heteroleptic thorium and uranium complexes supported by the macrocyclic TMTAA ligand (TMTAA = Tetramethyl-tetra-aza-annulene). The dihalide complexes Th(TMTAA)Cl2(THF)2 (1), [UCl2(TMTAA)]2 (2) and U(TMTAA)I2 (3) are further functionalized to the Cp* derivatives ThCp*(TMTAA)Cl (4), UCp*(TMTAA)Cl (5) and UCp*(TMTAA)I (6) (Cp* = pentamethylcyclopentadienide). Compounds 4-6 are also obtained through a one-pot reaction from standard thorium(iv) and uranium(iv) starting materials, Li2TMTAA and KCp*. Complexes 1-6 function as valuable starting materials for salt metathesis chemistry. Treatment of precursors 4 or 5 with trimethylsilylmethyllithium (LiCH2TMS) results in the new actinide TMTAA alkyl complexes ThCp*(TMTAA)(CH2TMS) (7) and UCp*(TMTAA)(CH2TMTS) (8), respectively. The TMTAA-derived alkyl complexes (7 and 8) show unexpected stability and are stable for several weeks at room temperature in solution and in the solid-state. Additionally, double substitution of the halide ligands in 1-3 shows a strong dependence on the nucleophile used. While weaker nucleophiles, such as amides, and more sterically demanding nucleophiles, such as Cp (Cp = cyclopenadienide), favour the formation of bis-TMTAA "sandwich" complexes [An(TMTAA)2] (An = Th (9) and An = U (10)), the use of oxygen-functionalized ligands like the ODipp anion (Dipp = diisopropylphenyl) results in the formation of the doubly substituted species Th(ODipp)2TMTAA (11) and U(ODipp)2TMTAA (12). We also describe the divergent reactivity of the TMTAA ligand towards uranium(iii). Unlike the syntheses of actinide(iv) TMTAA complexes, the synthesis of a uranium(iii) TMTAA was not successful and only uranium(iv) species could be obtained.
Collapse
Affiliation(s)
- Stephan Hohloch
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
13
|
|
14
|
Hayton TW. Understanding the origins of Oyl–U–Oylbending in the uranyl (UO22+) ion. Dalton Trans 2018; 47:1003-1009. [DOI: 10.1039/c7dt04123c] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although rare, Oyl–U–Oylbending in the uranyl (UO22+) ion can be effected by either steric perturbation or electronic perturbation.
Collapse
Affiliation(s)
- Trevor W. Hayton
- Department of Chemistry and Biochemistry
- University of California Santa Barbara
- Santa Barbara
- USA
| |
Collapse
|
15
|
Thuéry P, Harrowfield J. Recent advances in structural studies of heterometallic uranyl-containing coordination polymers and polynuclear closed species. Dalton Trans 2017; 46:13660-13667. [DOI: 10.1039/c7dt03105j] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A survey is given of recent original structural results on heterometallic species incorporating uranyl ions, particularly with carboxylate ligands.
Collapse
|