1
|
Jana D, Roy S, Naskar S, Halder S, Kanrar G, Pramanik K. Potent pincer-zinc catalyzed homogeneous α-alkylation and Friedländer quinoline synthesis reaction of secondary alcohols/ketones with primary alcohols. Org Biomol Chem 2024; 22:6393-6408. [PMID: 39056136 DOI: 10.1039/d4ob00988f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Herein, we describe an air- and moisture-stable, homogeneous zinc catalyst stabilised using an electron deficient N^N^N pincer-type ligand. This ternary, penta-coordinated neutral molecular catalyst [Zn(N^N^N)Cl2] selectively produces α-alkylated ketone derivatives (14 examples) through a one-pot acceptorless dehydrogenative coupling (ADC) reaction between secondary and primary alcohols using the borrowing hydrogen (BH) approach in good to excellent isolated yields (up to 93%). It is worth noting that this catalyst also provides an eco-friendly route for the synthesis of quinoline derivatives (30 examples) using 2-aminobenzyl alcohols as alkylating agents via successive dehydrogenative coupling and N-annulation reactions. This cost effective, easy to synthesize and environmentally benign catalyst shows excellent stability in catalytic cycles under open-air conditions, as evident from its high turnover number (∼104), and is activated by using a catalytic amount of base under milder conditions.
Collapse
Affiliation(s)
- Debashis Jana
- Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Sima Roy
- Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Srijita Naskar
- Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Supriyo Halder
- Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Gopal Kanrar
- Department of Chemistry, St. Xavier's College (Autonomous), Kolkata-700016, India
| | | |
Collapse
|
2
|
Swatiputra AA, Mukherjee D, Dinda S, Roy S, Pramanik K, Ganguly S. Electron transfer catalysis mediated by 3d complexes of redox non-innocent ligands possessing an azo function: a perspective. Dalton Trans 2023; 52:15627-15646. [PMID: 37792473 DOI: 10.1039/d3dt02567e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
It was first reported almost two decades ago that ligands with azo functions are capable of accepting electron(s) upon coordination to produce azo-anion radical complexes, thereby exhibiting redox non-innocence. Over the past two decades, there have been numerous reports of such complexes along with their structures and diverse characteristics. The ability of a coordinated azo function to accept one or more electron(s), thereby acting as an electron reservoir, is currently employed to carry out electron transfer catalysis since they can undergo redox transformation at mild potentials due to the presence of energetically accessible energy levels. The cooperative involvement of redox non-innocent ligand(s) containing an azo group and the coordinated metal centre can adjust and modulate the Lewis acidity of the latter through selective ligand-centred redox events, thereby manipulating the capacity of the metal centre to bind to the substrate. We have summarized the list of first row transition metal complexes of iron, cobalt, nickel, copper and zinc with redox non-innocent ligands incorporating an azo function that have been exploited as electron transfer catalysts to effectuate sustainable synthesis of a wide variety of useful chemicals. These include ketazines, pyrimidines, benzothiazole, benzoxazoles, N-acyl hydrazones, quinazoline-4(3)H-ones, C-3 alkylated indoles, N-alkylated anilines and N-alkylated heteroamines. The reaction pathways, as demonstrated by catalytic loops, reveal that the azo function of a coordinated ligand can act as an electron sink in the initial steps to bring about alcohol oxidation and thereafter, they serve as an electron pool to produce the final products either via HAT or PCET processes.
Collapse
Affiliation(s)
- Alok Apan Swatiputra
- Department of Chemistry, St. Xavier's College (Autonomous), Kolkata - 700016, India.
| | - Debaarjun Mukherjee
- Department of Chemistry, St. Xavier's College (Autonomous), Kolkata - 700016, India.
| | - Soumitra Dinda
- Department of Chemistry, St. Xavier's College (Autonomous), Kolkata - 700016, India.
| | - Subhadip Roy
- Department of Chemistry, The ICFAI University Tripura, Tripura 799210, India
| | - Kausikisankar Pramanik
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata - 700032, India
| | - Sanjib Ganguly
- Department of Chemistry, St. Xavier's College (Autonomous), Kolkata - 700016, India.
| |
Collapse
|
3
|
Naskar S, Halder S, Kanrar G, Jana D, Dinda S, Pramanik K, Ganguly S. Role of ligand disposition and oxime…oximato hydrogen bonding upon redox non-innocent character of rhodium(III) phenylazooximates. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
4
|
Molecular and Electronic Structures, Spectra, Electrochemistry and Anti‐bacterial Efficacy of Novel Heterocyclic Hydrazones of Phenanthrenequinone and Their Nickel(II) Complexes. ChemistrySelect 2022. [DOI: 10.1002/slct.202202151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Dinda S, Pramanik S, Basu J, Patra SC, Pramanik K, Ganguly S. Azo-oximate metal-carbonyl to metallocarboxylic acid via the intermediate Ir(III) radical congener: quest for co-ligand driven stability of open- and closed-shell complexes. Dalton Trans 2022; 51:10121-10135. [PMID: 35731229 DOI: 10.1039/d2dt00345g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The redox non-innocent behavior of the diaryl-azo-oxime ligand LNOH1 has been accentuated via the synthesis of metastable anion radical complexes of type trans-[Ir(LNO˙-)Cl(CO)(PPh3)2] 2 (CO is trans to azo group of the ligand) by the oxidative coordination reaction of 1 with Vaska's complex. The stereochemical role of co-ligands vis-à-vis the interplay of π-bonding has been found to be decisive in controlling the aptitude of the coordinated redox non-innocent ligand to accept or reject an electron. This has been clarified via the isolation of quite a few complexes as well as the failure to synthesize some others. The oxidized analogues of type trans-[Ir(LNO-)Cl(CO)(PPh3)2]+2+ (CO and azo group of the ligand are trans) as well as its cis isomer cis-[Ir(LNO-)Cl(CO)(PPh3)2]+3+ (CO and azo group of the ligand are cis) have been structurally characterized but the radical anion congener of the latter could not be synthesized. Furthermore, the closed shell complexes [Ir(LNO-)Cl2(PPh3)2] 4 and [Ir(LNO-)2Cl(PPh3)] 5 have been well characterized by diffraction as well as spectral techniques but their corresponding azo anion radical complexes could not be isolated and this is attributed to the trans influence of ancillary ligands. The anion radical complexes trans-[Ir(LNO˙-)Cl(CO)(PPh3)2] 2 may be rapidly transformed to the metallocarboxylic acids trans-[Ir(LNO-)Cl(CO2H)(PPh3)2] 6via a proton-coupled electron transfer (PCET) process, thereby demonstrating the role of odd electron over the coordinated ligand framework to trigger metal-mediated carbonyl to carboxylic acid functionalization. Complexes 6 are further stabilized via intramolecular -CO2H⋯ON- (carboxylic acid⋯oximato) H-bonding. The optoelectronic properties as well as the origin of transitions in the complexes were analyzed by TD-DFT and theoretical analysis, which further disclose that the odd electron in trans-[Ir(LNO˙-)Cl(CO)(PPh3)2] 2 is primarily azo-oxime centric with very low contribution from the iridium center.
Collapse
Affiliation(s)
- Soumitra Dinda
- Department of Chemistry, St. Xavier's College (Autonomous), Kolkata - 700016, India.
| | - Shuvam Pramanik
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Jaydeep Basu
- Department of Chemistry, St. Xavier's College (Autonomous), Kolkata - 700016, India.
| | | | | | - Sanjib Ganguly
- Department of Chemistry, St. Xavier's College (Autonomous), Kolkata - 700016, India.
| |
Collapse
|
6
|
Goswami B, Khatua M, Samanta S. Polymerisation of styrene using pincer type amine functionalized azo aromatic complexes of Co(II) as catalysts. Dalton Trans 2022; 51:1454-1463. [PMID: 34988578 DOI: 10.1039/d1dt02622d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present report, three mononuclear azo-aromatic complexes of Co(II), 1-3, and an imine-based Co(II) complex, 4, were synthesized through a reaction of respective amine-functionalized pincer-like ligands, HL1-4, with CoCl2·6H2O in the ligand-to-metal ratio of 1 : 1. All the complexes, 1-4, were thoroughly characterized using various physicochemical characterization techniques, single-crystal X-ray structure determination, and density functional theory (DFT) calculations. Complexes 1-4 were explored for the catalytic styrene polymerisation reaction separately in the presence of modified methyl aluminoxane (MMAO). All the complexes, 1-4, are indeed active for the polymerisation of styrene under mild conditions at room temperature upon activation with MMAO. Among the azo-aromatic complexes 1-3, complex 3 is the most efficient. The activity of the imine complex 4 is poor compared to those of the azo-aromatic complexes 1-3. The weight average molecular weight (Mw) of the isolated polystyrene ranges from 32.9 to 144.0 kg mol-1, with a polydispersity index (Đ) in the range of 1.1-1.8. Microstructural analysis of the isolated polymer from complexes 1-4 was carried out by 13C NMR spectroscopy, infrared spectroscopy, and powder X-ray diffraction studies. Their thermal properties were scrutinized by differential scanning calorimetry and thermogravimetric analysis. These studies have shown the atactic and amorphous nature of the polymers. The mechanical strength of the polymers was measured by a nanoindentation technique which has shown the good plastic/soft nature of the polymers.
Collapse
Affiliation(s)
- Bappaditya Goswami
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Manas Khatua
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Subhas Samanta
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, Jammu 181221, India.
| |
Collapse
|
7
|
Dinda S, Sarkar K, Panda BK, Pramanik K, Ganguly S. Diarylazooxime complex of cobalt(III): synthesis, structure, ligand redox, DFT calculations and spectral characteristics. TRANSIT METAL CHEM 2022. [DOI: 10.1007/s11243-021-00485-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Dinda S, Roy S, Patra SC, Bhandary S, Pramanik K, Ganguly S. Polyaromatic hydrocarbon derivatized azo-oximes of cobalt( iii) for the ligand-redox controlled electrocatalytic oxygen reduction reaction. NEW J CHEM 2020. [DOI: 10.1039/c9nj05527d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Two new polyaromatic hydrocarbon (PAH) derivatized cobalt(iii) azo-oxime complexes were synthesized and their activity in electrocatalytic oxygen reduction reaction (ORR) were explored.
Collapse
Affiliation(s)
- Soumitra Dinda
- Department of Chemistry
- St. Xavier's College (Autonomous)
- Kolkata–700016
- India
| | - Syamantak Roy
- Molecular Materials Laboratory
- Chemistry and Physics of Materials Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Jakkur
- Bangalore
| | | | - Subhrajyoti Bhandary
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal By-pass Road
- Bhauri
- Bhopal
| | | | - Sanjib Ganguly
- Department of Chemistry
- St. Xavier's College (Autonomous)
- Kolkata–700016
- India
| |
Collapse
|
9
|
van der Vlugt JI. Radical-Type Reactivity and Catalysis by Single-Electron Transfer to or from Redox-Active Ligands. Chemistry 2019; 25:2651-2662. [PMID: 30084211 PMCID: PMC6471147 DOI: 10.1002/chem.201802606] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Indexed: 12/12/2022]
Abstract
Controlled ligand-based redox-activity and chemical non-innocence are rapidly gaining importance for selective (catalytic) processes. This Concept aims to provide an overview of the progress regarding ligand-to-substrate single-electron transfer as a relatively new mode of operation to exploit ligand-centered reactivity and catalysis based thereon.
Collapse
Affiliation(s)
- Jarl Ivar van der Vlugt
- Bio-Inspired Homogeneous and Supramolecular Catalysis Groupvan ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamNetherlands
| |
Collapse
|
10
|
Roy S, Pramanik S, Ghorui T, Dinda S, Patra SC, Pramanik K. Redox-active diaminoazobenzene complexes of rhodium(iii): synthesis, structure and spectroscopic characterization. NEW J CHEM 2018. [DOI: 10.1039/c7nj04790h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coordination diversity of an aromatic diamine with Rh(iii) is presented together with the elucidation of the molecular and electronic structures, electron transfer, and electronic transitions.
Collapse
Affiliation(s)
- Sima Roy
- Department of Chemistry
- Inorganic Chemistry Section
- Jadavpur University
- Kolkata – 700032
- India
| | - Shuvam Pramanik
- Department of Chemistry
- Inorganic Chemistry Section
- Jadavpur University
- Kolkata – 700032
- India
| | - Tapas Ghorui
- Department of Chemistry
- Inorganic Chemistry Section
- Jadavpur University
- Kolkata – 700032
- India
| | - Soumitra Dinda
- Department of Chemistry
- Inorganic Chemistry Section
- Jadavpur University
- Kolkata – 700032
- India
| | - Sarat Chandra Patra
- Department of Chemistry
- Inorganic Chemistry Section
- Jadavpur University
- Kolkata – 700032
- India
| | - Kausikisankar Pramanik
- Department of Chemistry
- Inorganic Chemistry Section
- Jadavpur University
- Kolkata – 700032
- India
| |
Collapse
|