1
|
Palfey WR, Hwang SJ, Goddard WA, Rossman GR. The spectroscopy of hydride in single crystals of SrTiO 3 perovskite. Phys Chem Chem Phys 2024; 26:25439-25451. [PMID: 39320151 DOI: 10.1039/d4cp02852j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Under reducing conditions, SrTiO3 perovskite can exchange up to 20% of its O2- ions for H- (hydride), greatly influencing its material properties. This not only presents intriguing possibilities for material design, but also for hydrogen sequestration in the deep earth, where perovskite-structured minerals are abundant. However, uncertainties remain surrounding hydride incorporation in SrTiO3, including details of the hydride structural state, and how hydride interacts with the broader defect chemistry of SrTiO3. Additionally, experimental studies of hydride in SrTiO3 and other perovskites may face analytical limitations. The most common methods for characterizing hydride, namely 1H NMR, may not be suitable in all experimental contexts, including materials with relatively low hydride concentrations and in situ high-pressure, high-temperature experiments. Here, we present an investigation of hydride in single crystals of SrTiO3 focused on detailed spectroscopic measurements. Through a combination of density functional theory (DFT)-assisted Fourier transform infrared (FTIR) spectroscopy and UV-vis spectroscopy, we observe structural hydride and its effects on the electronic transitions in SrTiO3. These results are compared directly against 1H NMR. We find that, although hydride is sometimes difficult to identify via FTIR, infrared spectroscopy is significantly more sensitive to hydride than 1H NMR. We also find that DFT makes accurate predictions about the spectroscopic behavior of hydride in SrTiO3, pointing to the value of ab initio techniques in future studies.
Collapse
Affiliation(s)
- William R Palfey
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.
| | - Son-Jong Hwang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - William A Goddard
- Materials and Process Simulation Center (MSC), MC 139-74, California Institute of Technology, Pasadena, CA, USA
| | - George R Rossman
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
2
|
Chaykina D, Usman I, Colombi G, Schreuders H, Tyburska-Pueschel B, Wu Z, Eijt SWH, Bannenberg LJ, de Wijs GA, Dam B. Aliovalent Calcium Doping of Yttrium Oxyhydride Thin Films and Implications for Photochromism. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:14742-14749. [PMID: 36081901 PMCID: PMC9442641 DOI: 10.1021/acs.jpcc.2c04456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/12/2022] [Indexed: 06/15/2023]
Abstract
To develop an understanding of the photochromic effect in rare-earth metal oxyhydride thin films (REH3-2x O x , here RE = Y), we explore the aliovalent doping of the RE cation. We prepared Ca-doped yttrium oxyhydride thin films ((Ca z Y1-z )H x O y ) by reactive magnetron cosputtering with Ca doping concentrations between 0 and 36 at. %. All of the films are semiconductors with a constant optical band gap for Ca content below 15%, while the band gap expands for compositions above 15%. Ca doping affects the photochromic properties, resulting in (1) a lower photochromic contrast, likely due to a lower H- concentration, and (2) a faster bleaching speed, caused by a higher pre-exponential factor. Overall, these results point to the importance of the H- concentration for the formation of a "darkened" phase and the local rearrangement of these H- for the kinetics of the process.
Collapse
Affiliation(s)
- Diana Chaykina
- Materials
for Energy Conversion and Storage, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, NL-2629HZ Delft, The Netherlands
| | - Ismene Usman
- Materials
for Energy Conversion and Storage, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, NL-2629HZ Delft, The Netherlands
| | - Giorgio Colombi
- Materials
for Energy Conversion and Storage, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, NL-2629HZ Delft, The Netherlands
| | - Herman Schreuders
- Materials
for Energy Conversion and Storage, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, NL-2629HZ Delft, The Netherlands
| | - Beata Tyburska-Pueschel
- Dutch
Institute for Fundamental Energy Research, De Zaale 20, NL-5612
AJ Eindhoven, The Netherlands
| | - Ziying Wu
- Fundamental
Aspects of Materials and Energy, Department of Radiation Science and
Technology, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, NL-2629 JB Delft, The Netherlands
| | - Stephan W. H. Eijt
- Fundamental
Aspects of Materials and Energy, Department of Radiation Science and
Technology, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, NL-2629 JB Delft, The Netherlands
| | - Lars J. Bannenberg
- Materials
for Energy Conversion and Storage, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, NL-2629HZ Delft, The Netherlands
- Storage
of Electrochemical Energy, Department of Radiation Science and Technology,
Faculty of Applied Sciences, Delft University
of Technology, Mekelweg
15, NL-2629 JB Delft, The Netherlands
| | - Gilles A. de Wijs
- Radboud
University, Institute for Molecules
and Materials, Heyendaalseweg
135, NL-6525 AJ Nijmegen, The Netherlands
| | - Bernard Dam
- Materials
for Energy Conversion and Storage, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, NL-2629HZ Delft, The Netherlands
| |
Collapse
|
3
|
Kinetic Control of Anion Stoichiometry in Hexagonal BaTiO3. INORGANICS 2022. [DOI: 10.3390/inorganics10060073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The cubic oxyhydride perovskite BaTiO3−xHx, where the well-known ferroelectric oxide BaTiO3 is partially hydridized, exhibits a variety of functions such as being a catalyst and precursor for the synthesis of mixed-anion compounds by utilizing the labile nature of hydride anions. In this study, we present a hexagonal version, BaTi(O3−xHx) (x < 0.6) with the 6H-type structure, synthesized by a topochemical reaction using hydride reduction, unlike reported hexagonal oxyhydrides obtained under high pressure. The conversion of cubic BaTiO3 (150 nm) to the hexagonal phase by heat treatment at low temperature (950~1025 °C) using a Mg getter allows the introduction of large oxygen defects (BaTiO3−x; x − 0.28) while preventing the crystal growth of hexagonal BaTiO3, which has been accessible at high temperatures of ~1500 °C, contributing to the increase of the hydrogen content. Hydride anions in 6H-BaTiO3−xHx preferentially occupy face-sharing sites, as do other oxyhydrides.
Collapse
|
4
|
Takeiri F, Yajima T, Hosokawa S, Matsushita Y, Kageyama H. Topochemical anion insertion into one-dimensional Bi channels in Bi2PdO4. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Kageyama H, Yajima T, Tsujimoto Y, Yamamoto T, Tassel C, Kobayashi Y. Exploring Structures and Properties through Anion Chemistry. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190095] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hiroshi Kageyama
- Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8581, Japan
| | - Takeshi Yajima
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Yoshihiro Tsujimoto
- Research Centre for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Takafumi Yamamoto
- Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8581, Japan
| | - Cedric Tassel
- Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8581, Japan
| | - Yoji Kobayashi
- Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8581, Japan
| |
Collapse
|
6
|
Polo-Garzon F, Luo S, Cheng Y, Page KL, Ramirez-Cuesta AJ, Britt PF, Wu Z. Neutron Scattering Investigations of Hydride Species in Heterogeneous Catalysis. CHEMSUSCHEM 2019; 12:93-103. [PMID: 30395417 DOI: 10.1002/cssc.201801890] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/02/2018] [Indexed: 06/08/2023]
Abstract
In heterogeneous catalysis, hydrides on the surface or in the bulk play a critical role as either active components or reaction intermediates in many hydrogen-involving reactions, but characterization of the nature and structure of these hydride species remains challenging. Neutron scattering, which is extremely sensitive to light elements, such as hydrogen, has shown great potential in meeting this challenge. In this Minireview, recent advances in neutron studies of hydride species, mainly over the two most typical classes of catalysts-metals and oxides-are surveyed. Findings on catalysts outside these categories are raised if they are considered to be relevant for contextualization in the present Minireview. The adsorption, dissociation, spillover, and reactivity of hydrogen, especially hydride species over supported metal and oxide catalysts, have been successfully investigated, mostly by means of neutron vibrational spectroscopy. Insights from these neutron studies, which are otherwise not possible with other techniques, shed light on the interaction mechanism of hydrogen with solid surfaces and reaction mechanisms in which hydrogen is involved. Future research challenges on neutron scattering studies of hydrides, as well as catalysis in general, are also highlighted, and more operando-type neutron studies need be conducted to advance the field.
Collapse
Affiliation(s)
- Felipe Polo-Garzon
- Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Si Luo
- Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Yongqiang Cheng
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Katharine L Page
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | | - Phillip F Britt
- Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Zili Wu
- Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|