1
|
Baran T, Caringella D, Dibenedetto A, Aresta M. Pitfalls in Photochemical and Photoelectrochemical Reduction of CO 2 to Energy Products. Molecules 2024; 29:4758. [PMID: 39407686 PMCID: PMC11477605 DOI: 10.3390/molecules29194758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
The photochemical and photoelectrochemical reduction of CO2 is a promising approach for converting carbon dioxide into valuable chemicals (materials) and fuels. A key issue is ensuring the accuracy of experimental results in CO2 reduction reactions (CO2RRs) because of potential sources of false positives. This paper reports the results of investigations on various factors that may contribute to erroneous attribution of reduced-carbon species, including degradation of carbon species contained in photocatalysts, residual contaminants from synthetic procedures, laboratory glassware, environmental exposure, and the operator. The importance of rigorous experimental protocols, including the use of labeled 13CO2 and blank tests, to identify true CO2 reduction products (CO2RPs) accurately is highlighted. Our experimental data (eventually complemented with or compared to literature data) underline the possible sources of errors and, whenever possible, quantify the false positives with respect to the effective conversion of CO2 in clean conditions. This paper clarifies that the incidence of false positives is higher in the preliminary phase of photo-material development when CO2RPs are in the range of a few 10s of μg gcat-1 h-1, reducing its importance when significant conversions of CO2 are performed reaching 10s of mol gcat-1 h-1. This paper suggests procedures for improving the reliability and reproducibility of CO2RR experiments, thus validating such technologies.
Collapse
Affiliation(s)
- Tomasz Baran
- Innovative Catalysis for Carbon Recycling-ICR, Via Camillo Rosalba 49, 70124 Bari, Italy; (T.B.); (D.C.)
| | - Domenico Caringella
- Innovative Catalysis for Carbon Recycling-ICR, Via Camillo Rosalba 49, 70124 Bari, Italy; (T.B.); (D.C.)
| | - Angela Dibenedetto
- Interuniversity Consortium on Chemical Reactivity and Catalysis (CIRCC), Via Celso Ulpiani 27, 70126 Bari, Italy
- Department of Chemistry, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Michele Aresta
- Innovative Catalysis for Carbon Recycling-ICR, Via Camillo Rosalba 49, 70124 Bari, Italy; (T.B.); (D.C.)
| |
Collapse
|
2
|
Lee D, Molani F, Choe MS, Lee HS, Wee KR, Hwang S, Kim CH, Cho AE, Son HJ. Photocatalytic Conversion of CO 2 to Formate/CO by an (η 6- para-Cymene)Ru(II) Half-Metallocene Catalyst: Influence of Additives and TiO 2 Immobilization on the Catalytic Mechanism and Product Selectivity. Inorg Chem 2024; 63:11506-11522. [PMID: 38856726 DOI: 10.1021/acs.inorgchem.3c03879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The catalytic efficacy of the monobipyridyl (η6-para-Cymene)Ru(II) half-metallocene, [(p-Cym)Ru(bpy)Cl]+ was evaluated in both mixed homogeneous (dye + catalyst) and heterogeneous hybrid systems (dye/TiO2/Catalyst) for photochemical CO2 reduction. A series of homogeneous photolysis experiments revealed that the (p-Cym)Ru(II) catalyst engages in two competitive routes for CO2 reduction (CO2 to formate conversion via RuII-hydride vs CO2 to CO conversion through a RuII-COOH intermediate). The conversion activity and product selectivity were notably impacted by the pKa value and the concentration of the proton source added. When a more acidic TEOA additive was introduced, the half-metallocene Ru(II) catalyst leaned toward producing formate through the RuII-H mechanism, with a formate selectivity of 86%. On the other hand, in homogeneous catalysis with TFE additive, the CO2-to-formate conversion through RuII-H was less effective, yielding a more efficient CO2-to-CO conversion with a selectivity of >80% (TONformate of 140 and TONCO of 626 over 48 h). The preference between the two pathways was elucidated through an electrochemical mechanistic study, monitoring the fate of the metal-hydride intermediate. Compared to the homogeneous system, the TiO2-heterogenized (p-Cym)Ru(II) catalyst demonstrated enhanced and enduring performance, attaining TONs of 1000 for CO2-to-CO and 665 for CO2-to-formate.
Collapse
Affiliation(s)
- Daehan Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Farzad Molani
- Department of Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Min Su Choe
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Hyun Seok Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Kyung-Ryang Wee
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Seongpil Hwang
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Chul Hoon Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Art E Cho
- Department of Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Ho-Jin Son
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
3
|
Wang D, Hu W, Liu C, Huang J, Zhang X. Electronic Tuning of Photoexcited Dynamics in Heteroleptic Cu(I) Complex Photosensitizers. J Phys Chem Lett 2023; 14:10137-10144. [PMID: 37922426 DOI: 10.1021/acs.jpclett.3c02503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Photoexcited dynamics of heteroleptic Cu(I) complexes as noble-metal-free photosensitizers are closely intertwined with the nature of their ligands. By utilizing ultrafast optical and X-ray transient absorption spectroscopies, we characterized a new set of heteroleptic Cu(I) complexes [Cu(PPh3)2(BPyR)]+ (R = CH3, H, Br to COOCH3), with an increase in the electron-withdrawing ability of the functional group (R). We found that after the transient photooxidation of Cu(I) to Cu(II), the increasing electron-withdrawing ability of R barely affects the internal conversion (IC) (e.g., Jahn-taller (JT) distortion) between singlet MLCT states. However, it does accelerate the dynamics of intersystem crossing (ISC) between singlet and triplet MLCT states and the subsequent decay from the triplet MLCT state to the ground state. The associated lifetime constants are reduced by up to 300%. Our understanding of the photoexcited dynamics in heteroleptic Cu(I) complexes through ligand electronic tuning provides valuable insight into the rational design of efficient Cu(I) complex photosensitizers.
Collapse
Affiliation(s)
- Denan Wang
- Department of Chemistry, Marquette University, Milwaukee, 53201, United States
| | - Wenhui Hu
- Department of Chemistry, Marquette University, Milwaukee, 53201, United States
| | - Cunming Liu
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60349, United States
| | - Jier Huang
- Department of Chemistry, Marquette University, Milwaukee, 53201, United States
- Department of Chemistry and Schiller Institute for Integrated Science and Society, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Xiaoyi Zhang
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60349, United States
| |
Collapse
|
4
|
Kim S, Lee D, Kim T, Kim CH, Son HJ, Kang SO, Shin JY. Dynamics of Photoinduced Intramolecular and Intermolecular Electron Transfers in Ligand-Conjugated Ir(III)-Re(I) Photocatalysts. J Phys Chem Lett 2023; 14:1535-1541. [PMID: 36745190 DOI: 10.1021/acs.jpclett.2c03367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We report the electron transfer (ET) dynamics in a series of Ir(III)-Re(I) photocatalysts where two bipyridyl ligands of Ir and Re moieties are conjugated at the meta (m)- or para (p)-position of each side. Femtosecond transient absorption (TA) measurements identify the intramolecular ET (IET) dynamics from the Ir to Re moiety, followed by the formation of one-electron-reduced species (OERS) via the intermolecular ET with a sacrificial electron donor (SED). The IET rate depends on the bridging ligand (BL) structures (∼25 ps for BLmm/mp vs ∼68 ps for BLpm/pp), while the OERS formation happens on an even slower time scale (∼1.4 ns). Connecting the Re moiety at the meta-position of the bipyridyl of the Ir moiety can restrict the rotation around a covalent bond between two bipyridyl ligands by steric hindrances and facilitate the IET process. This highlights the importance of BL structures on the ET dynamics in photocatalysts.
Collapse
Affiliation(s)
- Soohwan Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Daehan Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Taesoo Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Chul Hoon Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Ho-Jin Son
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Sang Ook Kang
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Jae Yoon Shin
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
5
|
DiLuzio S, Connell TU, Mdluli V, Kowalewski JF, Bernhard S. Understanding Ir(III) Photocatalyst Structure-Activity Relationships: A Highly Parallelized Study of Light-Driven Metal Reduction Processes. J Am Chem Soc 2022; 144:1431-1444. [PMID: 35025486 DOI: 10.1021/jacs.1c12059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
High-throughput synthesis and screening methods were used to measure the photochemical activity of 1440 distinct heteroleptic [Ir(C^N)2(N^N)]+ complexes for the photoreduction of Sn(II) and Zn(II) cations to their corresponding neutral metals. Kinetic data collection was carried out using home-built photoreactors and measured initial rates, obtained through an automated fitting algorithm, spanned between 0-120 μM/s for Sn(0) deposition and 0-90 μM/s for Zn(0) deposition. Photochemical reactivity was compared to photophysical properties previously measured such as deaerated excited state lifetime and emission spectral data for these same complexes; however, no clear correlations among these features were observed. A formal photochemical rate law was then developed to help elucidate the observed reactivity. Initial rates were found to be directly correlated to the product of incident photon flux with three reaction elementary efficiencies: (1) the fraction of light absorbed by the photocatalyst, (2) the fraction of excited state species that are quenched by the electron donor, and (3) the cage escape efficiency. The most active catalysts exhibit high efficiencies for all three steps, and catalyst engineering requirements to maximize these elementary efficiencies were postulated. The kinetic treatment provided the mechanistic information needed to decipher the observed structure/function trends in the high-throughput work.
Collapse
Affiliation(s)
- Stephen DiLuzio
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Timothy U Connell
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Velabo Mdluli
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jakub F Kowalewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Stefan Bernhard
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
6
|
Abstract
ConspectusDuring the last few decades, the design of catalytic systems for CO2 reduction has been extensively researched and generally involves (1) traditional approaches using molecular organic/organometallic materials and heterogeneous inorganic semiconductors and (2) combinatory approaches wherein these materials are combined as needed. Recently, we have devised a number of new TiO2-mediated multicomponent hybrid systems that synergistically integrate the intrinsic merits of various materials, namely, molecular photosensitizers/catalysts and n-type TiO2 semiconductors, and lower the energetic and kinetic barriers between components. We have termed such multicomponent hybrid systems assembled from the hybridization of various organic/inorganic/organometallic units in a single platform inorganometallic photocatalysts. The multicomponent inorganometallic (MIOM) hybrid system onto which the photosensitizer and catalyst are coadsorbed efficiently eliminates the need for bulk-phase diffusion of the components and avoids the accumulation of radical intermediates that invokes a degradation pathway, in contrast to the homogeneous system, in which the free reactive species are concentrated in a confined reaction space. In particular, in energetic terms, we discovered that in nonaqueous media, the conduction band (CB) levels of reduced TiO2 (TiO2(e-)) are positioned at a higher level (in the range -1.5 to -1.9 V vs SCE). This energetic benefit of reduced TiO2 allows smooth electron transfer (ET) from injected electrons (TiO2(e-)) to the coadsorbed CO2 reduction catalyst, which requires relatively high reducing power (at least more than -1.1 V vs SCE). On the other hand, the existence of various shallow surface trapping sites and surface bands, which are 0.3-1.0 eV below the CB of TiO2, efficiently facilitates electron injection from any photosensitizer (including dyes having low excited energy levels) to TiO2 without energetic limitation. This is contrasted with most photocatalytic systems, wherein successive absorption of single high-energy photons is required to produce excited states with enough energy to fulfill photocatalytic reaction, which may allow unwanted side reactions during photocatalysis. In this Account, we present our recent research efforts toward advancing these MIOM hybrid systems for photochemical CO2 reduction and discuss their working mechanisms in detail. Basic ET processes within the MIOM system, including intervalence ET in organic/organometallic redox systems, metal-to-ligand charge transfer of organometallic complexes, and interfacial/outer-sphere charge transfer between components, were investigated by conducting serial photophysical and electrochemical analyses. Because such ET events occur primarily at the interface between the components, the efficiency of interfacial ET between the molecular components (organic/organometallic photosensitizers and molecular reduction catalysts) and the bulk inorganic solid (mainly n-type TiO2 semiconductors) has a significant influence on the overall photochemical reaction kinetics and mechanism. In some TiO2-mediated MIOM hybrids, the chemical attachment of organic or organometallic photosensitizing units onto TiO2 semiconductors efficiently eliminates the step of diffusion/collision-controlled ET between components and prevents the accumulation of reactive species (oxidatively quenched cations or reductively quenched anions) in the reaction solution, ensuring steady photosensitization over an extended reaction period. The site isolation of a single-site organometallic catalyst employing TiO2 immobilization promotes the monomeric catalytic pathway during the CO2 reduction process, resulting in enhanced product selectivity and catalytic performance, including lifetime extension. In addition, as an alternative inorganic solid scaffold, the introduction of a host porphyrin matrix (interlinked in a metal-organic framework (MOF) material) led to efficient and durable photocatalytic CO2 conversion by the new MOF-Re(I) hybrid as a result of efficient light harvesting/exciton migration in the porphyrinic MOF and rapid quenching of the photogenerated electrons by the doped Re(I) catalytic sites. Overall, the case studies presented herein provide valuable insights for the rational design of advanced multicomponent hybrid systems for artificial photosynthesis involving CO2 reduction.
Collapse
Affiliation(s)
- Ho-Jin Son
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Chyongjin Pac
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Sang Ook Kang
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
7
|
Back C, Seo Y, Choi S, Choe MS, Lee D, Baeg JO, Son HJ, Kang SO. Secondary Coordination Effect on Monobipyridyl Ru(II) Catalysts in Photochemical CO 2 Reduction: Effective Proton Shuttle of Pendant Brønsted Acid/Base Sites (OH and N(CH 3) 2) and Its Mechanistic Investigation. Inorg Chem 2021; 60:14151-14164. [PMID: 34473480 DOI: 10.1021/acs.inorgchem.1c01559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While the incorporation of pendant Brønsted acid/base sites in the secondary coordination sphere is a promising and effective strategy to increase the catalytic performance and product selectivity in organometallic catalysis for CO2 reduction, the control of product selectivity still faces a great challenge. Herein, we report two new trans(Cl)-[Ru(6-X-bpy)(CO)2Cl2] complexes functionalized with a saturated ethylene-linked functional group (bpy = 2,2'-bipyridine; X = -(CH2)2-OH or -(CH2)2-N(CH3)2) at the ortho(6)-position of bpy ligand, which are named Ru-bpyOH and Ru-bpydiMeN, respectively. In the series of photolysis experiments, compared to nontethered case, the asymmetric attachment of tethering ligand to the bpy ligand led to less efficient but more selective formate production with inactivation of CO2-to-CO conversion route during photoreaction. From a series of in situ FTIR analyses, it was found that the Ru-formate intermediates are stabilized by a highly probable hydrogen bonding between pendent proton donors (-diMeN+H or -OH) and the oxygen atom of metal-bound formate (RuI-OCHO···H-E-(CH2)2-, E = O or diMeN+). Under such conformation, the liberation of formate from the stabilized RuI-formate becomes less efficient compared to the nontethered case, consequently lowering the CO2-to-formate conversion activities during photoreaction. At the same time, such stabilization of Ru-formate species prevents the dehydration reaction route (η1-OCHO → η1-COOH on Ru metal) which leads toward the generation of Ru-CO species (key intermediate for CO production), eventually leading to the reduction of CO2-to-CO conversion activity.
Collapse
Affiliation(s)
- Changhyun Back
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Yunjeong Seo
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Sunghan Choi
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Min Su Choe
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Daehan Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Jin-Ook Baeg
- Artificial Photosynthesis Research Group, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea
| | - Ho-Jin Son
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Sang Ook Kang
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| |
Collapse
|
8
|
Lee D, Choi S, Choe MS, Kim SY, Park K, Kim CH, Son HJ, Kang SO. Photochemical CO 2-to-Formate/CO Conversion Catalyzed by Half-Metallocene Ir(III) Catalyst and Its Mechanistic Investigation. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daehan Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Sunghan Choi
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Min Su Choe
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - So-Yoen Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Kyutai Park
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Chul Hoon Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Ho-Jin Son
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Sang Ook Kang
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| |
Collapse
|
9
|
Choe MS, Choi S, Kim SY, Back C, Lee D, Lee HS, Kim CH, Son HJ, Kang SO. A Hybrid Ru(II)/TiO 2 Catalyst for Steadfast Photocatalytic CO 2 to CO/Formate Conversion Following a Molecular Catalytic Route. Inorg Chem 2021; 60:10235-10248. [PMID: 34196536 DOI: 10.1021/acs.inorgchem.1c00615] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we employed a molecular Ru(II) catalyst immobilized onto TiO2 particulates of (4,4'-Y2-bpy)RuII(CO)2Cl2 (RuP; Y = CH2PO(OH)2), as a hybrid catalyst system to secure the efficient and steady catalytic activity of a molecular bipyridyl Ru(II)-complex-based photocatalytic system for CO2 reduction. From a series of operando FTIR spectrochemical analyses, it was found that the TiO2-fixed molecular Ru(II) complex leads to efficient stabilization of the key monomeric intermediate, RuII-hydride (LRuII(H)(CO)2Cl), and suppresses the formation of polymeric Ru(II) complex (-(L(CO)2Ru-Ru(CO)2L)n-), which is a major deactivation product produced during photoreaction via the Ru-Ru dimeric route. Active promotion of the monomeric catalytic route in a hetero-binary system (IrPS + TiO2/RuP) that uses TiO2-bound Ru(II) complex as reduction catalyst led to highly increased activity as well as durability of photocatalytic behavior with respect to the homogeneous catalysis of free Ru(II) catalyst (IrPS + Ru(II) catalyst). This catalytic strategy produced maximal turnover numbers (TONs) of >4816 and >2228, respectively, for CO and HCOO- production in CO2-saturated N,N-dimethylformamide (DMF)/TEOA (16.7 vol % TEOA) solution containing a 0.1 M sacrificial electron donor.
Collapse
Affiliation(s)
- Min Su Choe
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Sunghan Choi
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - So-Yoen Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Changhyun Back
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Daehan Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Hyun Seok Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Chul Hoon Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Ho-Jin Son
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Sang Ook Kang
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| |
Collapse
|
10
|
Two Excited State Collaboration of Heteroleptic Ir(III)-Coumarin Complexes for H2 Evolution Dye-Sensitized Photocatalysts. ENERGIES 2021. [DOI: 10.3390/en14092425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Interfacial electron injection from a photoexcited surface-immobilized dye to a semiconductor substrate is a key reaction for dye-sensitized photocatalysts. We previously reported that the molecular orientation of heteroleptic Ir(III) photosensitizer on the TiO2 nanoparticle surface was important for efficient interfacial electron injection. In this work, to overcome the weak light absorption ability of heteroleptic Ir(III) photosensitizer and to improve the photoinduced charge-separation efficiency at the dye–semiconductor interface, we synthesized two heteroleptic Ir(III) complexes with different coumarin dyes, [Ir(C6)2(H4CPbpy)]Cl and [Ir(C30)2(H4CPbpy)]Cl [Ir-CX; X = 6 or 30; HC6 = 3-(2-enzothiazolyl)-7-(diethylamino)coumarin, HC30 = 3-(2-N-methylbenzimidazolyl)-7-N,N-diethylaminocoumarin, H4CPbpy = 4,4′-bis(methylphosphonic acid)-2,2′-bipyridine], as the cyclometalated ligands and immobilized them on the surface of Pt-cocatalyst-loaded TiO2 nanoparticles. Ultraviolet-visible absorption and emission spectroscopy revealed that the singlet ligand-centered (1LC) absorption and triplet 3LC emission bands of Ir-C30 occurred at shorter wavelengths than those of Ir-C6, while time-dependent density-functional-theory data suggested that the ligand-to-ligand charge transfer (LLCT) excited states of the two complexes were comparable. The photocatalytic H2 evolution activity of the Ir-C6-sensitized Pt-TiO2 nanoparticles (Ir-C6@Pt-TiO2) under visible light irradiation (λ > 420 nm) was higher than that of Ir-C30@Pt-TiO2. In contrast, their activities were comparable under irradiation with monochromatic light (λ = 450 ± 10 nm), which is absorbed comparably by both Ir-CX complexes. These results suggest that the internal conversion from the higher-lying LC state to the LLCT state effectively occurs in both Ir-CX complexes to trigger electron injection to TiO2.
Collapse
|
11
|
Takizawa SY, Katoh S, Okazawa A, Ikuta N, Matsushima S, Zeng F, Murata S. Triplet Excited States Modulated by Push-Pull Substituents in Monocyclometalated Iridium(III) Photosensitizers. Inorg Chem 2021; 60:4891-4903. [PMID: 33715380 DOI: 10.1021/acs.inorgchem.0c03802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of novel monocyclometalated [Ir(tpy)(btp)Cl]+ complexes (Ir2-Ir5) were synthesized using 2,2':6',2″-terpyridine (tpy) and 2-(2-pyridyl)benzo[b]thiophene (btp) ligands, as well as their derivatives bearing electron-donating tert-butyl (t-Bu) and electron-withdrawing trifluoromethyl (CF3) groups. Ir2-Ir5 exhibited visible-light absorption stronger than that of the known complex [Ir(tpy)(ppy)Cl]+ (Ir1; ppy = 2-phenylpyridine). Spectroscopic and computational studies revealed that two triplet states were involved in the excited-state dynamics. One is a weakly emissive and short-lived ligand to ligand charge-transfer (LLCT) state originating from the charge transfer from the btp to the tpy ligand. The other is a highly emissive and long-lived ligand-centered (LC) state localized on the btp ligand. Interestingly, the excited state dominant with 3LLCT was completely changed to the 3LC state upon the introduction of substituents on both the tpy and btp ligands. For instance, the excited state of the parent complex Ir2 was weakly emissive (Φ = 2%) and short-lived (τ = 110 ns) in CH2Cl2; conversely, Ir5, fully furnished with t-Bu and CF3 groups, displayed intense phosphorescence with a prolonged lifetime (τ = 14 μs). This difference became increasingly prominent when the solvent was changed to aqueous CH3CN, most probably due to the 3LLCT stabilization. The predominant excited-state nature was switchable between the 3LLCT and 3LC states depending on the substituents employed; this was demonstrated through investigations of Ir3 and Ir4, bearing either the t-Bu or the CF3 group, where the complexes exhibited properties intermediate between those of Ir2 and Ir5. All of the Ir(III) complexes were tested as photosensitizers in photocatalytic H2 evolution over a Co molecular catalyst, and Ir5 outperformed the others, including Ir1, due to improvement in the following key properties: visible-light-absorption ability, excited-state lifetime, and reductive power of the one-electron-reduced species against the catalyst.
Collapse
Affiliation(s)
- Shin-Ya Takizawa
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Sora Katoh
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Atsushi Okazawa
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Naoya Ikuta
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Satoko Matsushima
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Fanyang Zeng
- Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shigeru Murata
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
12
|
Hasegawa E, Nakamura S, Oomori K, Tanaka T, Iwamoto H, Wakamatsu K. Competitive Desulfonylative Reduction and Oxidation of α-Sulfonylketones Promoted by Photoinduced Electron Transfer with 2-Hydroxyaryl-1,3-dimethylbenzimidazolines under Air. J Org Chem 2021; 86:2556-2569. [PMID: 33492136 DOI: 10.1021/acs.joc.0c02666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Desulfonylation reactions of α-sulfonylketones promoted by photoinduced electron transfer with 2-hydroxyarylbenzimidazolines (BIH-ArOH) were investigated. Under aerobic conditions, photoexcited 2-hydroxynaphthylbenzimidazoline (BIH-NapOH) promotes competitive reduction (forming alkylketones) and oxidation (producing α-hydroxyketones) of sulfonylketones through pathways involving the intermediacy of α-ketoalkyl radicals. The results of an examination of the effects of solvents, radical trapping reagents, substituents of sulfonylketones, and a variety of hydroxyaryl- and aryl-benzimidazolines (BIH-ArOH and BIH-Ar) suggest that the oxidation products are produced by dissociation of α-ketoalkyl radicals from the initially formed solvent-caged radical ion pairs followed by reaction with molecular oxygen. In addition, the observations indicate that the reduction products are generated by proton or hydrogen atom transfer in solvent-caged radical ion pairs derived from benzimidazolines and sulfonylketones. The results also suggest that arylsulfinate anions arising by carbon-sulfur bond cleavage of sulfonylketone radical anions act as reductants in the oxidation pathway to convert initially formed α-hydroperoxyketones to α-hydroxyketones. Finally, density functional theory calculations were performed to explore the structures and properties of radical ions of sulfonylketones as well as BIH-NapOH.
Collapse
Affiliation(s)
- Eietsu Hasegawa
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Shyota Nakamura
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Kazuki Oomori
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Tsukasa Tanaka
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Hajime Iwamoto
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Kan Wakamatsu
- Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
| |
Collapse
|
13
|
Tang J, Dong W, Chen F, Deng L, Xian M. Rhodium catalysts with cofactor mimics for the biomimetic reduction of CN bonds. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00904d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bio-inspired reduction of CN bonds was successfully performed using rhodium catalysts containing cofactor mimics. The intramolecular cooperation between rhodium and cofactor mimics enabled the transformation with good selectivity. A plausible mechanism was also proposed.
Collapse
Affiliation(s)
- Jie Tang
- CAS Key Laboratory of Bio-based Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- P.R. China
| | - Wenjin Dong
- CAS Key Laboratory of Bio-based Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- P.R. China
| | - Fushan Chen
- College of Chemical Engineering
- Qingdao University of Sciences & Technology
- Qingdao
- P.R. China
| | - Li Deng
- CAS Key Laboratory of Bio-based Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- P.R. China
| | - Mo Xian
- CAS Key Laboratory of Bio-based Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- P.R. China
| |
Collapse
|
14
|
Jo JH, Choi S, Cheong H, Shin JY, Kim CH, Cho DW, Son H, Pac C, Kang SO. Ancillary Ligand Effects on Heteroleptic Ir
III
Dye in Dye‐Sensitized Photocatalytic CO
2
Reduction: Photoaccumulation of Charges on Arylated Bipyridine Ligand and Its Control on Catalytic Performance. Chemistry 2020; 26:16733-16754. [DOI: 10.1002/chem.202002575] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Ju Hyoung Jo
- Department of Advanced Materials Chemistry Korea University Sejong 30019 South Korea
| | - Sunghan Choi
- Department of Advanced Materials Chemistry Korea University Sejong 30019 South Korea
| | - Ha‐Yeon Cheong
- Department of Advanced Materials Chemistry Korea University Sejong 30019 South Korea
| | - Jae Yoon Shin
- Department of Advanced Materials Chemistry Korea University Sejong 30019 South Korea
| | - Chul Hoon Kim
- Department of Advanced Materials Chemistry Korea University Sejong 30019 South Korea
| | - Dae Won Cho
- Department of Advanced Materials Chemistry Korea University Sejong 30019 South Korea
| | - Ho‐Jin Son
- Department of Advanced Materials Chemistry Korea University Sejong 30019 South Korea
| | - Chyongjin Pac
- Department of Advanced Materials Chemistry Korea University Sejong 30019 South Korea
| | - Sang Ook Kang
- Department of Advanced Materials Chemistry Korea University Sejong 30019 South Korea
| |
Collapse
|
15
|
Hasegawa E, Yoshioka N, Tanaka T, Nakaminato T, Oomori K, Ikoma T, Iwamoto H, Wakamatsu K. Sterically Regulated α-Oxygenation of α-Bromocarbonyl Compounds Promoted Using 2-Aryl-1,3-dimethylbenzimidazolines and Air. ACS OMEGA 2020; 5:7651-7665. [PMID: 32280909 PMCID: PMC7144160 DOI: 10.1021/acsomega.0c00509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/05/2020] [Indexed: 05/08/2023]
Abstract
A debrominative oxygenation protocol has been developed for the conversion of α-bromo-α,α-dialkyl-substituted carbonyl compounds to their corresponding α-hydroxy analogues. For example, stirring a solution of α-bromoisobutyrophenone and 2-aryl-1,3-dimethylbenzimidazoline (BIH-Ar) at room temperature under an air atmosphere leads to the efficient formation of α-hydroperoxyisobutyrophenone, which can be converted to α-hydroxyisobutyrophenone using Me2S reduction. In contrast, reaction of α-bromoacetophenone under the same conditions produces the α-hydrogenated product acetophenone. α-Keto-alkyl and benzimidazolyl radicals (BI•-Ar), generated via dissociative electron transfer from BIH-Ar to α-bromoketone substrates, serve as key intermediates in the oxidation and reduction processes. The dramatic switch from hydrogenation to oxygenation is attributed to a steric effect of α-alkyl substituents, which causes hydrogen atom abstraction from sterically crowded BIH-Ar to α-keto-alkyl radicals to be slow and enable preferential reaction with molecular oxygen. Generation of the α-keto-alkyl radical and BI•-Ar intermediates in these process and their sterically governed hydrogen atom transfer reactions are supported by results arising from DFT calculations. Moreover, an electron spin resonance study showed that visible light irradiation of phenyl benzimidazoline (BIH-Ph) in the presence of molecular oxygen produces the benzimidazolyl radical (BI•-Ph). The addition of thiophenol into the reaction of α-bromoisobutyrophenone and BIH-Ph predominantly produced α-phenylthiolated isobutyrophenone even if a high concentration of molecular oxygen exists. Furthermore, the developed protocol was applied to other α-bromo-α,α-dialkylated carbonyl compounds.
Collapse
Affiliation(s)
- Eietsu Hasegawa
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
- E-mail:
| | - Naoki Yoshioka
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Tsukasa Tanaka
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Taisei Nakaminato
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Kazuki Oomori
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Tadaaki Ikoma
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Hajime Iwamoto
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Kan Wakamatsu
- Department
of Chemistry, Faculty of Science, Okayama
University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
| |
Collapse
|
16
|
Synthesis, structures, photophysical properties, and theoretical study of four cationic iridium(III) complexes with electron-withdrawing groups on the neutral ligands. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Kim PS, Choi S, Kim S, Jo JH, Lee YS, Kim B, Kim W, Choi W, Kim CH, Son H, Pac C, Kang SO. Organometallic Iridium(III) Complex Sensitized Ternary Hybrid Photocatalyst for CO
2
to CO Conversion. Chemistry 2019; 25:13609-13623. [DOI: 10.1002/chem.201903136] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/09/2019] [Indexed: 01/27/2023]
Affiliation(s)
- Pil Soo Kim
- Department of Advanced Materials ChemistryKorea University Sejong 30019 South Korea
| | - Sunghan Choi
- Department of Advanced Materials ChemistryKorea University Sejong 30019 South Korea
| | - So‐Yoen Kim
- Department of Advanced Materials ChemistryKorea University Sejong 30019 South Korea
| | - Ju Hyoung Jo
- Department of Advanced Materials ChemistryKorea University Sejong 30019 South Korea
| | - Yoon Seo Lee
- Department of Advanced Materials ChemistryKorea University Sejong 30019 South Korea
| | - Bupmo Kim
- Department of Chemical and Biological EngineeringSookmyung Women's University Seoul 04310 South Korea
- Division of Environmental Science and Engineering & Department of, Chemical EngineeringPohang University of, Science Technology (POSTECH) Pohang 37673 South Korea
| | - Wooyul Kim
- Department of Chemical and Biological EngineeringSookmyung Women's University Seoul 04310 South Korea
| | - Wonyong Choi
- Division of Environmental Science and Engineering & Department of, Chemical EngineeringPohang University of, Science Technology (POSTECH) Pohang 37673 South Korea
| | - Chul Hoon Kim
- Department of Advanced Materials ChemistryKorea University Sejong 30019 South Korea
| | - Ho‐Jin Son
- Department of Advanced Materials ChemistryKorea University Sejong 30019 South Korea
| | - Chyongjin Pac
- Department of Advanced Materials ChemistryKorea University Sejong 30019 South Korea
| | - Sang Ook Kang
- Department of Advanced Materials ChemistryKorea University Sejong 30019 South Korea
| |
Collapse
|
18
|
Jo M, Choi S, Jo JH, Kim SY, Kim PS, Kim CH, Son HJ, Pac C, Kang SO. Utility of Squaraine Dyes for Dye-Sensitized Photocatalysis on Water or Carbon Dioxide Reduction. ACS OMEGA 2019; 4:14272-14283. [PMID: 31508551 PMCID: PMC6733223 DOI: 10.1021/acsomega.9b01914] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/05/2019] [Indexed: 06/01/2023]
Abstract
Red light-sensitized squaraine (SQ) dyes were developed and incorporated into dye-sensitized catalysts (DSCs) with the formula of SQ/TiO2/Cat, and their efficacies were evaluated in terms of performance on either water or carbon dioxide reduction. Pt nanoparticles or fac-[Re(4,4'-bis-(diethoxyphosphorylmethyl)-2,2'-bipyridine)(CO)3Cl] were used as each catalytic center within the DSC frame of SQ/TiO2/Pt (Type I) or SQ/TiO2/Re(I) (Type II). In order to convey the potential utility of SQ in low energy sensitization, the following catalytic reductions were carried out under selective lower energy irradiation (>500 nm). Type I and II showed different catalytic performances, primarily due to the choice of solvent for each catalytic condition: hydrogenation was carried out in H2O, but CO2 reduction in dimethylformamide (DMF), and SQ was more stable in aqueous acid conditions for hydrogen generation than CO2 reduction in DMF. A suspension of Type I in 3 mL water containing 0.1 M ascorbic acid (pH = 2.66) resulted in efficient photocatalytic hydrogen evolution, producing 37 μmol of H2 for 4 h. However, in photocatalysis of Type II (SQ/TiO2/Re(I)) in 3 mL DMF containing 0.1 M 1,3-dimethyl-2-phenyl-1,3-dihydrobenzimidazole, the TiO2-bound SQ dyes were not capable of working as a low energy sensitizer because SQ was susceptible to dye decomposition in nucleophilic DMF conditions, resulting in DSC deactivation for the CO2 reduction. Even with the limitation of solvent, the DSC conditions for the utility of SQ have been established: the anchoring group effect of SQ with either phosphonic acid or carboxylic acid onto the TiO2 surface; energy alignment of SQ with the flat band potentials (E fb) of TiO2 semiconductors and the reduction power of electron donors; and the wavelength range of the light source used, particularly when >500 nm.
Collapse
|
19
|
From molecular metal complex to metal-organic framework: The CO2 reduction photocatalysts with clear and tunable structure. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.019] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Maeda K. Metal-Complex/Semiconductor Hybrid Photocatalysts and Photoelectrodes for CO 2 Reduction Driven by Visible Light. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1808205. [PMID: 31066136 DOI: 10.1002/adma.201808205] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/20/2019] [Indexed: 05/12/2023]
Abstract
CO2 reduction to carbon feedstocks using heterogeneous photocatalysts is an attractive means of addressing both climate change and the depletion of fossil fuels. Of particular importance is the development of a photosystem capable of functioning in response to visible light, which accounts for the majority of the solar spectrum, representing a kind of artificial photosynthesis. Hybrid systems comprising a metal complex and a semiconductor are promising because of the excellent electrochemical (and/or photocatalytic) activity of metal complexes during CO2 reduction and the ability of semiconductors to efficiently oxidize water to molecular O2 . Here, the development of hybrid photocatalysts and photoelectrodes for CO2 reduction in combination with water oxidation is described.
Collapse
Affiliation(s)
- Kazuhiko Maeda
- School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| |
Collapse
|
21
|
Woo SJ, Choi S, Kim SY, Kim PS, Jo JH, Kim CH, Son HJ, Pac C, Kang SO. Highly Selective and Durable Photochemical CO2 Reduction by Molecular Mn(I) Catalyst Fixed on a Particular Dye-Sensitized TiO2 Platform. ACS Catal 2019. [DOI: 10.1021/acscatal.8b03816] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sung-Jun Woo
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Sunghan Choi
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - So-Yoen Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Pil Soo Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Ju Hyoung Jo
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Chul Hoon Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Ho-Jin Son
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Chyongjin Pac
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Sang Ook Kang
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| |
Collapse
|
22
|
Dou H, Qin Y, Pan F, Long D, Rao X, Xu GQ, Zhang Y. Core–shell g-C3N4/Pt/TiO2 nanowires for simultaneous photocatalytic H2 evolution and RhB degradation under visible light irradiation. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01086f] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Core–shell structural diagram (a) and proposed photocatalytic mechanism (b) for the CN/Pt/TiO2 composite.
Collapse
Affiliation(s)
- Hailong Dou
- School of Materials and Energy
- Southwest University
- Chongqing 400715
- China
| | - Yumei Qin
- College of Chemistry and Molecular Engineering
- Peking University
- China
| | - Feng Pan
- College of Chemistry and Molecular Engineering
- Peking University
- China
| | - Dan Long
- School of Materials and Energy
- Southwest University
- Chongqing 400715
- China
| | - Xi Rao
- School of Materials and Energy
- Southwest University
- Chongqing 400715
- China
| | - Guo Qin Xu
- Department of Chemistry
- National University of Singapore
- Singapore 117543
- Singapore
| | - Yongping Zhang
- School of Materials and Energy
- Southwest University
- Chongqing 400715
- China
| |
Collapse
|
23
|
Sebata S, Takizawa SY, Ikuta N, Murata S. Photofunctions of iridium(iii) complexes in vesicles: long-lived excited states and visible-light sensitization for hydrogen evolution in aqueous solution. Dalton Trans 2019; 48:14914-14925. [DOI: 10.1039/c9dt03144h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Utilization of DPPC vesicles allows water-insoluble photoactive Ir(iii) complexes to be dispersed in bulk aqueous solution.
Collapse
Affiliation(s)
- Shinogu Sebata
- Department of Basic Science
- Graduate School of Arts and Sciences
- The University of Tokyo
- Tokyo 153-8902
- Japan
| | - Shin-ya Takizawa
- Department of Basic Science
- Graduate School of Arts and Sciences
- The University of Tokyo
- Tokyo 153-8902
- Japan
| | - Naoya Ikuta
- Department of Basic Science
- Graduate School of Arts and Sciences
- The University of Tokyo
- Tokyo 153-8902
- Japan
| | - Shigeru Murata
- Department of Basic Science
- Graduate School of Arts and Sciences
- The University of Tokyo
- Tokyo 153-8902
- Japan
| |
Collapse
|
24
|
Hasegawa E, Nagakura Y, Izumiya N, Matsumoto K, Tanaka T, Miura T, Ikoma T, Iwamoto H, Wakamatsu K. Visible Light and Hydroxynaphthylbenzimidazoline Promoted Transition-Metal-Catalyst-Free Desulfonylation of N-Sulfonylamides and N-Sulfonylamines. J Org Chem 2018; 83:10813-10825. [DOI: 10.1021/acs.joc.8b01536] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eietsu Hasegawa
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Yuto Nagakura
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Norihiro Izumiya
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Keisuke Matsumoto
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Tsukasa Tanaka
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Tomoaki Miura
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Tadaaki Ikoma
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
- Center for Coordination of Research Facilities, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Hajime Iwamoto
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Kan Wakamatsu
- Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
| |
Collapse
|
25
|
Tamura Y, Hisamatsu Y, Kazama A, Yoza K, Sato K, Kuroda R, Aoki S. Stereospecific Synthesis of Tris-heteroleptic Tris-cyclometalated Iridium(III) Complexes via Different Heteroleptic Halogen-Bridged Iridium(III) Dimers and Their Photophysical Properties. Inorg Chem 2018; 57:4571-4589. [DOI: 10.1021/acs.inorgchem.8b00323] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yuichi Tamura
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yosuke Hisamatsu
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Ayami Kazama
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kenji Yoza
- Bruker AXS K.K., 3-9 Moriya-cho, Yokohama, Kanagawa 221-0022, Japan
| | - Kyouhei Sato
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Reiko Kuroda
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Division of Medical-Science-Engineering Cooperation, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Imaging Frontier Center, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
26
|
Won DI, Lee JS, Ba Q, Cho YJ, Cheong HY, Choi S, Kim CH, Son HJ, Pac C, Kang SO. Development of a Lower Energy Photosensitizer for Photocatalytic CO2 Reduction: Modification of Porphyrin Dye in Hybrid Catalyst System. ACS Catal 2018. [DOI: 10.1021/acscatal.7b02961] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dong-Il Won
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Jong-Su Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Qiankai Ba
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Yang-Jin Cho
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Ha-Yeon Cheong
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Sunghan Choi
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Chul Hoon Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Ho-Jin Son
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Chyongjin Pac
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Sang Ook Kang
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| |
Collapse
|
27
|
Sundin E, Abrahamsson M. Long-lived charge separation in dye–semiconductor assemblies: a pathway to multi-electron transfer reactions. Chem Commun (Camb) 2018; 54:5289-5298. [DOI: 10.1039/c8cc01071d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Key approaches to achieve long-lived charge separation and promote conduction band mediated electron transfer in dye-sensitized semiconductor assemblies.
Collapse
Affiliation(s)
- Elin Sundin
- Department of Chemistry and Chemical Engineering
- Chalmers University of Technology
- 412 96 Gothenburg
- Sweden
| | - Maria Abrahamsson
- Department of Chemistry and Chemical Engineering
- Chalmers University of Technology
- 412 96 Gothenburg
- Sweden
| |
Collapse
|