1
|
den Hartog S, Neukermans S, Samanipour M, Ching HV, Breugelmans T, Hubin A, Ustarroz J. Electrocatalysis under a magnetic lens: A combined electrochemistry and electron paramagnetic resonance review. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
2
|
Ludwig S, Helmdach K, Hüttenschmidt M, Oberem E, Rabeah J, Villinger A, Ludwig R, Seidel WW. Metal/Metal Redox Isomerism Governed by Configuration. Chemistry 2020; 26:16811-16817. [PMID: 32648996 PMCID: PMC7756430 DOI: 10.1002/chem.202003120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 12/05/2022]
Abstract
A pair of diastereomeric dinuclear complexes, [Tp′(CO)BrW{μ‐η2‐C,C′‐κ2‐S,P‐C2(PPh2)S}Ru(η5‐C5H5)(PPh3)], in which W and Ru are bridged by a phosphinyl(thiolato)alkyne in a side‐on carbon P,S‐chelate coordination mode, were synthesized, separated and fully characterized. Even though the isomers are similar in their spectroscopic properties and redox potentials, the like‐isomer is oxidized at W while the unlike‐isomer is oxidized at Ru, which is proven by IR, NIR and EPR‐spectroscopy supported by spectro‐electrochemistry and computational methods. The second oxidation of the complexes was shown to take place at the metal left unaffected in the first redox step. Finally, the tipping point could be realized in the unlike isomer of the electronically tuned thiophenolate congener [Tp′(CO)(PhS)W{μ‐η2‐C,C′‐κ2‐S,P‐C2(PPh2)S}Ru(η5‐C5H5)‐(PPh3)], in which valence trapped WIII/RuII and WII/RuIII cationic species are at equilibrium.
Collapse
Affiliation(s)
- Stephan Ludwig
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059, Rostock, Germany
| | - Kai Helmdach
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059, Rostock, Germany
| | - Mareike Hüttenschmidt
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059, Rostock, Germany
| | - Elisabeth Oberem
- Department Life, Light & Matter, Universität Rostock, Albert-Einstein-Straße 25, 18059, Rostock, Germany
| | - Jabor Rabeah
- Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| | - Alexander Villinger
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059, Rostock, Germany
| | - Ralf Ludwig
- Department Life, Light & Matter, Universität Rostock, Albert-Einstein-Straße 25, 18059, Rostock, Germany
| | - Wolfram W Seidel
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059, Rostock, Germany
| |
Collapse
|
3
|
Haiduc I. Review. Inverse coordination. Organic nitrogen heterocycles as coordination centers. A survey of molecular topologies and systematization. Part 2. Six-membered rings. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1670349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Ionel Haiduc
- Facultatea de Chimie, Universitatea Babeş-Bolyai, Cluj-Napoca, Romania
| |
Collapse
|
4
|
Klein J, Beerhues J, Schweinfurth D, van der Meer M, Gazvoda M, Lahiri GK, Košmrlj J, Sarkar B. Versatile Coordination of Azocarboxamides: Redox-Triggered Change of the Chelating Binding Pocket in Ruthenium Complexes. Chemistry 2018; 24:18020-18031. [PMID: 30136748 DOI: 10.1002/chem.201803606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/22/2018] [Indexed: 11/09/2022]
Abstract
Azocarboxamides occupy a special place among azo ligands owing to their versatility for metal coordination. Herein ruthenium complexes with two different azocarboxamide ligands that differ in the presence (or not) of a coordinating pyridyl heterocycle are presented. By making full use of the O,N(amide), N(azo), and N(pyridyl) coordinating sites, the first diruthenium complex that is bridged by an azo ligand containing two different binding pockets was obtained. Moreover, it was conclusively proven that, in the mononuclear complexes, oxidation at the ruthenium center leads to a complete change of coordination at the chelating binding pocket. The complexes were characterized by NMR spectroscopy, mass spectrometry, and single-crystal X-ray diffraction. Additionally, the mechanism of the aforementioned redox-triggered change in the chelating binding pocket and the electronic structures of all the complexes were investigated by a combination of electrochemistry, UV/Vis/NIR/EPR spectroelectrochemistry, and DFT calculations. This is first instance in which a redox-driven change in the complete chelating binding pocket has been observed in a ruthenium complex as well as with azo-based ligands. These results thus show the potential of these versatile azocarboxamide ligands to act as redox-driven switches with possible relevance to electrocatalysis.
Collapse
Affiliation(s)
- Johannes Klein
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstrasse 34-36, 14195, Berlin, Germany
| | - Julia Beerhues
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstrasse 34-36, 14195, Berlin, Germany
| | - David Schweinfurth
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstrasse 34-36, 14195, Berlin, Germany
| | - Margarethe van der Meer
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstrasse 34-36, 14195, Berlin, Germany
| | - Martin Gazvoda
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Janez Košmrlj
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstrasse 34-36, 14195, Berlin, Germany
| |
Collapse
|
5
|
Hazari AS, Indra A, Lahiri GK. Mixed valency in ligand-bridged diruthenium frameworks: divergences and perspectives. RSC Adv 2018; 8:28895-28908. [PMID: 35547993 PMCID: PMC9084559 DOI: 10.1039/c8ra03206h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 08/01/2018] [Indexed: 11/21/2022] Open
Abstract
Emerging fundamental issues involving intramolecular electron transfer at the mixed valent diruthenium frameworks and its application prospects have been highlighted.
Collapse
Affiliation(s)
| | - Arindam Indra
- Department of Chemistry
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi
- India
| | - Goutam Kumar Lahiri
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| |
Collapse
|