1
|
Abeywickrama TM, Mao Y. Strong green upconversion emission from submicron spindle-shaped SrMoO 4:Yb 3+,Er 3. Dalton Trans 2024; 53:1014-1030. [PMID: 38088783 DOI: 10.1039/d3dt03213b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Upconversion luminescence (UCL) is a fluorescence process where two or more lower-energy photons convert into a higher-energy photon. Lanthanide (Ln3+)-doped UCL materials often suffer from weak luminescence, especially when directly synthesized by a hydrothermal (HT) process due to the existing hydroxyl group and undesirable arrangement of dopants within host lattices which quench luminescence and limit energy transfer. Therefore, additional heat treatment processes are required to enhance their UCL emission, even though direct hydrothermal synthesis without further heat treatment has the advantages of low energy consumption, fast synthesis, and wide applicability to generate UCL materials. In this study, via a HT process without annealing, we have produced Yb3+ and Er3+ co-doped SrMoO4 submicron spindles with a strong green UCL emission which can be seen with the naked eye, which HT produced oxide-based UCL materials often fail to demonstrate. We have investigated different HT synthesis conditions, such as temperature, time, pH and dopant composition, which control the nucleation, growth, lattice structure arrangement, and ultimately their UCL properties through XRD, SEM, EDS and UCL measurements. The bright green UCL from the SrMoO4:Yb,Er submicron spindles is further enhanced by post-synthesis annealing within a molten NaNO3/KNO3 system to prevent particle size growth. The green UCL intensity from the annealed SrMoO4:Yb,Er submicron spindles surpasses samples produced by the solid-state method and is comparable to that from the commercial NaYF4:Yb,Er sample. We have further studied the temperature-dependent luminescence of both the HT-prepared and molten-salt annealed SrMoO4:Yb,Er submicron spindle samples. The strong UCL from our SrMoO4:Yb,Er submicron spindles could warrant their candidacy for bioimaging and anticounterfeiting applications.
Collapse
Affiliation(s)
- Thulitha M Abeywickrama
- Department of Chemistry, Illinois Institute of Technology, 3105 South Dearborn Street, Chicago, IL 60616, USA.
| | - Yuanbing Mao
- Department of Chemistry, Illinois Institute of Technology, 3105 South Dearborn Street, Chicago, IL 60616, USA.
| |
Collapse
|
2
|
Huang QQ, Zhang LL, Wu P, Zhang MC, Liu JL, Wu JS, Pei WB, Ren XM. The morphology, crystal structure and oxygen evolution reaction electrocatalysis performance of scandium-doped MIL-101(Fe). J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
3
|
Godoy AA, Gomez GE, Miranda CD, Illescas M, Barja BC, Vega D, Bernini MC, Narda GE. Strong Red Up‐Conversion Emission in Thin Film Devices Based on Rare‐Earth Oxides Obtained from Templating 2D Coordination Networks. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202101025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Agustín A. Godoy
- Instituto de Investigaciones en Tecnología Química (INTEQUI-CONICET) Universidad Nacional de San Luis 5700 San Luis Argentina
| | - Germán E. Gomez
- Instituto de Investigaciones en Tecnología Química (INTEQUI-CONICET) Universidad Nacional de San Luis 5700 San Luis Argentina
| | - Carlos D. Miranda
- Instituto de Investigaciones en Tecnología Química (INTEQUI-CONICET) Universidad Nacional de San Luis 5700 San Luis Argentina
| | - Marcos Illescas
- Facultad de Cs Exactas y Naturales - Universidad de Buenos Aires Ciudad Universitaria C1428EHA- Buenos Aires Buenos Aires Argentina
| | - Beatriz C. Barja
- Instituto de Química Física de los Materiales Medioambiente y Energía (INQUIMAE-CONICET) DQIAQF Universidad de Buenos Aires, Ciudad Universitaria C1428EHA- Buenos Aires Buenos Aires Argentina
| | - Daniel Vega
- Gerencia de Investigación y Aplicaciones Centro Atómico Constituyentes Comisión Nacional de Energía Atómica Av. Gral. Paz 1499 1650 San Martín, Buenos Aires Argentina
| | - María C. Bernini
- Instituto de Investigaciones en Tecnología Química (INTEQUI-CONICET) Universidad Nacional de San Luis 5700 San Luis Argentina
| | - Griselda E. Narda
- Instituto de Investigaciones en Tecnología Química (INTEQUI-CONICET) Universidad Nacional de San Luis 5700 San Luis Argentina
| |
Collapse
|
4
|
Feng L, Pang J, She P, Li JL, Qin JS, Du DY, Zhou HC. Metal-Organic Frameworks Based on Group 3 and 4 Metals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004414. [PMID: 32902012 DOI: 10.1002/adma.202004414] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/25/2020] [Indexed: 06/11/2023]
Abstract
Metal-organic frameworks (MOFs) based on group 3 and 4 metals are considered as the most promising MOFs for varying practical applications including water adsorption, carbon conversion, and biomedical applications. The relatively strong coordination bonds and versatile coordination modes within these MOFs endow the framework with high chemical stability, diverse structures and topologies, and interesting properties and functions. Herein, the significant progress made on this series of MOFs since 2018 is summarized and an update on the current status and future trends on the structural design of robust MOFs with high connectivity is provided. Cluster chemistry involving Y, lanthanides (Ln, from La to Lu), actinides (An, from Ac to Lr), Ti, and Zr is initially introduced. This is followed by a review of recently developed MOFs based on group 3 and 4 metals with their structures discussed based on the types of inorganic or organic building blocks. The novel properties and arising applications of these MOFs in catalysis, adsorption and separation, delivery, and sensing are highlighted. Overall, this review is expected to provide a timely summary on MOFs based on group 3 and 4 metals, which shall guide the future discovery and development of stable and functional MOFs for practical applications.
Collapse
Affiliation(s)
- Liang Feng
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Jiandong Pang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Ping She
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jia-Luo Li
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Jun-Sheng Qin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| | - Dong-Ying Du
- National and Local United Engineering Lab for Power Battery, Department of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843-3003, USA
| |
Collapse
|
5
|
Xu H, Liu R, Zhu Y, Li J, Wan C, Zhang H, Ouyang C, Zhong S. An Sc-based coordination polymer with concaved superstructures: preparation, formation mechanism, conversion, and their electrochemistry properties. CrystEngComm 2020. [DOI: 10.1039/d0ce00086h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Scandium-based coordination polymer octahedrons with concaved surfaces have been fabricated. The formation mechanism was also investigated. Sc2O3 octahedrons were obtained after simple calcination in a N2 atmosphere.
Collapse
Affiliation(s)
- Hualan Xu
- Analytical and Testing Center
- Jiangxi Normal University
- Nanchang 330022
- China
| | - Ran Liu
- Research Center for Ultrafine Powder Materials
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- China
| | - Yongmei Zhu
- Analytical and Testing Center
- Jiangxi Normal University
- Nanchang 330022
- China
| | - Jinjiang Li
- Analytical and Testing Center
- Jiangxi Normal University
- Nanchang 330022
- China
| | - Changfeng Wan
- Analytical and Testing Center
- Jiangxi Normal University
- Nanchang 330022
- China
| | - Hang Zhang
- Research Center for Ultrafine Powder Materials
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- China
| | - Chuying Ouyang
- Department of Physics
- Laboratory of Computational Materials Physics
- Jiangxi Normal University
- Nanchang
- P.R. China
| | - Shengliang Zhong
- Research Center for Ultrafine Powder Materials
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- China
| |
Collapse
|
6
|
Multicolor upconversion luminescence of Ln-doped Sc2O3 achieved by coordination geometry mediated RE-MOFs molecular alloys as precursor. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2019.05.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|