1
|
Jewula P, Grandmougin M, Choppin M, Tivelli AMC, Amati A, Rousselin Y, Karmazin L, Chambron J, Meyer M. Complexes of Fe(III) and Ga(III) Derived from the Cyclic 6‐ and 7‐Membered Hydroxamic Acids Found in Mixed Siderophores. Eur J Inorg Chem 2023. [DOI: 10.1002/ejic.202300038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Pawel Jewula
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) UMR 6302 CNRS Université de Bourgogne 9 avenue Alain Savary, BP 47870 21078 Dijon Cedex France
| | - Mickaël Grandmougin
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) UMR 6302 CNRS Université de Bourgogne 9 avenue Alain Savary, BP 47870 21078 Dijon Cedex France
| | - Mélanie Choppin
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) UMR 6302 CNRS Université de Bourgogne 9 avenue Alain Savary, BP 47870 21078 Dijon Cedex France
| | - Anna Maria Chiara Tivelli
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) UMR 6302 CNRS Université de Bourgogne 9 avenue Alain Savary, BP 47870 21078 Dijon Cedex France
| | - Agnese Amati
- Institut de Chimie de Strasbourg UMR 7177 CNRS Université de Strasbourg 1 rue Blaise Pascal, BP 296 R 8 67008 Strasbourg Cedex France
| | - Yoann Rousselin
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) UMR 6302 CNRS Université de Bourgogne 9 avenue Alain Savary, BP 47870 21078 Dijon Cedex France
| | - Lydia Karmazin
- Institut de Chimie de Strasbourg UMR 7177 CNRS Université de Strasbourg 1 rue Blaise Pascal, BP 296 R 8 67008 Strasbourg Cedex France
| | - Jean‐Claude Chambron
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) UMR 6302 CNRS Université de Bourgogne 9 avenue Alain Savary, BP 47870 21078 Dijon Cedex France
- Institut de Chimie de Strasbourg UMR 7177 CNRS Université de Strasbourg 1 rue Blaise Pascal, BP 296 R 8 67008 Strasbourg Cedex France
| | - Michel Meyer
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) UMR 6302 CNRS Université de Bourgogne 9 avenue Alain Savary, BP 47870 21078 Dijon Cedex France
| |
Collapse
|
2
|
Rahman ML, Sarjadi MS, Sarkar SM, Walsh DJ, Hannan JJ. Poly(hydroxamic acid) resins and their applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Kastelik-Hryniewiecka A, Jewula P, Bakalorz K, Kramer-Marek G, Kuźnik N. Targeted PET/MRI Imaging Super Probes: A Critical Review of Opportunities and Challenges. Int J Nanomedicine 2022; 16:8465-8483. [PMID: 35002239 PMCID: PMC8733213 DOI: 10.2147/ijn.s336299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022] Open
Abstract
Recently, the demand for hybrid PET/MRI imaging techniques has increased significantly, which has sparked the investigation into new ways to simultaneously track multiple molecular targets and improve the localization and expression of biochemical markers. Multimodal imaging probes have recently emerged as powerful tools for improving the detection sensitivity and accuracy-both important factors in disease diagnosis and treatment; however, only a limited number of bimodal probes have been investigated in preclinical models. Herein, we briefly describe the strengths and limitations of PET and MRI modalities and highlight the need for the development of multimodal molecularly-targeted agents. We have tried to thoroughly summarize data on bimodal probes available on PubMed. Emphasis was placed on their design, safety profiles, pharmacokinetics, and clearance properties. The challenges in PET/MR probe development using a number of illustrative examples are also discussed, along with future research directions for these novel conjugates.
Collapse
Affiliation(s)
- Anna Kastelik-Hryniewiecka
- Silesian University of Technology, Faculty of Chemistry, Gliwice, Poland
- Radiopharmacy and Preclinical PET Imaging Unit, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Pawel Jewula
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Karolina Bakalorz
- Silesian University of Technology, Faculty of Chemistry, Gliwice, Poland
| | - Gabriela Kramer-Marek
- Radiopharmacy and Preclinical PET Imaging Unit, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Nikodem Kuźnik
- Silesian University of Technology, Faculty of Chemistry, Gliwice, Poland
| |
Collapse
|
4
|
Sladkov V, Roques J, Meyer M. Assignment of complex species by affinity capillary electrophoresis: The case of Th(IV)-desferrioxamine B. Electrophoresis 2020; 41:1870-1877. [PMID: 32543780 DOI: 10.1002/elps.202000114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/08/2020] [Accepted: 06/13/2020] [Indexed: 12/11/2022]
Abstract
The electrophoretic mobility change of desferrioxamine B (DFO) was monitored by UV absorption spectrophotometry upon increasing the thorium(IV) concentration in the background electrolyte at two acidities ([HClO4 ]Tot = 0.0316 and 0.0100 M). These data enabled to assess the speciation model and to determine the equilibrium constant of [Th(DFO)H2 ]3+ at fixed ionic strength (I = 0.1 M (H,Na)ClO4 ). Affinity capillary electrophoresis (ACE) turned out to be most helpful in identifying the complexed species by ascertaining its charge and protonation state. The assignment of the correct stoichiometry relied on the reliable estimation of the electrophoretic mobility by assuming similar hydrodynamic radii for (DFO)H4 + and the chelate. The value of the apparent equilibrium constant (log β112 = 38.7 ± 0.4) obtained by ACE compares favorably well with those reported in the literature for thorium and a range of other metal ions, according to a linear free-energy relationship. This method is useful for studying metal-ligand binding equilibria and provides valuable information for further modelling the behavior of tetravalent actinides under environmental conditions. Structural information about the prevalent solution species in acidic conditions was gained by DFT calculations, confirming the bishydroxamato coordination mode of Th4+ by the diprotonated ligand.
Collapse
Affiliation(s)
- Vladimir Sladkov
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405, Orsay, France
| | - Jérôme Roques
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405, Orsay, France
| | - Michel Meyer
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR 6302, CNRS, Université Bourgogne-Franche-Comté, 9 Avenue Alain Savary, BP 47870, 21078, Dijon, Cedex, France
| |
Collapse
|
5
|
Kirby ME, Sonnenberg JL, Simperler A, Weiss DJ. Stability Series for the Complexation of Six Key Siderophore Functional Groups with Uranyl Using Density Functional Theory. J Phys Chem A 2020; 124:2460-2472. [PMID: 32092265 DOI: 10.1021/acs.jpca.9b10649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Determining stability constants of uranyl complexes with the principal functional groups in siderophores and identifying stability series is of great importance to predict which siderophore classes preferentially bind to UVI and, hence, impact uranium speciation in the environment. It also helps to develop resins for scavenging UVI from aqueous solutions. Here, we apply a recently developed computational approach to calculate log β values for a set of geochemically relevant uranium organometallic complexes using Density Functional Theory (DFT). We determined the stability series for catecholate, hydroxamate, α-hydroxycarboxylate, α-aminocarboxylate, hydroxy-phenyloxazolonate, and α-hydroxyimidazole with the uranyl cation. In this work, the stability constants (log β110) of α-hydroxyimidazolate and hydroxy-phenyloxazolonate are calculated for the first time. Our approach employed the B3LYP density functional approximation, aug-cc-pVDZ basis set for ligand atoms, MDF60 ECP for UVI, and the IEFPCM solvation model. DFT calculated log β110 were corrected using a previously established fitting equation. We find that the siderophore functional groups stability decreases in the order: α-hydroxycarboxylate bound via the α-hydroxy and carboxylate groups (log β110 = 17.08), α-hydroxyimidazolate (log β110 = 16.55), catecholate (log β110 = 16.43), hydroxamate (log β110 = 9.00), hydroxy-phenyloxazolonate (log β110 = 8.43), α-hydroxycarboxylate bound via the carboxylate group (log β110 = 7.51) and α-aminocarboxylate (log β110 = 4.73). We confirm that the stability for the binding mode of the functional groups decrease in the order: bidentate, monodentate via ligand O atoms, and monodentate via ligand N atoms. The stability series strongly suggests that α-hydroxyimidazolate is an important functional group that needs to be included when assessing uranyl mobility and removal from aqueous solutions.
Collapse
Affiliation(s)
- Matthew Edward Kirby
- Earth Science and Engineering, Imperial College London, London SW7 2BP, United Kingdom
| | | | - Alexandra Simperler
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Dominik Jakob Weiss
- Earth Science and Engineering, Imperial College London, London SW7 2BP, United Kingdom.,School of Earth, Energy & Environmental Sciences, Stanford University, Stanford, California 94305, United States of America
| |
Collapse
|
6
|
Götzke L, Schaper G, März J, Kaden P, Huittinen N, Stumpf T, Kammerlander KK, Brunner E, Hahn P, Mehnert A, Kersting B, Henle T, Lindoy LF, Zanoni G, Weigand JJ. Coordination chemistry of f-block metal ions with ligands bearing bio-relevant functional groups. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Ivanov AS, Parker BF, Zhang Z, Aguila B, Sun Q, Ma S, Jansone-Popova S, Arnold J, Mayes RT, Dai S, Bryantsev VS, Rao L, Popovs I. Siderophore-inspired chelator hijacks uranium from aqueous medium. Nat Commun 2019; 10:819. [PMID: 30778071 PMCID: PMC6379418 DOI: 10.1038/s41467-019-08758-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 01/25/2019] [Indexed: 01/07/2023] Open
Abstract
Over millennia, nature has evolved an ability to selectively recognize and sequester specific metal ions by employing a wide variety of supramolecular chelators. Iron-specific molecular carriers—siderophores—are noteworthy for their structural elegance, while exhibiting some of the strongest and most selective binding towards a specific metal ion. Development of simple uranyl (UO22+) recognition motifs possessing siderophore-like selectivity, however, presents a challenge. Herein we report a comprehensive theoretical, crystallographic and spectroscopic studies on the UO22+ binding with a non-toxic siderophore-inspired chelator, 2,6-bis[hydroxy(methyl)amino]-4-morpholino-1,3,5-triazine (H2BHT). The optimal pKa values and structural preorganization endow H2BHT with one of the highest uranyl binding affinity and selectivity among molecular chelators. The results of small-molecule standards are validated by a proof-of-principle development of the H2BHT-functionalized polymeric adsorbent material that affords high uranium uptake capacity even in the presence of competing vanadium (V) ions in aqueous medium. Development of simple uranyl recognition motifs possessing siderophore-like binding strength and selectivity presents a challenge. Here the authors show a comprehensive theoretical and experimental study on uranyl binding with a polymeric adsorbent material decorated with a non-toxic siderophore inspired small molecule chelator.
Collapse
Affiliation(s)
| | - Bernard F Parker
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,University of California, Berkeley, CA, 94720, USA
| | - Zhicheng Zhang
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | | | - Qi Sun
- University of South Florida, Tampa, FL, 33620, USA
| | - Shengqian Ma
- University of South Florida, Tampa, FL, 33620, USA
| | | | - John Arnold
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,University of California, Berkeley, CA, 94720, USA
| | | | - Sheng Dai
- Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | | | - Linfeng Rao
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Ilja Popovs
- Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
8
|
|
9
|
Nuzzo S, Twamley B, Platts JA, Baker RJ. Pseudohalide Tectons within the Coordination Sphere of the Uranyl Ion: Experimental and Theoretical Study of C-H···O, C-H···S, and Chalcogenide Noncovalent Interactions. Inorg Chem 2018. [PMID: 29542918 DOI: 10.1021/acs.inorgchem.7b02967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A series of uranyl thiocyanate and selenocyanate of the type [R4N]3[UO2(NCS)5] (R4 = nBu4, Me3Bz, Et3Bz), [Ph4P][UO2(NCS)3(NO3)] and [R4N]3[UO2(NCSe)5] (R4 = Me4, nPr4, Et3Bz) have been prepared and structurally characterized. The resulting noncovalent interactions have been examined and compared to other examples in the literature. The nature of these interactions is determined by the cation so that when the alkyl groups are small, chalcogenide···chalcogenide interactions are present, but this "switches off" when R = nPr and charge assisted U═O···H-C and S(e)···H-C hydrogen bonding remain the dominant interaction. Increasing the size of the chain to nBu results in only S···H-C interactions. The spectroscopic implications of these chalcogenide interactions have been explored in the vibrational and photophysical properties of the series [R4N]3[UO2(NCS)5] (R4 = Me4, Et4, nPr4, nBu4, Me3Bz, Et3Bz), [R4N]3[UO2(NCSe)5] (R4 = Me4, nPr4, Et3Bz) and [Et4N]4[UO2(NCSe)5][NCSe]. The data suggest that U═O···H-C interactions are weak and do not perturb the uranyl moiety. While the chalcogenide interactions do not influence the photophysical properties, a coupling of the U═O and δ(NCS) or δ(NCSe) vibrational modes is observed in the 77 K solid state emission spectra. A theoretical examination of representative examples of Se···Se, C-H···Se, and C-H···O═U by molecular electrostatic potentials and NBO and AIM methodologies gives a deeper understanding of these weak interactions. C-H···Se are individually weak but C-H···O═U interactions are even weaker, supporting the idea that the -yl oxo's are weak Lewis bases. An Atoms in Molecules study suggests that the chalcogenide interaction is similar to lone pair···π or fluorine···fluorine interactions. An oxidation of the NCS ligands to form [(UO2)(SO4)2(H2O)4]·3H2O was also noted.
Collapse
Affiliation(s)
- Stefano Nuzzo
- School of Chemistry , University of Dublin, Trinity College , Dublin 2 , Ireland
| | - Brendan Twamley
- School of Chemistry , University of Dublin, Trinity College , Dublin 2 , Ireland
| | - James A Platts
- School of Chemistry, Main Building , Cardiff University , Park Place , Cardiff CF10 3AT , U.K
| | - Robert J Baker
- School of Chemistry , University of Dublin, Trinity College , Dublin 2 , Ireland
| |
Collapse
|
10
|
Platts JA, Baker RJ. Non-covalent interactions of uranyl complexes: a theoretical study. Phys Chem Chem Phys 2018; 20:15380-15388. [DOI: 10.1039/c8cp02444h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ab initio and DFT data quantify the ability of model uranyl complexes to engage in hydrogen- and halogen-bonding, quantifying the weakness of U–Oyl as an acceptor but the strength of equatorial OH2 as a donor.
Collapse
Affiliation(s)
- James A. Platts
- School of Chemistry
- Cardiff University
- Park Place
- Cardiff CF10 3AT
- UK
| | - Robert J. Baker
- School of Chemistry
- University of Dublin
- Trinity College
- Dublin 2
- Ireland
| |
Collapse
|
11
|
Sornosa-Ten A, Jewula P, Fodor T, Brandès S, Sladkov V, Rousselin Y, Stern C, Chambron JC, Meyer M. Effects of preorganization in the chelation of UO22+by hydroxamate ligands: cyclic PIPO−vs.linear NMA−. NEW J CHEM 2018. [DOI: 10.1039/c8nj00166a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Thanks to preorganization, 1,2-PIPOH, the six-membered ring cyclic hydroxamic acid, binds uranyl six times more strongly than its linear, methyl-substituted homolog (NMAH).
Collapse
Affiliation(s)
- Alejandra Sornosa-Ten
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB)
- UMR 6302
- CNRS
- Université de Bourgogne – Franche-Comté
- 21078 Dijon Cedex
| | - Pawel Jewula
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB)
- UMR 6302
- CNRS
- Université de Bourgogne – Franche-Comté
- 21078 Dijon Cedex
| | - Tamas Fodor
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB)
- UMR 6302
- CNRS
- Université de Bourgogne – Franche-Comté
- 21078 Dijon Cedex
| | - Stéphane Brandès
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB)
- UMR 6302
- CNRS
- Université de Bourgogne – Franche-Comté
- 21078 Dijon Cedex
| | - Vladimir Sladkov
- Institut de Physique Nucléaire d'Orsay (IPNO)
- UMR 8608
- CNRS
- Université Paris Sud
- 91406 Orsay Cedex
| | - Yoann Rousselin
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB)
- UMR 6302
- CNRS
- Université de Bourgogne – Franche-Comté
- 21078 Dijon Cedex
| | - Christine Stern
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB)
- UMR 6302
- CNRS
- Université de Bourgogne – Franche-Comté
- 21078 Dijon Cedex
| | - Jean-Claude Chambron
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB)
- UMR 6302
- CNRS
- Université de Bourgogne – Franche-Comté
- 21078 Dijon Cedex
| | - Michel Meyer
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB)
- UMR 6302
- CNRS
- Université de Bourgogne – Franche-Comté
- 21078 Dijon Cedex
| |
Collapse
|