1
|
Vipanchi, Vignesh KR, Armenis AS, Alexandropoulos DI, Stamatatos TC. Elevating the Performance of Heterometallic 3d/4f SMMs: The Role of Diamagnetic Co III and Zn II Ions in Magnetization Dynamics. Chemphyschem 2024; 25:e202400385. [PMID: 38890803 DOI: 10.1002/cphc.202400385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/20/2024]
Abstract
Recent advances in the synthesis of 3d/4f Single-Molecule Magnets (SMMs) have revealed the effective role of incorporating diamagnetic CoIII or ZnII ions to enhance the magnetic properties of LnIII ions. This concept highlights notable examples of CoIII/LnIII and ZnII/LnIII SMMs documented in the recent literature, illustrating how the selection of various peripheral and/or bridging ligands can modulate the magnetic anisotropy of 4f metal ions, thereby increasing their energy barriers.
Collapse
Affiliation(s)
- Vipanchi
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, Knowledge city, S.A.S. Nagar, Mohali, Punjab, 140306, India
| | - Kuduva R Vignesh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, Knowledge city, S.A.S. Nagar, Mohali, Punjab, 140306, India
| | | | | | | |
Collapse
|
2
|
Gharu A, Vignesh KR. Theoretical exploration of single-molecule magnetic and single-molecule toroic behaviors in peroxide-bridged double-triangular {MII3LnIII3} (M = Ni, Cu and Zn; Ln = Gd, Tb and Dy) complexes. Dalton Trans 2024. [PMID: 39087311 DOI: 10.1039/d4dt01800a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Detailed state-of-the-art ab initio and density functional theory (DFT) calculations have been undertaken to understand both Single-Molecule Magnetic (SMM) and Single-Molecule Toroic (SMT) behaviors of fascinating 3d-4f {M3Ln3} triangular complexes having the molecular formula [MII3LnIII3(O2)L3(PyCO2)3](OH)2(ClO4)2·8H2O (with M = Zn; Ln = Dy (1), Tb (2) & Gd (3) and M = Cu; Ln = Dy (4), Tb (5) & Gd (6)) and [Ni3Ln3(H2O)3(mpko)9(O2)(NO3)3](ClO4)·3CH3OH·3CH3CN (Ln = Dy (7), Tb (8), and Gd (9)) [mpkoH = 1-(pyrazin-2-yl)ethanone oxime]. All these complexes possess a peroxide ligand that bridges the {LnIII3} triangle in a μ3-η3:η3 fashion and the oxygen atoms/oxime of co-ligands that connect each MII ion to the {LnIII3} triangle. Through our computational studies, we tried to find the key role of the peroxide bridge and how it affects the SMM and SMT behavior of these complexes. Primarily, ab initio Complete Active Space Self-Consistent Field (CASSCF) SINGLE_ANISO + RASSI-SO + POLY_ANISO calculations were performed on 1, 2, 4, 5, 7, and 8 to study the anisotropic behavior of each Ln(III) ion, to derive the magnetic relaxation mechanism and to calculate the LnIII-LnIII and CuII/NiII-LnIII magnetic coupling constants. DFT calculations were also performed to validate these exchange interactions (J) by computing the GdIII-GdIII and CuII/NiII-GdIII interactions in 3, 6, and 9. Our calculations explained the experimental magnetic relaxation processes and the magnetic exchange interactions for all the complexes, which also strongly imply that the peroxide bridge plays a role in the SMM behavior observed in these systems. On the other hand, this peroxide bridge does not support the SMT behavior. To investigate the effect of bridging ions in {M3Ln3} systems, we modeled a {ZnII3DyIII3} complex (1a) with a hydroxide ion replacing the bridged peroxide ion in complex 1 and considered a hydroxide-bridged {CoIII3DyIII3} complex (10) having the formula [Co3Dy3(OH)4(OOCCMe3)6(teaH)3(H2O)3](NO3)2·H2O. We discovered that as compared to the LoProp charges of the peroxide ion, the greater negative charges on the bridging hydroxide ion reduce quantum tunneling of magnetization (QTM) effects, enabling more desirable SMM characteristics and also leading to good SMT behavior.
Collapse
Affiliation(s)
- Amit Gharu
- Department of Chemical Sciences, IISER Mohali, Sector-81, Knowledge city, S.A.S. Nagar, Mohali-140306, Punjab, India.
| | - Kuduva R Vignesh
- Department of Chemical Sciences, IISER Mohali, Sector-81, Knowledge city, S.A.S. Nagar, Mohali-140306, Punjab, India.
| |
Collapse
|
3
|
Bazhina ES, Shmelev MA, Babeshkin KA, Efimov NN, Kiskin MA, Eremenko IL. Two families of Ln(III)-V(IV) compounds (Ln(III) = Eu, Tb, Dy, Ho) of different structural types mediated by Rb+ and Cs+ cations: Slow magnetic relaxation of Eu(III)- and Ho(III)-containing members. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
4
|
Xu X, Xu F. A Heniconuclear {Mn 21} Cluster-Based Coordination Polymer with Manganese(II) Linkers Showing High Proton Conductivity. Inorg Chem 2022; 61:16038-16044. [PMID: 36166315 DOI: 10.1021/acs.inorgchem.2c02441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An unprecedented metal-linked cluster-based coordination polymer, composed of heniconuclear {Mn21} clusters and Mn(II) ions as the nodes and linkers, respectively, was self-assembled from a facile aqueous synthesis. The structural analysis reveals that the compound possesses a rare 3D 8-connected hex framework topology. Significantly, the compound demonstrates a high proton conductivity of 1.06 mS cm-1 at 373 K and 98% RH and exhibits a magnetocaloric effect with a magnetic entropy change of -9.94 J kg-1 K-1 at H = 80 kOe and T = 6.0 K.
Collapse
Affiliation(s)
- Xiongli Xu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Feng Xu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
5
|
Briganti M, Totti F, Andruh M. Hetero-tri-spin systems: an alternative stairway to the single molecule magnet heaven? Dalton Trans 2021; 50:15961-15972. [PMID: 34647933 DOI: 10.1039/d1dt02511b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The search for molecule-based magnetic materials has stimulated over the years the development of extremely rich coordination chemistry. Various combinations of spin carriers have been investigated and illustrated by a plethora of hetero-spin complexes: 3d-nd, 3d-4f, 2p-3d, and 2p-4f. More recently, two other classes of hetero-spin complexes have grown rapidly: compounds containing three different paramagnetic metal ions, or one radical and two different paramagnetic metal ions (all within the same molecular entity). Such new classes of systems represent a challenge both from a synthetic and theoretical point of view. Indeed, the synthetic control and the understanding of the spin topology effect on the overall magnetic behavior from first-principles is a difficult problem to be solved. The presence of different spin carriers in a single molecule makes such compounds particularly interesting because they offer the possibility of developing new magnetic properties, different from those of hetero-bi-spin or homo-spin systems. A critical overview taking the case of 2p-3d-4f complexes is the focus of this perspective paper. An original organic picture of the state-of-art in this field and new hints about the main directions that should be pursued to achieve hetero-tri-spin systems with large anisotropy barriers, low quantum tunneling of magnetization and, possibly, large blocking temperatures are provided in this article through an analysis based on numerically revisiting already published data and a critical survey of the literature reported so far. The reasons for the limited success obtained for the largely used 3d-2p-4f topology are given along with the ones explaining the failure for the 2p-4f-3d case. The still never synthesized linear 2p-3d-4f spin topology seemed to be the most promising one based on the results obtained for the unique closed hetero-tri-spin closed triangular system synthesized so far.
Collapse
Affiliation(s)
- Matteo Briganti
- Department of Chemistry "U. Schiff" and INSTM UdR Firenze, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy.
| | - Federico Totti
- Department of Chemistry "U. Schiff" and INSTM UdR Firenze, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy.
| | - Marius Andruh
- Inorganic Chemistry Laboratory, Faculty of Chemistry, University of Bucharest, Str. Dumbrava Rosie nr. 23, 020464 Bucharest, Romania. .,"Costin D. Nenitzescu" Institute of Organic Chemistry of the Romanian Academy, Spl. Independentei nr. 202B, Bucharest, Romania
| |
Collapse
|
6
|
Abstract
Theoretical calculation plays an important role in the emerging field of single-molecule magnets (SMMs). It can not only explain experimental phenomena but also provide synthetic guidance. This review focuses on discussing the computational methods that have been used in this field in recent years. The most common and effective method is the complete active space self-consistent field (CASSCF) approach, which predicts mononuclear SMM property very well. For bi- and multi-nuclear SMMs, magnetic exchange needs to be considered, and the exchange coupling constants can be obtained by Monte Carlo (MC) simulation, ab initio calculation via the POLY_ANISO program and density functional theory combined with a broken-symmetry (DFT-BS) approach. Further application for these calculation methods to design high performance SMMs is also discussed.
Collapse
|
7
|
Jin PB, Luo QC, Zhai YQ, Wang YD, Ma Y, Tian L, Zhang X, Ke C, Zhang XF, Lv Y, Zheng YZ. A study of cation-dependent inverse hydrogen bonds and magnetic exchange-couplings in lanthanacarborane complexes. iScience 2021; 24:102760. [PMID: 34278267 PMCID: PMC8271178 DOI: 10.1016/j.isci.2021.102760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/07/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022] Open
Abstract
Ten lanthanacarborane complexes were synthesized to study the rare B-Hδ-∙∙∙Mn+ inverse hydrogen bonds (IHBs). The average bonding energy of B-Hδ-∙∙∙Ln3+ is theoretically determined to be larger than 24 kJ/mol, which is comparable to moderately strong hydrogen bonds (21-56 kJ/mol). In addition to NMR and IR, magnetometer was used to study the exchange-coupling interaction via such B-Hδ-∙∙∙Ln3+ IHBs in detail, and the coupling constant is determined to be -2.0 cm-1, which is strong enough to compare with single-atom bridged dysprosium(III) complexes. Two imidazolin-iminato incorporated complexes have shown energy barrier for magnetization reversal larger than 1000 K, and the exchange-biasing effects are evident. Moreover, the bonding strengths of B-Hδ-∙∙∙Mn+ IHBs are cation-dependent. If M = Na, the B-Hδ-∙∙∙Na+ bonding energy is reduced to 14 kJ/mol, and the dimerization process is no longer reversible. The exchange-biasing effect is also disappeared. We believe such a finding extends our knowledge of IHBs.
Collapse
Affiliation(s)
- Peng-Bo Jin
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University Shenzhen Research School, State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and School of Chemistry, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, P.R. China
| | - Qian-Cheng Luo
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University Shenzhen Research School, State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and School of Chemistry, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, P.R. China
| | - Yuan-Qi Zhai
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University Shenzhen Research School, State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and School of Chemistry, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, P.R. China
| | - Yi-Dian Wang
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University Shenzhen Research School, State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and School of Chemistry, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, P.R. China
| | - Yan Ma
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University Shenzhen Research School, State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and School of Chemistry, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, P.R. China
| | - Lei Tian
- State Key Laboratory of Military Stomatology, National Clinical Research Center of Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, Department of Cranio-facial Trauma and Orthognathic Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, No. 145, Changle Xi Road, 710032 Xi'an, Shaanxi, P.R. China
| | - Xinliang Zhang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, 710054 Xi'an, Shaanxi, P.R. China
| | - Chao Ke
- Department of Orthopaedic Trauma, Honghui Hospital, College of Medicine, Xi'an Jiaotong University, 710054 Xi'an, Shaanxi, P.R. China
| | - Xu-Feng Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, 710061 Xi'an, Shaanxi, P.R. China
| | - Yi Lv
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, 710061 Xi'an, Shaanxi, P.R. China
| | - Yan-Zhen Zheng
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University Shenzhen Research School, State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and School of Chemistry, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
8
|
Wang HS, Zhang K, Song Y, Pan ZQ. Recent advances in 3d-4f magnetic complexes with several types of non-carboxylate organic ligands. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120318] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Wang HS, Chen Y, Hu ZB, Zhang K, Zhang Z, Song Y, Pan ZQ. Modulating the structural topologies and magnetic relaxation behaviour of the Mn–Dy compounds by using different auxiliary organic ligands. NEW J CHEM 2020. [DOI: 10.1039/d0nj03838e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A MnIII4DyIII complex and a one-dimensional chain containing MnIII2DyIII units have been obtained by using different combinations of organic ligands, and a slow magnetic relaxation behavior was observed for both complexes.
Collapse
Affiliation(s)
- Hui-Sheng Wang
- School of Chemistry and Environmental Engineering
- Key Laboratory of Green Chemical Process of Ministry of Education
- Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province
- Wuhan Institute of Technology
- Wuhan 430074
| | - Yong Chen
- School of Chemistry and Environmental Engineering
- Key Laboratory of Green Chemical Process of Ministry of Education
- Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province
- Wuhan Institute of Technology
- Wuhan 430074
| | - Zhao-Bo Hu
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
- Nanjing 210046
| | - Ke Zhang
- School of Chemistry and Environmental Engineering
- Key Laboratory of Green Chemical Process of Ministry of Education
- Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province
- Wuhan Institute of Technology
- Wuhan 430074
| | - Zaichao Zhang
- Jiangsu Key Laboratory for the Chemistry of Low-dimensional Materials
- College of Chemistry and Chemical Engineering
- Huaiyin Normal University
- Huai’an 223300
- P. R. China
| | - You Song
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
- Nanjing 210046
| | - Zhi-Quan Pan
- School of Chemistry and Environmental Engineering
- Key Laboratory of Green Chemical Process of Ministry of Education
- Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province
- Wuhan Institute of Technology
- Wuhan 430074
| |
Collapse
|
10
|
She S, Gu X, Yang Y. Field-induced single molecule magnet behavior of a three-dimensional Dy(III)-based complex. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.107584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Vignesh KR, Martin RB, Miller G, Rajaraman G, Murray KS, Langley SK. {MnIII2LnIII2} (Ln = Gd, La or Y) butterfly complexes: Ferromagnetic exchange observed between bis-μ-alkoxo bridged manganese(III) ions. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.05.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Rajeshkumar T, Jose R, Remya PR, Rajaraman G. Theoretical Studies on Trinuclear {MnIII2GdIII} and Tetranuclear {MnIII2GdIII2} Clusters: Magnetic Exchange, Mechanism of Magnetic Coupling, Magnetocaloric Effect, and Magneto–Structural Correlations. Inorg Chem 2019; 58:11927-11940. [DOI: 10.1021/acs.inorgchem.9b01503] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thayalan Rajeshkumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Reshma Jose
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Premaja R. Remya
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
13
|
Alexandropoulos DI, Vignesh KR, Xie H, Dunbar KR. Switching on single-molecule magnet properties of homoleptic sandwich tris(pyrazolyl)borate dysprosium(iii) cations via intermolecular dipolar coupling. Dalton Trans 2019; 48:10610-10618. [PMID: 31225555 DOI: 10.1039/c9dt00597h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Two new homoleptic DyIII compounds [Dy(TpMe2)2][DyCl3(TpMe2)]·CH2Cl2 (1) and [Dy(TpMe2)2]I (3) as well as a heteroleptic (NMe4)[DyCl3(TpMe2)] (2) (TpMe2 = tris(3,5-dimethylpyrazolyl)borate) species are reported. Magnetic studies revealed that 1 is a single-molecule magnet (SMM) with an energy barrier of Ueff = 80.7 K with τ0 = 6.2 × 10-7 s under a zero applied field. Compound 3 exhibits a Ueff of 13.5 K with τ0 = 1.6 × 10-6 s under a 0.08 T applied field. Ab initio CASSCF + RASSI-SO calculations were performed to further investigate the magnetic behavior of complexes 1-3. The results support experimental magnetic data for 1 and 3 and indicate that an intermolecular dipolar interaction of (zJ = -0.1 cm-1) is responsible for the SMM behavior of 1.
Collapse
Affiliation(s)
| | - Kuduva R Vignesh
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Haomiao Xie
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Kim R Dunbar
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| |
Collapse
|
14
|
Zhou H, Dong R, Wang Z, Wu L, Liu Y, Shen X. The Influence of d‐f Coupling on Slow Magnetic Relaxation in Ni
II
Ln
III
M
III
(Ln = Gd, Tb, Dy; M = Cr, Fe, Co) Clusters. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Hongbo Zhou
- School of Chemistry and Chemical Engineering Jiangsu University 212013 Zhenjiang China
| | - Rongyao Dong
- School of Chemistry and Chemical Engineering Jiangsu University 212013 Zhenjiang China
| | - Zhuowei Wang
- School of Chemistry and Chemical Engineering Jiangsu University 212013 Zhenjiang China
| | - Lei Wu
- School of Chemistry and Chemical Engineering Jiangsu University 212013 Zhenjiang China
| | - Yashu Liu
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology 212003 Zhenjiang China
| | - Xiaoping Shen
- School of Chemistry and Chemical Engineering Jiangsu University 212013 Zhenjiang China
| |
Collapse
|
15
|
Li LF, Kuang WW, Li YM, Zhu LL, Xu Y, Yang PP. A series of new octanuclear Ln8 clusters: magnetic studies reveal a significant cryogenic magnetocaloric effect and slow magnetic relaxation. NEW J CHEM 2019. [DOI: 10.1039/c8nj04231d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A series of new octanuclear Ln8 clusters. Magnetically, Gd8 exhibited a significant magnetocaloric effect and a magnetic entropy change is 32.49 J K−1 kg−1 for a field of 7 T at 2 K, while Dy8 exhibited a frequency dependent slow relaxation of magnetization at a zero applied direct current magnetic field.
Collapse
Affiliation(s)
- Ling-Fei Li
- College of Chemistry and Materials Science, Huaibei Normal University
- Huaibei
- People's Republic of China
| | - Wei-Wei Kuang
- College of Chemistry and Materials Science, Huaibei Normal University
- Huaibei
- People's Republic of China
| | - Yi-Ming Li
- College of Chemistry and Materials Science, Huaibei Normal University
- Huaibei
- People's Republic of China
| | - Li-Li Zhu
- College of Chemistry and Materials Science, Huaibei Normal University
- Huaibei
- People's Republic of China
| | - Yun Xu
- College of Chemistry and Materials Science, Huaibei Normal University
- Huaibei
- People's Republic of China
| | - Pei-Pei Yang
- College of Chemistry and Materials Science, Huaibei Normal University
- Huaibei
- People's Republic of China
- Anhui Key Laboratory of Energetic Materials, Huaibei Normal University
- Huaibei
| |
Collapse
|
16
|
Bazhina ES, Aleksandrov GG, Kiskin MA, Korlyukov AA, Efimov NN, Bogomyakov AS, Starikova AA, Mironov VS, Ugolkova EA, Minin VV, Sidorov AA, Eremenko IL. The First Series of Heterometallic Ln
III
‐V
IV
Complexes Based on Substituted Malonic Acid Anions: Synthesis, Structure and Magnetic Properties. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201801034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Evgeniya S. Bazhina
- N.S. Kurnakov Institute of General and Inorganic Chemistry the Russian Academy of Sciences Leninsky Ave. 31 119991 Moscow Russian Federation
| | - Grigory G. Aleksandrov
- N.S. Kurnakov Institute of General and Inorganic Chemistry the Russian Academy of Sciences Leninsky Ave. 31 119991 Moscow Russian Federation
| | - Mikhail A. Kiskin
- N.S. Kurnakov Institute of General and Inorganic Chemistry the Russian Academy of Sciences Leninsky Ave. 31 119991 Moscow Russian Federation
| | - Alexander A. Korlyukov
- A.N. Nesmeyanov Institute of Organoelement Compounds the Russian Academy of Sciences Vavilova St. 28 119991 Moscow Russian Federation
| | - Nikolay N. Efimov
- N.S. Kurnakov Institute of General and Inorganic Chemistry the Russian Academy of Sciences Leninsky Ave. 31 119991 Moscow Russian Federation
| | - Artem S. Bogomyakov
- International Tomography Center Siberian Branch of the Russian Academy of Sciences Institutskaya St. 3a 630090 Novosibirsk Russian Federation
| | - Alyona A. Starikova
- Institute of Physical and Organic Chemistry Southern Federal University Stachka Ave. 194/2 344090 Rostov‐on‐Don Russian Federation
| | - Vladimir S. Mironov
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” the Russian Academy of Sciences Leninsky Ave. 59 119333 Moscow Russian Federation
| | - Elena A. Ugolkova
- N.S. Kurnakov Institute of General and Inorganic Chemistry the Russian Academy of Sciences Leninsky Ave. 31 119991 Moscow Russian Federation
| | - Vadim V. Minin
- N.S. Kurnakov Institute of General and Inorganic Chemistry the Russian Academy of Sciences Leninsky Ave. 31 119991 Moscow Russian Federation
| | - Alexey A. Sidorov
- N.S. Kurnakov Institute of General and Inorganic Chemistry the Russian Academy of Sciences Leninsky Ave. 31 119991 Moscow Russian Federation
| | - Igor L. Eremenko
- N.S. Kurnakov Institute of General and Inorganic Chemistry the Russian Academy of Sciences Leninsky Ave. 31 119991 Moscow Russian Federation
| |
Collapse
|
17
|
Alexandropoulos DI, Vignesh KR, Dolinar BS, Dunbar KR. End-to-end azides as bridging ligands in lanthanide coordination chemistry: Magnetic and magnetocaloric properties of tetranuclear Ln4 (Ln = Gd, Dy) complexes exhibiting a rare rhombus topology. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.04.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Vignesh KR, Langley SK, Gartshore CJ, Borilović I, Forsyth CM, Rajaraman G, Murray KS. Rationalizing the sign and magnitude of the magnetic coupling and anisotropy in dinuclear manganese(iii) complexes. Dalton Trans 2018; 47:11820-11833. [PMID: 29951677 DOI: 10.1039/c8dt01410h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We have synthesised twelve manganese(iii) dinuclear complexes, 1-12, in order to understand the origin of magnetic exchange (J) between the metal centres and the magnetic anisotropy (D) of each metal ion using a combined experimental and theoretical approach. All twelve complexes contain the same bridging ligand environment of one μ-oxo and two μ-carboxylato, that helped us to probe how the structural parameters, such as bond distance, bond angle and especially Jahn-Teller dihedral angle affect the magnetic behaviour. Among the twelve complexes, we found ferromagnetic coupling for five and antiferromagnetic coupling for seven. DFT computed the J and ab initio methods computed the D parameter, and are in general agreement with the experimentally determined values. The dihedral angle between the two Jahn-Teller axes of the constituent MnIII ions are found to play a key role in determining the sign of the magnetic coupling. Magneto-structural correlations are developed by varying the Mn-O distance and the Mn-O-Mn angle to understand how the magnetic coupling changes upon these structural changes. Among the developed correlations, the Mn-O distance is found to be the most sensitive parameter that switches the sign of the magnetic coupling from negative to positive. The single-ion zero-field splitting of the MnIII centres is found to be negative for complexes 1-11 and positive for complex 12. However, the zero-field splitting of the S = 4 state for the ferromagnetic coupled dimers is found to be positive, revealing a significant contribution from the exchange anisotropy - a parameter which has long been ignored as being too small to be effective.
Collapse
|
19
|
Hu P, Wang XN, Jiang CG, Yu F, Li B, Zhuang GL, Zhang T. Nanosized Chiral [Mn6Ln2] Clusters Modeled by Enantiomeric Schiff Base Derivatives: Synthesis, Crystal Structures, and Magnetic Properties. Inorg Chem 2018; 57:8639-8645. [DOI: 10.1021/acs.inorgchem.8b01423] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Peng Hu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People’s Republic of China
| | - Xiao-ning Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People’s Republic of China
| | - Cheng-gang Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People’s Republic of China
| | - Fan Yu
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, Hubei 430056, People’s Republic of China
| | - Bao Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People’s Republic of China
| | - Gui-lin Zhuang
- Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, People’s Republic of China
| | - Tianle Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People’s Republic of China
| |
Collapse
|