1
|
Das Bairagya M, Ntipouna PS, Stewart NK, Elgrishi N. A molecular metal-organic cage as a recyclable sponge for PFOS removal from water. Chem Commun (Camb) 2024; 60:11084-11087. [PMID: 39291800 DOI: 10.1039/d4cc03945a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
A metal-organic cage (MOC) is shown to be an efficient molecular sponge for PFOS. A large association constant is observed for the 2 : 1 PFOS : MOC host-guest complex. Up to 12 equivalents of PFOS per MOC are removed from water. The recycling procedure developed allows for the recovery and reuse of the MOC.
Collapse
Affiliation(s)
- Monojit Das Bairagya
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | - P Sophie Ntipouna
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | - Natalie K Stewart
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | - Noémie Elgrishi
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| |
Collapse
|
2
|
Sunohara H, Koyamada K, Takezawa H, Fujita M. An Ir 3L 2 complex with anion binding pockets: photocatalytic E- Z isomerization via molecular recognition. Chem Commun (Camb) 2021; 57:9300-9302. [PMID: 34519311 DOI: 10.1039/d1cc03620c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A molecular host with photosensitizing centers provides photo-responsive host-guest properties based on its molecular recognition ability. Here, we construct a self-assembled photoactive Ir(iii) cage-shaped complex that contains anion binding pockets on its rim. The anion recognition ability of the complex enables efficient catalysis of the visible-light-induced E-Z isomerization of an anionic styrene derivative.
Collapse
Affiliation(s)
- Haruka Sunohara
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Kenta Koyamada
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Hiroki Takezawa
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Makoto Fujita
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan. .,Division of Advanced Molecular Science, Institute for Molecular Science (IMS) 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
| |
Collapse
|
3
|
Kumar U, Ramakrishna B, Varghese J, Vidhyapriya P, Sakthivel N, Manimaran B. Self-Assembled Manganese(I)-Based Selenolato-Bridged Tetranuclear Metallorectangles: Host-Guest Interaction, Anticancer, and CO-Releasing Studies. Inorg Chem 2021; 60:13284-13298. [PMID: 34357751 DOI: 10.1021/acs.inorgchem.1c01636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Supramolecular one-step self-assembly of dimanganese decacarbonyl, diaryl diselenide, and linear dipyridyl ligands (L = pyrazine (pz), 4,4'-bipyridine (bpy), and trans-1,2-bis(4-pyridyl)ethylene (bpe)) has resulted in the formation of selenolato-bridged manganese(I)-based metallorectangles. The synthesis of tetranuclear Mn(I)-based metallorectangles [{(CO)3Mn(μ-SeR)2Mn(CO)3}2(μ-L)2] (1-6) was facilitated by the oxidative addition of diaryl diselenide to dimanganese decacarbonyl with the simultaneous coordination of linear bidentate pyridyl linker in an orthogonal fashion. Formation of metallorectangles 1-6 was ascertained using IR, UV-vis, NMR spectroscopic techniques, and elemental analyses. The molecular mass of compounds 2, 4, and 6 were determined by ESI-mass spectrometry. Solid-state structural elucidation of 2, 3, and 6 by single-crystal X-ray diffraction methods revealed a rectangular framework wherein selenolato-bridges and pyridyl ligands define the shorter and longer edges, respectively. Also, the guest binding capability of metallorectangles 3 and 5 with different aromatic guests was studied using UV-vis absorption and emission spectrophotometric titration methods that affirmed strong host-guest binding interactions. The formation of the host-guest complex between metallorectangle 3 and pyrene has been explicitly corroborated by the single-crystal X-ray structure of 3•pyrene. Moreover, select metallorectangles 1-4 and 6 were studied to explore their anticancer activity, while CO-releasing ability of metallorectangle 2 was further appraised using equine heart myoglobin assay.
Collapse
Affiliation(s)
- Udit Kumar
- Department of Chemistry, Pondicherry University, Puducherry 605014, India
| | - Buthanapalli Ramakrishna
- Division of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Vandalur-Kelambakkam Road, Tamil Nadu 600127, India
| | - Jisna Varghese
- Department of Chemistry, Pondicherry University, Puducherry 605014, India
| | | | - Natarajan Sakthivel
- Department of Biotechnology, Pondicherry University, Puducherry 605014, India
| | - Bala Manimaran
- Department of Chemistry, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
4
|
Olumba ME, Na H, Friedman AE, Teets TS. Coordination-Driven Self-Assembly of Cyclometalated Iridium Squares Using Linear Aromatic Diisocyanides. Inorg Chem 2021; 60:5898-5907. [PMID: 33784459 DOI: 10.1021/acs.inorgchem.1c00312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, we demonstrate facile [4 + 4] coordination-driven self-assembly of cyclometalated iridium(III) using linear aryldiisocyanide bridging ligands (BLs). A family of nine new [Ir(C^N)2(μ-BL)]44+ coordination cages is described, where C^N is the cyclometalating ligand-2-phenylpyridine (ppy), 2-phenylbenzothiazole (bt), or 1-phenylisoquinoline (piq)-and BL is the diisocyanide BL, with varying spacer lengths between the isocyanide binding sites. These supramolecular coordination compounds are prepared via a one-pot synthesis, with isolated yields of 40-83%. 1H NMR spectroscopy confirms the selective isolation of a single product, which is affirmed to be the M4L4 square by high-resolution mass spectrometry. Detailed photophysical studies were carried out to reveal the nature of the luminescent triplet states in these complexes. In most cases, phosphorescence arises from the [Ir(C^N)2]+ nodes, with the emission color determined by the cyclometalating ligand. However, in two cases, the lowest-energy triplet state resides on the aromatic core of the BL, and weak phosphorescence from that state is observed. This work shows that aromatic diisocyanide ligands enable coordination-driven assembly of inert iridium(III) nodes under mild conditions, producing supramolecular coordination complexes with desirable photophysical properties.
Collapse
Affiliation(s)
- Morris E Olumba
- Department of Chemistry, University of Houston, 112 Fleming Building, Houston, Texas 77204-5003, United States
| | - Hanah Na
- Department of Chemistry, University of Houston, 112 Fleming Building, Houston, Texas 77204-5003, United States
| | - Alan E Friedman
- Department of Materials, Design, and Innovation, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Thomas S Teets
- Department of Chemistry, University of Houston, 112 Fleming Building, Houston, Texas 77204-5003, United States
| |
Collapse
|
5
|
Evariste S, Xu C, Calvez G, Lescop C. Straightforward coordination-driven supramolecular chemistry preparation of a discrete solid-state luminescent Cu4 polymetallic compact assembly based on conformationally flexible building blocks. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Dutton KG, Rothschild DA, Pastore DB, Emge TJ, Lipke MC. The Influence of Redox-Active Linkers on the Stability and Physical Properties of a Highly Electroactive Porphyrin Nanoprism. Inorg Chem 2020; 59:12616-12624. [DOI: 10.1021/acs.inorgchem.0c01719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kaitlyn G. Dutton
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Daniel A. Rothschild
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Dakota B. Pastore
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Thomas J. Emge
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Mark C. Lipke
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
7
|
Yonemoto DT, Papa CM, Mongin C, Castellano FN. Thermally Activated Delayed Photoluminescence: Deterministic Control of Excited-State Decay. J Am Chem Soc 2020; 142:10883-10893. [PMID: 32497428 DOI: 10.1021/jacs.0c03331] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Thermally activated photophysical processes are ubiquitous in numerous organic and metal-organic molecules, leading to chromophores with excited-state properties that can be considered an equilibrium mixture of the available low-lying states. Relative populations of the equilibrated states are governed by temperature. Such molecules have been devised as high quantum yield emitters in modern organic light-emitting diode technology and for deterministic excited-state lifetime control to enhance chemical reactivity in solar energy conversion and photocatalytic schemes. The recent discovery of thermally activated photophysics at CdSe nanocrystal-molecule interfaces enables a new paradigm wherein molecule-quantum dot constructs are used to systematically generate material with predetermined photophysical response and excited-state properties. Semiconductor nanomaterials feature size-tunable energy level engineering, which considerably expands the purview of thermally activated photophysics beyond what is possible using only molecules. This Perspective is intended to provide a nonexhaustive overview of the advances that led to the integration of semiconductor quantum dots in thermally activated delayed photoluminescence (TADPL) schemes and to identify important challenges moving into the future. The initial establishment of excited-state lifetime extension utilizing triplet-triplet excited-state equilibria is detailed. Next, advances involving the rational design of molecules composed of both metal-containing and organic-based chromophores that produce the desired TADPL are described. Finally, the recent introduction of semiconductor nanomaterials into hybrid TADPL constructs is discussed, paving the way toward the realization of fine-tuned deterministic control of excited-state decay. It is envisioned that libraries of synthetically facile composites will be broadly deployed as photosensitizers and light emitters for numerous synthetic and optoelectronic applications in the near future.
Collapse
Affiliation(s)
- Daniel T Yonemoto
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Christopher M Papa
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Cedric Mongin
- Laboratoire PPSM, ENS Paris-Saclay, 61 Avenue du Président Wilson, 94235 Cachan CEDEX, France
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
8
|
Evariste S, El Sayed Moussa M, Wong H, Calvez G, Yam VW, Lescop C. Straightforward Preparation of a Solid‐state Luminescent Cu
11
Polymetallic Assembly via Adaptive Coordination‐driven Supramolecular Chemistry. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.201900314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sloane Evariste
- INSA Rennes CNRS, ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226 Université Rennes 35000 Rennes France
| | - Mehdi El Sayed Moussa
- INSA Rennes CNRS, ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226 Université Rennes 35000 Rennes France
| | - Hok‐Lai Wong
- Institute of Molecular Functional Materials [Areas of Excellence Scheme, University Grants Committee (Hong Kong)] and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Guillaume Calvez
- INSA Rennes CNRS, ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226 Université Rennes 35000 Rennes France
| | - Vivian Wing‐Wah Yam
- Institute of Molecular Functional Materials [Areas of Excellence Scheme, University Grants Committee (Hong Kong)] and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Christophe Lescop
- INSA Rennes CNRS, ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226 Université Rennes 35000 Rennes France
| |
Collapse
|
9
|
Bhattacharyya S, Maity M, Chowdhury A, Saha ML, Panja SK, Stang PJ, Mukherjee PS. Coordination-Assisted Reversible Photoswitching of Spiropyran-Based Platinum Macrocycles. Inorg Chem 2020; 59:2083-2091. [PMID: 31971781 PMCID: PMC10615217 DOI: 10.1021/acs.inorgchem.9b03572] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Control over the stimuli-responsive behavior of smart molecular systems can influence their capability to execute complex functionalities. Herein, we report the development of a suite of spiropyran-based multi-stimuli-responsive self-assembled platinum(II) macrocycles (5-7), rendering coordination-assisted enhanced photochromism relative to the corresponding ligands. 5 showed shrinking and swelling during photoreversal, while 6 and 7 are fast and fatigue-free supramolecular photoswitches. 6 turns out to be a better fatigue-resistant photoswitch and can retain an intact photoswitching ability of up to 20 reversible cycles. The switching behavior of the macrocycles can also be precisely controlled by tuning the pH of the medium. Our present strategy for the construction of rapid stimuli-responsive supramolecular architectures via coordination-driven self-assembly represents an efficient route for the development of smart molecular switches.
Collapse
Affiliation(s)
- Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore , Karnataka 560012 India
| | - Manoranjan Maity
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore , Karnataka 560012 India
| | - Aniket Chowdhury
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore , Karnataka 560012 India
- Department of Industrial Chemistry , Mizoram University , Aizawl , Mizoram 796004 , India
| | - Manik Lal Saha
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| | - Sumit Kumar Panja
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore , Karnataka 560012 India
| | - Peter J Stang
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore , Karnataka 560012 India
| |
Collapse
|
10
|
El Sayed Moussa M, Khalil AM, Evariste S, Wong HL, Delmas V, Le Guennic B, Calvez G, Costuas K, Yam VWW, Lescop C. Intramolecular rearrangements guided by adaptive coordination-driven reactions toward highly luminescent polynuclear Cu(i) assemblies. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01595g] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Highly luminescent solid-state Cu6, Au2Cu10 and Pt4Cu11 derivatives are obtained in one step reaction thanks to adaptive coordination-driven supramolecular chemistry using pre-assembled flexible Cu(i) precursors.
Collapse
|
11
|
Jia WG, Cheng MX, Gao LL, Tan SM, Wang C, Liu X, Lee R. A ruthenium bisoxazoline complex as a photoredox catalyst for nitro compound reduction under visible light. Dalton Trans 2019; 48:9949-9953. [PMID: 31237588 DOI: 10.1039/c9dt00428a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An unreported ruthenium(ii) complex containing bisoxazoline ligands has been synthesized and characterized. To test the catalytic ability of the ruthenium complex, the synthesis of anilines from nitro compounds in the presence of a mild reducing agent sodium borohydride and visible light has been developed. Mechanistic studies involving the experiment and DFT calculations suggest that the reaction could involve a radical pathway with the assistance of a photoredox catalyst.
Collapse
Affiliation(s)
- Wei-Guo Jia
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Ming-Xia Cheng
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Li-Li Gao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Siu Min Tan
- Science and Mathematics Cluster, Singapore University of Technology and Design, 8 Somapah Rd, Singapore 487372.
| | - Chao Wang
- Science and Mathematics Cluster, Singapore University of Technology and Design, 8 Somapah Rd, Singapore 487372.
| | - Xiaogang Liu
- Science and Mathematics Cluster, Singapore University of Technology and Design, 8 Somapah Rd, Singapore 487372.
| | - Richmond Lee
- Science and Mathematics Cluster, Singapore University of Technology and Design, 8 Somapah Rd, Singapore 487372.
| |
Collapse
|
12
|
Na H, Song M, Teets TS. Facile Synthesis of Luminescent Ir–Pt–Ir Trimetallic Complexes. Chemistry 2019; 25:4833-4842. [DOI: 10.1002/chem.201900167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Indexed: 01/25/2023]
Affiliation(s)
- Hanah Na
- Department of ChemistryUniversity of Houston 3585 Cullen Blvd., Room 112 Houston TX 77204-5003 USA
| | - Mina Song
- Department of ChemistryUniversity of Houston 3585 Cullen Blvd., Room 112 Houston TX 77204-5003 USA
| | - Thomas S. Teets
- Department of ChemistryUniversity of Houston 3585 Cullen Blvd., Room 112 Houston TX 77204-5003 USA
| |
Collapse
|
13
|
Luis ET, Iranmanesh H, Beves JE. Photosubstitution reactions in ruthenium(II) trisdiimine complexes: Implications for photoredox catalysis. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.11.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Shi Z, Zhang D, Zhan S, Li M, Zheng J, Yang H, Zhou X, Li D. Trigonal Prismatic Cu
6
L
3
Coordination Cage: Encapsulation of Aromatic Molecules and Tuned Photoluminescence. Isr J Chem 2019. [DOI: 10.1002/ijch.201900006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Zhi‐Chun Shi
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - De‐Xiang Zhang
- Department of ChemistryShantou University Shantou 515063 P. R. China
| | - Shun‐Ze Zhan
- Department of ChemistryShantou University Shantou 515063 P. R. China
| | - Mian Li
- Department of ChemistryShantou University Shantou 515063 P. R. China
| | - Ji Zheng
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Hu Yang
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
- Department of ChemistryShantou University Shantou 515063 P. R. China
| | - Xiao‐Ping Zhou
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Dan Li
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| |
Collapse
|
15
|
Bhattacharyya S, Chowdhury A, Saha R, Mukherjee PS. Multifunctional Self-Assembled Macrocycles with Enhanced Emission and Reversible Photochromic Behavior. Inorg Chem 2019; 58:3968-3981. [DOI: 10.1021/acs.inorgchem.9b00039] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Aniket Chowdhury
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Rupak Saha
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
16
|
Rota Martir D, Zysman-Colman E. Photoactive supramolecular cages incorporating Ru(ii) and Ir(iii) metal complexes. Chem Commun (Camb) 2019; 55:139-158. [DOI: 10.1039/c8cc08327d] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cage compounds incorporating phosphorescent Ru(ii) and Ir(iii) metal complexes possess a highly desirable set of optoelectronic and physical properties. This feature article summarizes the recent work on cage assemblies containing these metal complexes as photoactive units, highlighting our contribution to this growing field.
Collapse
Affiliation(s)
- Diego Rota Martir
- Organic Semiconductor Centre
- EaStCHEM School of Chemistry
- University of St Andrews
- St Andrews
- UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre
- EaStCHEM School of Chemistry
- University of St Andrews
- St Andrews
- UK
| |
Collapse
|
17
|
Shakirova JR, Grachova EV, Gurzhiy VV, Thangaraj SK, Jänis J, Melnikov AS, Karttunen AJ, Tunik SP, Koshevoy IO. Heterometallic Cluster-Capped Tetrahedral Assemblies with Postsynthetic Modification of the Metal Cores. Angew Chem Int Ed Engl 2018; 57:14154-14158. [DOI: 10.1002/anie.201809058] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Julia R. Shakirova
- Department of Chemistry; St. Petersburg State University; Universitetskii pr. 26 198504 St. Petersburg Russia
| | - Elena V. Grachova
- Department of Chemistry; St. Petersburg State University; Universitetskii pr. 26 198504 St. Petersburg Russia
| | - Vladislav V. Gurzhiy
- Department of Chemistry; St. Petersburg State University; Universitetskii pr. 26 198504 St. Petersburg Russia
| | | | - Janne Jänis
- Department of Chemistry; University of Eastern Finland; 80101 Joensuu Finland
| | - Alexey S. Melnikov
- Centre for Nano- and Biotechnologies; Peter the Great St. Petersburg Polytechnic University; 195251 St. Petersburg Russia
| | - Antti J. Karttunen
- Department of Chemistry and Materials Science; Aalto University; 00076 Aalto Finland
| | - Sergey P. Tunik
- Department of Chemistry; St. Petersburg State University; Universitetskii pr. 26 198504 St. Petersburg Russia
| | - Igor O. Koshevoy
- Department of Chemistry; University of Eastern Finland; 80101 Joensuu Finland
| |
Collapse
|
18
|
Shakirova JR, Grachova EV, Gurzhiy VV, Thangaraj SK, Jänis J, Melnikov AS, Karttunen AJ, Tunik SP, Koshevoy IO. Heterometallic Cluster-Capped Tetrahedral Assemblies with Postsynthetic Modification of the Metal Cores. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Julia R. Shakirova
- Department of Chemistry; St. Petersburg State University; Universitetskii pr. 26 198504 St. Petersburg Russia
| | - Elena V. Grachova
- Department of Chemistry; St. Petersburg State University; Universitetskii pr. 26 198504 St. Petersburg Russia
| | - Vladislav V. Gurzhiy
- Department of Chemistry; St. Petersburg State University; Universitetskii pr. 26 198504 St. Petersburg Russia
| | | | - Janne Jänis
- Department of Chemistry; University of Eastern Finland; 80101 Joensuu Finland
| | - Alexey S. Melnikov
- Centre for Nano- and Biotechnologies; Peter the Great St. Petersburg Polytechnic University; 195251 St. Petersburg Russia
| | - Antti J. Karttunen
- Department of Chemistry and Materials Science; Aalto University; 00076 Aalto Finland
| | - Sergey P. Tunik
- Department of Chemistry; St. Petersburg State University; Universitetskii pr. 26 198504 St. Petersburg Russia
| | - Igor O. Koshevoy
- Department of Chemistry; University of Eastern Finland; 80101 Joensuu Finland
| |
Collapse
|
19
|
Luis ET, Iranmanesh H, Arachchige KSA, Donald WA, Quach G, Moore EG, Beves JE. Luminescent Tetrahedral Molecular Cages Containing Ruthenium(II) Chromophores. Inorg Chem 2018; 57:8476-8486. [PMID: 29969245 DOI: 10.1021/acs.inorgchem.8b01157] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have designed linear metalloligands which contain a central photoactive [Ru(N∧N)3]2+ unit bordered by peripheral metal binding sites. The combination of these metalloligands with Zn(II) and Fe(II) ions leads to heterometallic tetrahedral cages, which were studied by NMR spectroscopy, mass spectrometry, and photophysical methods. Like the parent metalloligands, the cages remain emissive in solution. This approach allows direct incorporation of the favorable properties of ruthenium(II) polypyridyl complexes into larger self-assembled structures.
Collapse
Affiliation(s)
- Ena T Luis
- School of Chemistry , UNSW Sydney , Sydney , 2052 Australia
| | | | | | | | - Gina Quach
- School of Chemistry and Molecular Biosciences, the University of Queensland , Brisbane , Queensland , 4072 Australia
| | - Evan G Moore
- School of Chemistry and Molecular Biosciences, the University of Queensland , Brisbane , Queensland , 4072 Australia
| | | |
Collapse
|
20
|
Hooley RJ. Rings and Things: The Magic of Building Self-Assembled Cages and Macrocycles. Inorg Chem 2018; 57:3497-3499. [DOI: 10.1021/acs.inorgchem.8b00553] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Richard J. Hooley
- Department of Chemistry, University of California—Riverside, Riverside, California 92521, United States
| |
Collapse
|
21
|
Rota Martir D, Cordes DB, Slawin AMZ, Escudero D, Jacquemin D, Warriner SL, Zysman-Colman E. A luminescent [Pd4Ru8]24+ supramolecular cage. Chem Commun (Camb) 2018; 54:6016-6019. [DOI: 10.1039/c8cc02104j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A phosphorescent cage of the form [Pd4Ru8]24+ is reported.
Collapse
Affiliation(s)
- Diego Rota Martir
- Organic Semiconductor Centre
- EaStCHEM School of Chemistry
- University of St Andrews
- UK
| | - David B. Cordes
- Organic Semiconductor Centre
- EaStCHEM School of Chemistry
- University of St Andrews
- UK
| | | | - Daniel Escudero
- CEISAM UMR CNRS 6230
- Université de Nantes
- 44322 Nantes Cedex 3
- France
| | - Denis Jacquemin
- CEISAM UMR CNRS 6230
- Université de Nantes
- 44322 Nantes Cedex 3
- France
| | | | - Eli Zysman-Colman
- Organic Semiconductor Centre
- EaStCHEM School of Chemistry
- University of St Andrews
- UK
| |
Collapse
|