1
|
Likhonina AE, Mamardashvili GM, Mamardashvili NZ. Synthesis and Design of Metalloporphyrin Oligomers with Temperature-Assisted Spectral-Luminescent Properties. RUSS J INORG CHEM+ 2024. [DOI: 10.1134/s0036023624600138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 12/16/2024]
|
2
|
Likhonina AE, Mamardashvili GM, Khodov IA, Mamardashvili NZ. Synthesis and Design of Hybrid Metalloporphyrin Polymers Based on Palladium (II) and Copper (II) Cations and Axial Complexes of Pyridyl-Substituted Sn(IV)Porphyrins with Octopamine. Polymers (Basel) 2023; 15:1055. [PMID: 36850338 PMCID: PMC9959591 DOI: 10.3390/polym15041055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Supramolecular metalloporphyrin polymers formed by binding tetrapyrrolic macrocycle peripheral nitrogen atoms to Pd(II) cations and Sn(IV)porphyrins extra-ligands reaction centers to Cu(II) cations were obtained and identified. The structure and the formation mechanism of obtained hydrophobic Sn(IV)-porphyrin oligomers and polymers in solution were established, and their resistance to UV radiation and changes in solution temperature was studied. It was shown that the investigated polyporphyrin nanostructures are porous materials with predominance cylindrical mesopores. Density functional theory (DFT) was used to geometrically optimize the experimentally obtained supramolecular porphyrin polymers. The sizes of unit cells in porphyrin tubular structures were determined and coincided with the experimental data. The results obtained can be used to create highly porous materials for separation, storage, transportation, and controlled release of substrates of different nature, including highly volatile, explosive, and toxic gases.
Collapse
Affiliation(s)
| | | | | | - Nugzar Z. Mamardashvili
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya St.1P, 153045 Ivanovo, Russia
| |
Collapse
|
3
|
Smith MR, Martin CB, Arumuganainar S, Gilman A, Koel BE, Sarazen ML. Mechanistic Elucidations of Highly Dispersed Metalloporphyrin Metal-Organic Framework Catalysts for CO 2 Electroreduction. Angew Chem Int Ed Engl 2023; 62:e202218208. [PMID: 36584349 DOI: 10.1002/anie.202218208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/17/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
Immobilization of porphyrin complexes into crystalline metal-organic frameworks (MOFs) enables high exposure of porphyrin active sites for CO2 electroreduction. Herein, well-dispersed iron-porphyrin-based MOF (PCN-222(Fe)) on carbon-based electrodes revealed optimal turnover frequencies for CO2 electroreduction to CO at 1 wt.% catalyst loading, beyond which the intrinsic catalyst activity declined due to CO2 mass transport limitations. In situ Raman suggested that PCN-222(Fe) maintained its structure under electrochemical bias, permitting mechanistic investigations. These revealed a stepwise electron transfer-proton transfer mechanism for CO2 electroreduction on PCN-222(Fe) electrodes, which followed a shift from a rate-limiting electron transfer to CO2 mass transfer as the potential increased from -0.6 V to -1.0 V vs. RHE. Our results demonstrate how intrinsic catalytic investigations and in situ spectroscopy are needed to elucidate CO2 electroreduction mechanisms on PCN-222(Fe) MOFs.
Collapse
Affiliation(s)
- Michael R Smith
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Clare B Martin
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Sonia Arumuganainar
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Ari Gilman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Bruce E Koel
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Michele L Sarazen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
4
|
Ma X, Liu Z, Yang Y, Zhu L, Deng J, Lu S, Li X, Dietrich AM. Aqueous degradation of artificial sweeteners saccharin and neotame by metal organic framework material. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143181. [PMID: 33183822 DOI: 10.1016/j.scitotenv.2020.143181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
The artificial sweeteners (ASs) saccharin (SAC) and neotame (NEO) are widely used across the globe and are considered as emerging contaminants in surface, ground, and drinking waters. To degrade SAC and NEO, the metal organic framework material Co-based bio-MOF-11 was prepared by hydrothermal reaction and used with peroxymonosulfate (PMS) activator. The effects of the initial concentration of SAC and NEO, bio-MOF-11-Co dosage, PMS concentration, initial pH, temperature, and competitive anions were determined. The results revealed that bio-MOF-11-Co effectively catalyzed the degradation of SAC and NEO and possessed good stability and recycling efficiency. The degradation reaction was effective from pH 3.6-9.8 and followed quasi-first-order kinetics with degradation rate constants of 0.001-0.013 min-1 for SAC and 0.03-0.52 min-1 for NEO. Increased temperature was conducive to the degradation of both artificial sweeteners. The presence of Cl- inhibited the degradation of SAC and NEO, while the presence of CO32- promoted their degradation. Electron paramagnetic resonance (EPR) and free radical quenching demonstrated that the primary free radicals were sulfate radicals ( [Formula: see text] ) and hydroxyl radicals (HO). The change of cobalt oxidation state and electron transfer in bio-MOF-11-Co mainly induces the production of [Formula: see text] . A plausible mechanism for degradation is [Formula: see text] and HO attack on CS bonds, NS bonds, and benzene rings.
Collapse
Affiliation(s)
- Xiaoyan Ma
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China.
| | - Zhanghua Liu
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Yulong Yang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Lidan Zhu
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Jing Deng
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Sijia Lu
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Xueyan Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Andrea M Dietrich
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| |
Collapse
|
5
|
Mamardashvili GM, Lazovskiy DA, Khodov IA, Efimov AE, Mamardashvili NZ. New Polyporphyrin Arrays with Controlled Fluorescence Obtained by Diaxial Sn(IV)-Porphyrin Phenolates Chelation with Cu 2+ Cation. Polymers (Basel) 2021; 13:829. [PMID: 33800405 PMCID: PMC7962819 DOI: 10.3390/polym13050829] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 02/05/2023] Open
Abstract
New coordination oligomers and polymers of Sn(IV)-tetra(4-sulfonatophenyl)porphyrin have been constructed by the chelation reaction of its diaxialphenolates with Cu2+. The structure and properties of the synthesized polyporphyrin arrays were investigated by 1H Nuclear Magnetic Resonance (1H NMR), Infra Red (IR), Ultra Violet - Visible (UV-Vis) and fluorescence spectroscopy, mass spectrometry, Powder X-Rays Diffraction (PXRD), Electron Paramagnetic Resonance (EPR), thermal gravimetric, elemental analysis, and quantum chemical calculations. The results show that the diaxial coordination of bidentate organic ligands (L-tyrazine and diaminohydroquinone) leads to the quenching of the tetrapyrrole chromophore fluorescence, while the chelation of the porphyrinate diaxial complexes with Cu2+ is accompanied by an increase in the fluorescence in the organo-inorganic hybrid polymers formed. The obtained results are of particular interest to those involved in creating new 'chemo-responsive' (i.e., selectively interacting with other chemical species as receptors, sensors, or photocatalysts) materials, the optoelectronic properties of which can be controlled by varying the number and connection type of monomeric fragments in the polyporphyrin arrays.
Collapse
Affiliation(s)
| | | | | | | | - Nugzar Z. Mamardashvili
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, Akademicheskaya st. 1, 153045 Ivanovo, Russia; (G.M.M.); (D.A.L.); (I.A.K.); (A.E.E.)
| |
Collapse
|
6
|
Mamardashvili GM, Lazovskiy DA, Khodov IA, Efimov AE, Mamardashvili NZ. New Polyporphyrin Arrays with Controlled Fluorescence Obtained by Diaxial Sn(IV)-Porphyrin Phenolates Chelation with Cu2+ Cation. Polymers (Basel) 2021. [DOI: https://doi.org/10.3390/polym13050829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
New coordination oligomers and polymers of Sn(IV)-tetra(4-sulfonatophenyl)porphyrin have been constructed by the chelation reaction of its diaxialphenolates with Cu2+. The structure and properties of the synthesized polyporphyrin arrays were investigated by 1H Nuclear Magnetic Resonance (1H NMR), Infra Red (IR), Ultra Violet - Visible (UV-Vis) and fluorescence spectroscopy, mass spectrometry, Powder X-Rays Diffraction (PXRD), Electron Paramagnetic Resonance (EPR), thermal gravimetric, elemental analysis, and quantum chemical calculations. The results show that the diaxial coordination of bidentate organic ligands (L-tyrazine and diaminohydroquinone) leads to the quenching of the tetrapyrrole chromophore fluorescence, while the chelation of the porphyrinate diaxial complexes with Cu2+ is accompanied by an increase in the fluorescence in the organo-inorganic hybrid polymers formed. The obtained results are of particular interest to those involved in creating new ‘chemo-responsive’ (i.e., selectively interacting with other chemical species as receptors, sensors, or photocatalysts) materials, the optoelectronic properties of which can be controlled by varying the number and connection type of monomeric fragments in the polyporphyrin arrays.
Collapse
|
7
|
Chen T, Ding J, Liu T, Li Q, Luo Y, Dong L, Du H, Fang M, Bao J, Wu Y. Two anionic Ni(II) porphyrinic metal−organic frameworks: Syntheses, flexibility and roles in visible-light photocatalytic CO2 reduction to CO in the Ru(bpy)3Cl2/TEA/CH3CN system. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Hanna L, Lockard JV. From IR to x-rays: gaining molecular level insights on metal-organic frameworks through spectroscopy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:483001. [PMID: 31387089 DOI: 10.1088/1361-648x/ab38da] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This topical review focuses on the application of several types of spectroscopy methods to a class of solid state materials called metal organic frameworks (MOFs). MOFs are self-assembled, porous crystalline materials composed of metal cluster nodes linked through coordination bonds with organic or organometallic molecular constituents. Their unique host-guest properties make them attractive for many adsorption-based applications such as gas storage and separation, catalysis, sensing and others. While much research focuses on the development and application of these materials, fundamental studies of MOF properties and molecular level host-guest interactions behind their functionality have become a significant research direction on its own. Spectroscopy methods are now ubiquitous tools in this pursuit. This review focuses on the application of three classes of spectroscopy methods to MOF materials: vibrational, optical electronic and x-ray spectroscopies. Following brief introductions to each method that include pertinent theory and experimental considerations, we present a broad overview of the types of MOF systems that have been studied, with specific examples and important new molecular level insights highlighted along the way. The current status of spectroscopic studies of MOFs is presented at the end along with some perspectives on the future directions in this area of research.
Collapse
Affiliation(s)
- Lauren Hanna
- Department of Chemistry, Rutgers University, Newark, NJ 07102, United States of America
| | | |
Collapse
|