1
|
Raposo-Hernández G, Sánchez Marcos E, Pappalardo RR, Martínez JM. Shedding light on the metal-phthalocyanine EXAFS spectra through classical and ab initio molecular dynamics. J Chem Phys 2023; 158:064110. [PMID: 36792519 DOI: 10.1063/5.0135944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Extended X-Ray Absorption Fine Structure (EXAFS) theoretical spectra for some 3d transition metal-phthalocyanines-FePc, NiPc, CuPc, and ZnPc-are presented. Their complexity and rigidity make them a good testbed for the development of theoretical strategies that can complement the difficulties present in the experimental spectrum fitting. Classical and ab initio molecular dynamics trajectories are generated and employed as a source of structural information to compute average spectra for each MPc species. The original ZnPc force field employed in the classical molecular dynamics simulations has been modified in order to improve the agreement with the experimental EXAFS spectrum, and the modification strategy-based on MP2 optimized structures-being extended to the rest of MPcs. Both types of trajectories, classical and ab initio, provide very similar results, showing in all cases the main features present in the experimental spectra despite the different simulation timescales employed. Spectroscopical information has been analyzed on the basis of shells and legs contributions, making possible the comparison with the experimental fitting approaches. According to the simulations results, the simple relationships employed in the fitting process to define the dependence of the Debye Waller factors associated with multiple scattering paths with those of single scattering paths are reasonable. However, a lack of multiple backscattering paths contributions is found due to the intrinsic rigidity of the chemical motif (macrocycle). Its consequences in the Debye Waller factors of the fitted contributions are discussed.
Collapse
Affiliation(s)
| | | | - Rafael R Pappalardo
- Departamento de Química Física, Universidad de Sevilla, 41012 Seville, Spain
| | - José M Martínez
- Departamento de Química Física, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
2
|
Zhang WJ, Wang C, Wang K, Zhang P, Hu SX. The stability and chemical bonding of a series tridentate ligand-actinyl complexes: [AnO2(L)2]2+ (An: U and Am). J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Raposo-Hernández G, Martínez JM, Pappalardo RR, Den Auwer C, Sánchez Marcos E. A Coupled EXAFS-Molecular Dynamics Study on PuO 2+ and NpO 2+ Hydration: The Importance of Electron Correlation in Force-Field Building. Inorg Chem 2022; 61:8703-8714. [PMID: 35616567 PMCID: PMC9199009 DOI: 10.1021/acs.inorgchem.2c00461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The physicochemical properties of the monovalent actinyl cations, PuO2+ and NpO2+, in water have been studied by means of classical molecular dynamic simulations. A specific set of cation-water intermolecular potentials based on ab initio potential energy surfaces has been built on the basis of the hydrated ion concept. The TIP4P water model was adopted. Given the paramagnetic character of these actinyls, the cation-water interaction energies were computed from highly correlated wave functions using the NEVPT2 method. It is shown that the multideterminantal character of the wave function has a relevant effect on the main distances of the hydrated molecular cations. Several structural, dynamical, and energetic properties of the aqueous solutions have been obtained and analyzed. Structural RDF analysis gives An-Oyl distances of 1.82 and 1.84 Å and An-O(water) distances of 2.51 and 2.53 Å for PuO2+ and NpO2+ in water, respectively. Experimental EXAFS spectra from dilute aqueous solutions of PuO2+ and NpO2+ are revisited and analyzed, assuming tetra- and pentahydration of the actinyl cations. Simulated EXAFS spectra have been computed from the snapshots of the MD simulations. Good agreement with the experimental information available is found. The global analysis leads us to conclude that both PuO2+ and NpO2+ cations in water are stable pentahydrated aqua ions.
Collapse
Affiliation(s)
| | - José M Martínez
- Department of Physical Chemistry, University of Seville, 41012 Seville, Spain
| | - Rafael R Pappalardo
- Department of Physical Chemistry, University of Seville, 41012 Seville, Spain
| | | | | |
Collapse
|
4
|
Pappalardo RR, Caralampio DZ, Martínez JM, Sánchez Marcos E. Hydration of Heavy Alkaline-Earth Cations Studied by Molecular Dynamics Simulations and X-ray Absorption Spectroscopy. Inorg Chem 2021; 60:13578-13587. [PMID: 34387993 PMCID: PMC8512670 DOI: 10.1021/acs.inorgchem.1c01888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The physicochemical properties of the three heaviest alkaline-earth cations, Sr2+, Ba2+, and Ra2+ in water have been studied by means of classical molecular dynamics (MD) simulations. A specific set of cation-water intermolecular potentials based on ab initio potential energy surfaces has been built on the basis of the hydrated ion concept. The polarizable and flexible model of water MCDHO2 was adopted. The theoretical-experimental comparison of structural, dynamical, energetic, and spectroscopical properties of Sr2+ and Ba2+ aqueous solutions is satisfactory, which supports the methodology developed. This good behavior allows a reasonable reliability for the predicted Ra2+ physicochemical data not experimentally determined yet. Simulated extended X-ray absorption fine-structure (EXAFS) and X-ray absorption near-edge spectroscopy spectra have been computed from the snapshots of the MD simulations and compared with the experimental information available for Sr2+ and Ba2+. For the Ra2+ case, the Ra L3-edge EXAFS spectrum is proposed. Structural and dynamical properties of the aqua ions for the three cations have been obtained and analyzed. Along the [M(H2O)n]m+ series, the M-O distance for the first-hydration shell is 2.57, 2.81, and 2.93 Å for Sr2+, Ba2+, and Ra2+, respectively. The hydration number also increases when one is going down along the group: 8.1, 9.4, and 9.8 for Sr2+, Ba2+, and Ra2+, respectively. Whereas [Sr(H2O)8]2+ is a typical aqua ion with a well-defined structure, the Ba2+ and Ra2+ hydration provides a picture exhibiting an average between the ennea- and the deca-hydration. These results show a similar chemical behavior of Ba2+ and Ra2+ aqueous solutions and support experimental studies on the removal of Ra-226 of aquifers by different techniques, where Ra2+ is replaced by Ba2+. A comparison of the heavy alkaline ions, Rb+ and Cs+, with the heavy alkaline-earth ions is made.
Collapse
Affiliation(s)
- Rafael R Pappalardo
- Department of Physical Chemistry, University of Seville, 41012 Seville, Seville, Spain
| | - Daniel Z Caralampio
- Department of Physical Chemistry, University of Seville, 41012 Seville, Seville, Spain
| | - José M Martínez
- Department of Physical Chemistry, University of Seville, 41012 Seville, Seville, Spain
| | | |
Collapse
|
5
|
Pérez-Conesa S, Martínez JM, Pappalardo RR, Marcos ES. Combining EXAFS and Computer Simulations to Refine the Structural Description of Actinyls in Water. Molecules 2020; 25:E5250. [PMID: 33187172 PMCID: PMC7697702 DOI: 10.3390/molecules25225250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 11/16/2022] Open
Abstract
EXAFS spectroscopy is one of the most used techniques to solve the structure of actinoid solutions. In this work a systematic analysis of the EXAFS spectra of four actinyl cations, [UO2]2+, [NpO2]2+, [NpO2]+ and [PuO2]2+ has been carried out by comparing experimental results with theoretical spectra. These were obtained by averaging individual contributions from snapshots taken from classical Molecular Dynamics simulations which employed a recently developed [AnO2]2+/+ -H2O force field based on the hydrated ion model using a quantum-mechanical (B3LYP) potential energy surface. Analysis of the complex EXAFS signal shows that both An-Oyl and An-OW single scattering paths as well as multiple scattering ones involving [AnO2]+/2+ molecular cation and first-shell water molecules are mixed up all together to produce a very complex signal. Simulated EXAFS from the B3LYP force field are in reasonable agreement for some of the cases studied, although the k= 6-8 Å-1 region is hard to be reproduced theoretically. Except uranyl, all studied actinyls are open-shell electron configurations, therefore it has been investigated how simulated EXAFS spectra are affected by minute changes of An-O bond distances produced by the inclusion of static and dynamic electron correlation in the quantum mechanical calculations. A [NpO2]+-H2O force field based on a NEVPT2 potential energy surface has been developed. The small structural changes incorporated by the electron correlation on the actinyl aqua ion geometry, typically smaller than 0.07 Å, leads to improve the simulated spectrum with respect to that obtained from the B3LYP force field. For the other open-shell actinyls, [NpO2]2+ and [PuO2]2+, a simplified strategy has been adopted to improve the simulated EXAFS spectrum. It is computed taking as reference structure the NEVPT2 optimized geometry and including the DW factors of their corresponding MD simulations employing the B3LYP force field. A better agreement between the experimental and the simulated EXAFS spectra is found, confirming the a priori guess that the inclusion of dynamic and static correlation refine the structural description of the open-shell actinyl aqua ions.
Collapse
Affiliation(s)
| | | | | | - Enrique Sánchez Marcos
- Departamento de Química Física, Universidad de Sevilla, 41012 Sevilla, Spain; (S.P.-C.); (J.M.M.); (R.R.P.)
| |
Collapse
|
6
|
Pérez-Conesa S, Torrico F, Martínez JM, Pappalardo RR, Marcos ES. A general study of actinyl hydration by molecular dynamics simulations usingab initioforce fields. J Chem Phys 2019; 150:104504. [DOI: 10.1063/1.5083216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sergio Pérez-Conesa
- Departamento de Química Física, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Francisco Torrico
- Departamento de Química Física, Universidad de Sevilla, 41012 Sevilla, Spain
| | - José M. Martínez
- Departamento de Química Física, Universidad de Sevilla, 41012 Sevilla, Spain
| | | | | |
Collapse
|
7
|
Spezia R, Migliorati V, D’Angelo P. Response to “Comment on ‘On the development of polarizable and Lennard-Jones force fields to study hydration structure and dynamics of actinide(III) ions based on effective ionic radii’” [J. Chem. Phys. 150, 097101 (2019)]. J Chem Phys 2019; 150:097102. [DOI: 10.1063/1.5087193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Riccardo Spezia
- LAMBE, Université d’Evry Val d’Essonne, CEA, CNRS, Université Paris Saclay, F-91025 Evry, France
| | | | - Paola D’Angelo
- Dipartimento di Chimica, Università di Roma “La Sapienza”, Roma, Italy
| |
Collapse
|
8
|
Pappalardo RR, Caralampio DZ, Martínez JM, Marcos ES. Hydration Structure of the Elusive Ac(III) Aqua Ion: Interpretation of X-ray Absorption Spectroscopy (XAS) Spectra on the Basis of Molecular Dynamics (MD) Simulations. Inorg Chem 2019; 58:2777-2783. [DOI: 10.1021/acs.inorgchem.8b03365] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - José M. Martínez
- Departmento de Química Física, Universidad de Sevilla, 41012 Sevilla, Spain
| | | |
Collapse
|