1
|
Segura-Sanchis E, Moreno A, Ramiro-Manzano F, Fenollosa R, Feliz M, Atienzar P. Optoelectronic properties of octahedral molybdenum cluster-based materials at a single crystal level. Dalton Trans 2023; 52:17818-17825. [PMID: 37971064 DOI: 10.1039/d3dt02501b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Octahedral molybdenum (Mo6) clusters constitute suitable building blocks for the design of promising single crystal materials in the field of optoelectronics. Here, we prepared single crystals composed of hydroxo Mo6X8 (X = Br, Cl) cluster complexes interconnected by H-bonding interactions with water molecules and protons. The optoelectronic responses and the absorption and emission spectra of these cluster-based single crystals were acquired upon light irradiation, and they show dependency on the nature of the halogens, with the brominated cluster being the most conductive. A fast photoelectrical response was recorded and it showed remarkable stability after multiple illumination on/off cycles. The results obtained provide relevant information for the development of photonic and optoelectronic devices, sensors and photocatalysts.
Collapse
Affiliation(s)
- Elena Segura-Sanchis
- Instituto de Tecnología Química, Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avd. de los Naranjos s/n, 46022 Valencia, Spain.
| | - Ana Moreno
- Instituto de Tecnología Química, Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avd. de los Naranjos s/n, 46022 Valencia, Spain.
| | - Fernando Ramiro-Manzano
- Instituto de Tecnología Química, Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avd. de los Naranjos s/n, 46022 Valencia, Spain.
| | - Roberto Fenollosa
- Instituto de Tecnología Química, Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avd. de los Naranjos s/n, 46022 Valencia, Spain.
| | - Marta Feliz
- Instituto de Tecnología Química, Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avd. de los Naranjos s/n, 46022 Valencia, Spain.
| | - Pedro Atienzar
- Instituto de Tecnología Química, Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avd. de los Naranjos s/n, 46022 Valencia, Spain.
| |
Collapse
|
2
|
Kolesov BA, Chupina AV, Berezin AS, Kompankov NB, Abramov PA, Sokolov MN. Proton motion inside [(DMF) 2H] 2[W 6Cl 14]: structural, Raman and luminescence studies. Phys Chem Chem Phys 2020; 22:25344-25352. [PMID: 33140770 DOI: 10.1039/d0cp04152a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protonation of DMF by (H7O3)2[W6Cl14] results in the appearance of strongly proton coupled [(DMF)2H]+ dimers. Such units are captured as the cationic part of [(DMF)2H]2[W6Cl14] (1). The proton behavior in such dimers was studied for the first time with single crystal X-ray diffraction (XRD) and 1H MAS NMR, Raman and photoluminescence (PL) spectroscopic techniques. The experimental data reveal the presence of two types of [(DMF)2H]+ dimers in 1 (cisoidal and transoidal, with respect to the mutual orientations of their C-O groups) which differ in terms of the degree to which they interact with the cluster anions as the temperature decreases. At room temperature all the OO distances in the [(DMF)2H]+ dimers are very short (2.375 Å) and almost equal. 1H MAS NMR spectra show a resonance line at 18.7 ppm which is very close to that observed in sodium hydrogen maleate with a strong hydrogen bond belonging to a single-well potential of proton motion. The temperature decrease leads to the differentiation of [(DMF)2H]+ dimers due to the elongation of the OO distance in one pair while keeping a practically constant OO distance in the second pair. The analysis of the cation-anion interactions reveals a strong difference between these two types of dimers which results from the shifting of one DMF molecule toward a terminal Cl- ligand of the cluster anion. The DFT calculations were used to show the difference in OH+O stretches for two different dimers. Moreover, we have found the PL of such dimeric units in the solid state. The temperature screening of the PL behavior demonstrates two types of luminescent centers at low temperatures which coalesce at 298 K. The proton motion in the hydrogen bond was studied using Raman spectroscopy, which was beneficial to monitor the complex behavior over a very broad temperature range from 5 to 298 K. According to the Raman data, we are dealing with a symmetric double-well potential for the hydrogen bond at room temperature, which becomes a broad single well potential below 110 K for the [(DMF)2H]+ cation with a longer OO distance (the cisoidal isomer) and below 60 K for the [(DMF)2H]+ cation with a shorter OO distance (the transoidal isomer).
Collapse
Affiliation(s)
- Boris A Kolesov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave, 630090 Novosibirsk, Russia.
| | | | | | | | | | | |
Collapse
|
3
|
Nguyen TKN, Dumait N, Grasset F, Cordier S, Berthebaud D, Matsui Y, Ohashi N, Uchikoshi T. Zn-Al Layered Double Hydroxide Film Functionalized by a Luminescent Octahedral Molybdenum Cluster: Ultraviolet-Visible Photoconductivity Response. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40495-40509. [PMID: 32786251 DOI: 10.1021/acsami.0c10487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel UV-Vis photodetector consisting of an octahedral molybdenum cluster-functionalized Zn2Al layered double hydroxide (LDH) has been successfully synthesized by co-precipitation and delamination methods under ambient conditions. The electrophoretic deposition process has been used as a low-cost, fast, and effective method to fabricate thin and transparent nanocomposite films containing a dense and regular layered structure. The study provided evidence that the presence of the Mo6 cluster units between the LDH does not affect the ionic conduction mechanism of the LDH, which linearly depends on the relative humidity and temperature. Moreover, the photocurrent response is remarkably extended to the visible domain. The reproducibility and stabilization of the photocurrent response caused by the Mo6 cluster-functionalized LDH have been verified upon light excitation at 540 nm. Additionally, it was demonstrated that the films show advantageously strong adherence properties for application requirements.
Collapse
Affiliation(s)
- Thi Kim Ngan Nguyen
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
- CNRS-Saint-Gobain-NIMS, UMI 3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Noée Dumait
- Univ. Rennes-CNRS-Institut des Sciences Chimiques de Rennes, UMR 6226, 35000 Rennes, France
| | - Fabien Grasset
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
- CNRS-Saint-Gobain-NIMS, UMI 3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Univ. Rennes-CNRS-Institut des Sciences Chimiques de Rennes, UMR 6226, 35000 Rennes, France
| | - Stéphane Cordier
- Univ. Rennes-CNRS-Institut des Sciences Chimiques de Rennes, UMR 6226, 35000 Rennes, France
| | - David Berthebaud
- CNRS-Saint-Gobain-NIMS, UMI 3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yoshio Matsui
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Naoki Ohashi
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
- CNRS-Saint-Gobain-NIMS, UMI 3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Tetsuo Uchikoshi
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
- CNRS-Saint-Gobain-NIMS, UMI 3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
4
|
Enhanced Photocatalytic Activity and Stability in Hydrogen Evolution of Mo 6 Iodide Clusters Supported on Graphene Oxide. NANOMATERIALS 2020; 10:nano10071259. [PMID: 32605229 PMCID: PMC7407389 DOI: 10.3390/nano10071259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023]
Abstract
Catalytic properties of the cluster compound (TBA)2[Mo6Ii8(O2CCH3)a6] (TBA = tetrabutylammonium) and a new hybrid material (TBA)2Mo6Ii8@GO (GO = graphene oxide) in water photoreduction into molecular hydrogen were investigated. New hybrid material (TBA)2Mo6Ii8@GO was prepared by coordinative immobilization of the (TBA)2[Mo6Ii8(O2CCH3)a6] onto GO sheets and characterized by spectroscopic, analytical, and morphological techniques. Liquid and, for the first time, gas phase conditions were chosen for catalytic experiments under UV–Vis irradiation. In liquid water, optimal H2 production yields were obtained after using (TBA)2[Mo6Ii8(O2CCH3)a6] and (TBA)2Mo6Ii8@GO) catalysts after 5 h of irradiation of liquid water. Despite these remarkable catalytic performances, “liquid-phase” catalytic systems have serious drawbacks: the cluster anion evolves to less active cluster species with partial hydrolytic decomposition, and the nanocomposite completely decays in the process. Vapor water photoreduction showed lower catalytic performance but offers more advantages in terms of cluster stability, even after longer radiation exposure times and recyclability of both catalysts. The turnover frequency (TOF) of (TBA)2Mo6Ii8@GO is three times higher than that of the microcrystalline (TBA)2[Mo6Ii8(O2CCH3)a6], in agreement with the better accessibility of catalytic cluster sites for water molecules in the gas phase. This bodes well for the possibility of creating {Mo6I8}4+-based materials as catalysts in hydrogen production technology from water vapor.
Collapse
|
5
|
Dollo G, Boucaud Y, Amela-Cortes M, Molard Y, Cordier S, Brandhonneur N. PLGA nanoparticles embedding molybdenum cluster salts: Influence of chemical composition on physico-chemical properties, encapsulation efficiencies, colloidal stabilities and in vitro release. Int J Pharm 2020; 576:119025. [DOI: 10.1016/j.ijpharm.2020.119025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/18/2022]
|
6
|
Sciortino F, Cuny J, Grasset F, Lagrost C, Lemoine P, Moréac A, Molard Y, Takei T, Cordier S, Chevance S, Gauffre F. The Ouzo effect to selectively assemble molybdenum clusters into nanomarbles or nanocapsules with increased HER activity. Chem Commun (Camb) 2018; 54:13387-13390. [DOI: 10.1039/c8cc07402j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Molybdenum clusters assemble spontaneously into nanocapsules or nanomarbles depending on their solubility in a water/THF mixture.
Collapse
Affiliation(s)
| | - Jérôme Cuny
- Laboratoire de Chimie et Physique Quantiques
- IRSAMC
- Université Paul Sabatier
- 31062 Toulouse Cedex 4
- France
| | - Fabien Grasset
- CNRS
- LINK (Laboratory for Innovative Key Materials and Structures)-UMI3629
- National Institute for Materials Science (NIMS)
- Tsukuba 305-0044
- Japan
| | | | | | | | - Yann Molard
- Univ Rennes
- CNRS
- ISCR-UMR6226
- SCANMat-UMS2001
- F-35000 Rennes
| | - Toshiaki Takei
- International Center for Materials Nanoarchitectonics
- MANA
- National Institute for Material Science (NIMS)
- Tsukuba 305-0044
- Japan
| | | | | | | |
Collapse
|