1
|
Vučelj S, Hasić R, Ašanin D, Šmit B, Caković A, Bogojeski J, Serafinović MĆ, Marković BS, Stojanović B, Pavlović S, Stanisavljević I, Ćorović I, Stojanović MD, Jovanović I, Soldatović TV, Stojanović B. Modes of Interactions with DNA/HSA Biomolecules and Comparative Cytotoxic Studies of Newly Synthesized Mononuclear Zinc(II) and Heteronuclear Platinum(II)/Zinc(II) Complexes toward Colorectal Cancer Cells. Int J Mol Sci 2024; 25:3027. [PMID: 38474273 DOI: 10.3390/ijms25053027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
A series of mono- and heteronuclear platinum(II) and zinc(II) complexes with 4,4',4″-tri-tert-butyl-2,2':6',2″-terpyridine ligand were synthesized and characterized. The DNA and protein binding properties of [ZnCl2(terpytBu)] (C1), [{cis-PtCl(NH3)2(μ-pyrazine)ZnCl(terpytBu)}](ClO4)2 (C2), [{trans-PtCl(NH3)2(μ-pyrazine)ZnCl(terpytBu)}](ClO4)2 (C3), [{cis-PtCl(NH3)2(μ-4,4'-bipyridyl)ZnCl(terpytBu)}](CIO4)2 (C4) and [{trans-PtCl(NH3)2(μ-4,4'-bipyridyl)ZnCl(terpytBu)}](CIO4)2 (C5) (where terpytBu = 4,4',4″-tri-tert-butyl-2,2':6',2″-terpyridine), were investigated by electronic absorption, fluorescence spectroscopic, and molecular docking methods. Complexes featuring transplatin exhibited lower Kb and Ksv constant values compared to cisplatin analogs. The lowest Ksv value belonged to complex C1, while C4 exhibited the highest. Molecular docking studies reveal that the binding of complex C1 to DNA is due to van der Waals forces, while that of C2-C5 is due to conventional hydrogen bonds and van der Waals forces. The tested complexes exhibited variable cytotoxicity toward mouse colorectal carcinoma (CT26), human colorectal carcinoma (HCT116 and SW480), and non-cancerous mouse mesenchymal stem cells (mMSC). Particularly, the mononuclear C1 complex showed pronounced selectivity toward cancer cells over non-cancerous mMSC. The C1 complex notably induced apoptosis in CT26 cells, effectively arrested the cell cycle in the G0/G1 phase, and selectively down-regulated Cyclin D.
Collapse
Affiliation(s)
- Samir Vučelj
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
- General Hospital of Novi Pazar, Department of Internal Medicine, Generala Živkovića 1, 36300 Novi Pazar, Serbia
| | - Rušid Hasić
- Department of Natural-Mathematical Sciences, State University of Novi Pazar, Vuka Karadžića 9, 36300 Novi Pazar, Serbia
| | - Darko Ašanin
- Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Biljana Šmit
- Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Angelina Caković
- Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Jovana Bogojeski
- Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | | | - Bojana Simović Marković
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Bojan Stojanović
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
- Faculty of Medical Sciences, Department of Surgery, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Sladjana Pavlović
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Isidora Stanisavljević
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Irfan Ćorović
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
- General Hospital of Novi Pazar, Department of Internal Medicine, Generala Živkovića 1, 36300 Novi Pazar, Serbia
| | - Milica Dimitrijević Stojanović
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
- Faculty of Medical Sciences, Department of Pathology, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Ivan Jovanović
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Tanja V Soldatović
- Department of Natural-Mathematical Sciences, State University of Novi Pazar, Vuka Karadžića 9, 36300 Novi Pazar, Serbia
| | - Bojana Stojanović
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
- Faculty of Medical Sciences, Department of Pathophysiology, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
| |
Collapse
|
2
|
Yang S, Huang Y, Lu A, Wang Z, Li H. A Highly Selective and Sensitive Sequential Recognition Probe Zn 2+ and H 2PO 4- Based on Chiral Thiourea Schiff Base. Molecules 2023; 28:molecules28104166. [PMID: 37241910 DOI: 10.3390/molecules28104166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
A series of novel chiral thiourea fluorescent probes HL1-HL6 were designed and synthesized from (1R,2R)-1,2-diphenylethylenediamine, phenyl isothiocyanate, and different substituted salicylic aldehydes. All of the compounds were confirmed by 1H NMR, 13C NMR, and HRMS. They exhibit high selectivity and sensitivity to Zn2+ in the presence of nitrate ions with the detection limit of 2.3 × 10-8 M (HL5). Meanwhile, their zinc (II) complexes (L-ZnNO3) showed continuous response to H2PO4- in acetonitrile solution. The identification processes could further be verified by supramolecular chemistry data analysis, X-ray single-crystal diffraction analysis, and theoretical study. The research provides reliable evidence for an explanation of the mechanism of action of thiourea involved in coordination, which is important for the application of thiourea fluorescent probes. In short, the sensors HL1-HL6 based on chiral thiourea Schiff base will be promising detection devices for Zn2+ and H2PO4-.
Collapse
Affiliation(s)
- Shan Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Yichuan Huang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Aidang Lu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Ziwen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Hongyan Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
3
|
Popa E, Andelescu AA, Ilies (b. Motoc) S, Visan A, Cretu C, Scarpelli F, Crispini A, Manea F, Szerb EI. Hetero-Bimetallic Ferrocene-Containing Zinc(II)-Terpyridyl-Based Metallomesogen: Structural and Electrochemical Characterization. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1946. [PMID: 36903061 PMCID: PMC10004155 DOI: 10.3390/ma16051946] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
The synthesis, as well as the mesomorphic and electrochemical properties, of a hetero-bimetallic coordination complex able to self-assemble into a columnar liquid crystalline phase is reported herein. The mesomorphic properties were investigated by polarized optical microscopy (POM), differential scanning calorimetry (DSC) and Powder X-ray diffraction (PXRD) analysis. Electrochemical properties were explored by cyclic voltammetry (CV), relating the hetero-bimetallic complex behaviour to previously reported analogous monometallic Zn(II) compounds. The obtained results highlight how the presence of the second metal centre and the supramolecular arrangement in the condensed state pilot the function and properties of the new hetero-bimetallic Zn/Fe coordination complex.
Collapse
Affiliation(s)
- Evelyn Popa
- “Coriolan Drăgulescu” Institute of Chemistry, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania
| | - Adelina A. Andelescu
- “Coriolan Drăgulescu” Institute of Chemistry, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania
| | - Sorina Ilies (b. Motoc)
- “Coriolan Drăgulescu” Institute of Chemistry, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania
| | - Alexandru Visan
- “Coriolan Drăgulescu” Institute of Chemistry, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania
| | - Carmen Cretu
- “Coriolan Drăgulescu” Institute of Chemistry, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania
| | - Francesca Scarpelli
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), Dipartimento di Chimica e Tecnologie Chimiche, Universitá della Calabria, Arcavacata, 87036 Rende, Italy
| | - Alessandra Crispini
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), Dipartimento di Chimica e Tecnologie Chimiche, Universitá della Calabria, Arcavacata, 87036 Rende, Italy
| | - Florica Manea
- Department of Applied Chemistry and Engineering of Inorganic Compounds and Environment, Politehnica University of Timisoara, Bvd. Vasile Parvan No. 6, 300223 Timisoara, Romania
| | - Elisabeta I. Szerb
- “Coriolan Drăgulescu” Institute of Chemistry, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania
| |
Collapse
|
4
|
Hassan AU, Sumrra SH, Nkungli NK, Güleryüz C. Theoretical probing of 3d nano metallic clusters as next generation non-linear optical materials. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
5
|
Zhang SH, Wang ZF, Tan H. Novel zinc(II)−curcumin molecular probes bearing berberine and jatrorrhizine derivatives as potential mitochondria-targeting anti-neoplastic drugs. Eur J Med Chem 2022; 243:114736. [DOI: 10.1016/j.ejmech.2022.114736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 11/04/2022]
|
6
|
Dong H, Zhao L, Chen Y, Li M, Chen W, Wang Y, Wei X, Zhang Y, Zhou Y, Xu M. Dual-Ligand Near-Infrared Luminescent Lanthanide-Based Metal-Organic Framework Coupled with In Vivo Microdialysis for Highly Sensitive Ratiometric Detection of Zn 2+ in a Mouse Model of Alzheimer's Disease. Anal Chem 2022; 94:11940-11948. [PMID: 35981232 DOI: 10.1021/acs.analchem.2c02898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Zinc, which is the second most abundant trace element in the human central nervous system, is closely associated with Alzheimer's disease (AD). However, attempts to develop highly sensitive and selective sensing systems for Zn2+ in the brain have not been successful. Here, we used a one-step solvothermal method to design and prepare a metal-organic framework (MOF) containing the dual ligands, terephthalic acid (H2BDC) and 2,2':6',2″-terpyridine (TPY), with Eu3+ as a metal node. This MOF is denoted as Eu-MOF/BDC-TPY. Adjustment of the size and morphology of Eu-MOF/BDC-TPY allowed the dual ligands to produce multiple luminescence peaks, which could be interpreted via ratiometric fluorescence to detect Zn2+ using the ratio of Eu3+-based emission, as the internal reference, and ligand-based emission, as the indicator. Thus, Eu-MOF/BDC-TPY not only displayed higher selectivity than other metal cations but also offered a highly accurate, sensitive, wide linear, color change-based technique for detecting Zn2+ at concentrations ranging from 1 nM to 2 μM, with a low limit of detection (0.08 nM). Moreover, Eu-MOF/BDC-TPY maintained structural stability and displayed a fluorescence intensity of at least 95.4% following storage in water for 6 months. More importantly, Eu-MOF/BDC-TPY sensed the presence of Zn2+ markedly rapidly (within 5 s), which was very useful in practical application. Furthermore, the results of our ratiometric luminescent method-based analysis of Zn2+ in AD mouse brains were consistent with those obtained using inductively coupled plasma mass spectrometry.
Collapse
Affiliation(s)
- Hui Dong
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Le Zhao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Ya Chen
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Miaomiao Li
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113000, P. R. China
| | - Weitian Chen
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Yixin Wang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Xiuhua Wei
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Yanli Zhou
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| |
Collapse
|
7
|
Hassan AU, Sumrra SH. Exploration of Pull-Push Effect for Novel Photovoltaic Dyes with A-π-D Design: A DFT/TD-DFT Investigation. J Fluoresc 2022; 32:1999-2014. [PMID: 35802211 DOI: 10.1007/s10895-022-03003-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/01/2022] [Indexed: 11/26/2022]
Abstract
The π-rich versus π-poor units in 4,6-di(thiophen-2-yl)pyrimidine (DTB) alternating the π-backbone of solar cells dyes have been extended with a push-pull technique to lower their HOMO-LUMO energy gap and to increase Intramolecular Charge Transfer (ICT). Density functional theory was used to optimize the ground state molecular geometries of newly designed dyes (DTB1-DTB6). Time Dependent DFT (TD-DFT) was used to simulate the Uv-vis spectral values at the maximum absorbance values ranging between 481-535 nm. These values were red shifted from DTB value of experimental (333 nm) and theoretical (346 nm). however, their computed absorbance and fluorescence spectra revealed a bathochromic shift of them upon an increasing the solvent polarity. Different DFT functionals such as (B3LYP, CAM-B3LYP, B97XD, and APFD) were employed to choose their proper use Uv-visible analysis to reveal an unexpected coherence at the B3LYP level with experimental values. As a result, the B3LYP with most diffused basis sets of 6-31G + (d,p) were used for further calculations. The parameters of Global Chemical reactivities revealed that all the dyes had a softer nature with their softness value range of 0.27-0.41. their Ionization Potentials (IP) ranged between 6.21-8.10 eV to comply that the new dyes had good electron donating potentials. With a good electron injection potential of -1.47-1.74 eV, aluminum can be the best electrode, while Au is excellent towards a hole injection operation which had the potential range of 1.79-3.68 eV. For Natural Bond Orbital (NBO) assessment, (N14)LP → (F16-F28)π* with stabilization energy of 42.55 kcal/mol was noted for DTB4. Their Second order hyperpolarizability [Formula: see text] values as their Nonlinear Optical (NLO) response ranged between 59.16-232.11 debye-angstrom-1 which were almost 6 times higher than the reference DTB (8.47D). The NLO attributes has also shown that a dyes with its small bandgap was related with higher hyperpolarizability values. Because of the decreased reorganization frequencies, newly discovered derivatives with electron transfer qualities might be comparable to or equivalent to those of commonly used electron transmission materials.
Collapse
Affiliation(s)
- Abrar U Hassan
- Department of Chemistry, University of Gujrat, PK, 54400, Gujrat, Pakistan.
| | - Sajjad H Sumrra
- Department of Chemistry, University of Gujrat, PK, 54400, Gujrat, Pakistan
| |
Collapse
|
8
|
Liu X, Zhang H, Zhang Y, Wang Y. Elaborating the mechanism of a highly selective fluorescent ‘turn-on’ probe to detect the group IIIA ions: a detailed time-dependent density functional theory study. Theor Chem Acc 2022. [DOI: 10.1007/s00214-022-02892-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Novel bifluorescent Zn(II)–cryptolepine–cyclen complexes trigger apoptosis induced by nuclear and mitochondrial DNA damage in cisplatin-resistant lung tumor cells. Eur J Med Chem 2022; 238:114418. [DOI: 10.1016/j.ejmech.2022.114418] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 12/15/2022]
|
10
|
Wang ZF, Nong QX, Yu HL, Qin QP, Pan FH, Tan MX, Liang H, Zhang SH. Complexes of Zn(II) with a mixed tryptanthrin derivative and curcumin chelating ligands as new promising anticancer agents. Dalton Trans 2022; 51:5024-5033. [PMID: 35274641 DOI: 10.1039/d1dt04095b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, two novel curcumin (H-Cur)-tryptanthrin metal compounds-[Zn(TA)Cl2], i.e., Zn(TA), and [Zn(TA)(Cur)]Cl, i.e., Zn(TAC)-were synthesized and investigated using 5-(bis-pyridin-2-ylmethyl-amino)-pentanoic acid (6,12-dioxo-6,12-dihydro-indolo[2,1-b]quinazolin-8-yl)-amide (TA) and H-Cur as the targeting and high-activity anticancer chemotherapeutic moieties, respectively. They were then compared with the di-(2-picolyl)amine (PA) Zn(II) complex [Zn(PA)Cl2], i.e., Zn(PA). When compared with Zn(PA) and cisplatin, the IC50 values of Zn(TA) and Zn(TAC) indicated that the compounds had high cytotoxicity against A549/DDP cancer cells, implying that the H-Cur-tryptanthrin Zn(II) compounds have the potential for use as anticancer drugs. We propose the use of synthesized theragnostic H-Cur-tryptanthrin Zn(II) complexes with nuclear-targeting and DNA-damaging capabilities as a simple therapeutic strategy against tumors. The Zn(TA) and Zn(TAC) complexes could be traced via red fluorescence and were found to accumulate in the cell nuclei and induce DNA damage, cell cycle arrest, mitochondrial dysfunction, and cell apoptosis both in vitro and in vivo. In addition, Zn(TAC) exhibited a higher antiproliferative effect on A549/DDP than Zn(TA) and Zn(PA), which was undoubtedly associated with the key roles of the novel tryptanthrin derivative TA and H-Cur in the Zn(TAC) complex.
Collapse
Affiliation(s)
- Zhen-Feng Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China. .,College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China.
| | - Qun-Xue Nong
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Hua-Lian Yu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Qi-Pin Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China. .,State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China
| | - Feng-Hua Pan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Ming-Xiong Tan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China
| | - Shu-Hua Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China. .,College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China.
| |
Collapse
|
11
|
Tian M, Zhan J, Lin W. Single fluorescent probes enabling simultaneous visualization of duple organelles: Design principles, mechanisms, and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214266] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Guo D, Sun J, Tian M, Lin W. A red-emissive and positively charged RNA ligand enables visualization of mitochondrial depolarization and cell damage. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 255:119686. [PMID: 33765536 DOI: 10.1016/j.saa.2021.119686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
In this work, a red-emissive RNA ligand bearing two positive charges were developed for the visualization of mitochondrial depolarization, via the subcellular localization of the ligand molecules. The ligand with quinolinium moiety and strong electronic donor displays red fluorescence peaked at 630 nm. Meanwhile, the probe is concentrated in mitochondria of live cells due to the high mitochondrial membrane potential, and re-localizes into nucleolus upon mitochondrial depolarization owing to the affinity to RNA. In this manner, the decrease of mitochondrial membrane potential could be real-timely and in-situ monitored with the red-emissive probe. Particularly, two cations were decorated on the probe, which enables the fast response to mitochondrial depolarization with elevated sensitivity. Cell damage induced by H2O2 was also successfully observed with the probe. We expect that the probe can promote researches on mitochondrial membrane potential, cell apoptosis, and relative areas.
Collapse
Affiliation(s)
- Dingyi Guo
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Jie Sun
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Minggang Tian
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China; Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China.
| |
Collapse
|
13
|
Wang K, Liu L, Qi G, Chao X, Ma W, Yu Z, Pan Q, Mao Z, Liu B. Light-Driven Cascade Mitochondria-to-Nucleus Photosensitization in Cancer Cell Ablation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004379. [PMID: 33898198 PMCID: PMC8061408 DOI: 10.1002/advs.202004379] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/15/2020] [Indexed: 05/13/2023]
Abstract
Nuclei and mitochondria are the only cellular organelles containing genes, which are specific targets for efficient cancer therapy. So far, several photosensitizers have been reported for mitochondria targeting, and another few have been reported for nuclei targeting. However, none have been reported for photosensitization in both mitochondria and nucleus, especially in cascade mode, which can significantly reduce the photosensitizers needed for maximal treatment effect. Herein, a light-driven, mitochondria-to-nucleus cascade dual organelle cancer cell ablation strategy is reported. A functionalized iridium complex, named BT-Ir, is designed as a photosensitizer, which targets mitochondria first for photosensitization and subsequently is translocated to a cell nucleus for continuous photodynamic cancer cell ablation. This strategy opens new opportunities for efficient photodynamic therapy.
Collapse
Affiliation(s)
- Kang‐Nan Wang
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde)FoshanGuangdong528308China
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
| | - Liu‐Yi Liu
- MOE Key Laboratory of Bioinorganic and SyntheticChemistry School of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Guobin Qi
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
| | - Xi‐Juan Chao
- MOE Key Laboratory of Bioinorganic and SyntheticChemistry School of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Wen Ma
- Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Zhiqiang Yu
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde)FoshanGuangdong528308China
- Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Qiling Pan
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde)FoshanGuangdong528308China
| | - Zong‐Wan Mao
- MOE Key Laboratory of Bioinorganic and SyntheticChemistry School of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Bin Liu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
- Joint School of National University of Singapore and Tianjin UniversityInternational Campus of Tianjin University Binhai New CityFuzhou350207China
| |
Collapse
|
14
|
Zhang R, An R, Gu Z, Sun H, Ye D, Liu H. Dehydroberberine Analogue Nanoassemblies for Inducing and Self-Reporting Mitochondrial Dysfunction in Tumor Cells. ACS APPLIED BIO MATERIALS 2021; 4:2033-2043. [DOI: 10.1021/acsabm.0c00747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Ruibing An
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (Chem-BIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhanni Gu
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Haifeng Sun
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (Chem-BIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong Liu
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
15
|
Hassan AU, Sumrra SH, Zafar MN, Nazar MF, Mughal EU, Zafar MN, Iqbal M. New organosulfur metallic compounds as potent drugs: synthesis, molecular modeling, spectral, antimicrobial, drug likeness and DFT analysis. Mol Divers 2021; 26:51-72. [PMID: 33415545 DOI: 10.1007/s11030-020-10157-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/17/2020] [Indexed: 11/28/2022]
Abstract
During the present investigation, two new sulfonamide-based Schiff base ligands, 4-{[(2-hydroxy-3-methoxyphenyl)methylidene]amino}-N-(1,3-thiazol-2-yl)benzene-1-sulfonamide (L1) and 4-{[1-(2-hydroxyphenyl)ethylidene]amino}-N-(1,3-thiazol-2-yl)benzene-1-sulfonamide (L2), have been synthesized and coordinated with the transition metals (V, Fe, Co, Ni, Cu and Zn). The ligands were characterized by their physical (color, melting point, yield and solubility), spectral (UV-Vis, FT-IR, LC-MS, 1H NMR and 13C NMR) and elemental data. The structures of the metal complexes (1)-(12) were evaluated through their physical (magnetic and conductance), spectral (UV-Vis, FT-IR and LC-MS) and elemental data. The molecular geometries of ligands and their selected metal complexes were optimized at their ground state energies by B3LYP level of density functional theory (DFT) utilizing 6-311+G (d, p) and LanL2DZ basis set. The first principle study has been discussed for the electronic properties, the molecular electrostatic possibilities as well as the quantum chemical identifiers. An obvious transition of intramolecular charge had been ascertained from the occupied to the unoccupied molecular orbitals. The UV-Vis analysis was performed through time-dependent density functional theory (TD-DFT) by CAM-B3LYP/6-311+G (d, p) function. The in vitro antimicrobial activity was studied against two fungal (Aspergillus niger and Aspergillus flavus) and four bacterial (Staphylococcus aureus, Klebsiela pneumoniae, Escherichia coli and Bacillus subtilis) species. The antioxidant activity was executed as antiradical DPPH scavenging activity (%), total iron reducing power (%) and total phenolic contents (mg GAE g-1). Additionally, enzyme inhibition activity was done against four enzymes (Protease, α-Amylase, Acetylcholinesterase and Butyrylcholinesterase). All the synthetic products exhibited significant bioactivity which were found to enhance upon chelation due to phenomenon of charge transfer from metal to ligand.
Collapse
Affiliation(s)
- Abrar Ul Hassan
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan
| | | | | | - Muhammad Faizan Nazar
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan.,Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Multan Campus, Pakistan
| | | | | | - Mazhar Iqbal
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| |
Collapse
|
16
|
Kumar N, Roopa, Bhalla V, Kumar M. Beyond zinc coordination: Bioimaging applications of Zn(II)-complexes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213550] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Jiang Q, Yang X, Xiang P, Dudek M, Matczyszyn K, Samoc M, Tian X, Zhang Q, Luo Y, Wang D, Shi P. Self-assembled heterometallic complexes showing enhanced two-photon absorption and their distribution in living cells. NEW J CHEM 2021. [DOI: 10.1039/d0nj05219a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heterometallic complexes were prepared via self-assembly, showing enhanced TPA ability and preferable localization into lysosomes.
Collapse
|
18
|
Guo S, Sun Y, Li J, Geng X, Yang R, Zhang X, Qu L, Li Z. Fluorescent Carbon Dots Shuttling between Mitochondria and the Nucleolus for in Situ Visualization of Cell Viability. ACS APPLIED BIO MATERIALS 2020. [DOI: 10.1021/acsabm.0c01408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shuo Guo
- College of Chemistry, Green Catalysis Centre, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yuanqiang Sun
- College of Chemistry, Green Catalysis Centre, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jinquan Li
- College of Chemistry, Green Catalysis Centre, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xin Geng
- College of Chemistry, Green Catalysis Centre, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Ran Yang
- College of Chemistry, Green Catalysis Centre, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiaoge Zhang
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Zhengzhou UniversityRINGGOLD, Zhengzhou 450001, P. R. China
| | - Lingbo Qu
- College of Chemistry, Green Catalysis Centre, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, P. R. China
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Zhengzhou UniversityRINGGOLD, Zhengzhou 450001, P. R. China
| | - Zhaohui Li
- College of Chemistry, Green Catalysis Centre, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, P. R. China
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Zhengzhou UniversityRINGGOLD, Zhengzhou 450001, P. R. China
| |
Collapse
|
19
|
|
20
|
Dong S, Zhang L, Lin Y, Ding C, Lu C. Luminescent probes for hypochlorous acid in vitro and in vivo. Analyst 2020; 145:5068-5089. [PMID: 32608421 DOI: 10.1039/d0an00645a] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
HClO/ClO- is the most effective antibacterial active oxygen in neutrophils. However, its excessive existence often leads to the destruction of human physiological mechanisms. In recent years, the developed luminescent probes for the detection of HClO/ClO- are not only conducive to improve the sensitivity and selectivity of HClO/ClO- detection, but also play a crucial role in understanding the biological functions of HClO/ClO-. In addition, luminescent probe-based biological imaging for HClO/ClO- at sub-cellular resolution has become a powerful tool for biopathology and medical diagnostic research. This article reviews a variety of luminescent probes for the detection of HClO/ClO-in vitro and in vivo with different design principles and mechanisms, including fluorescence, phosphorescence, and chemiluminescence. The photophysical/chemical properties and biological applications of these luminescent probes were outlined. Finally, we summarized the merits and demerits of the developed luminescent probes and discussed their challenges and future development trends. It is hoped that this review can provide some inspiration for the development of luminescent probe-based strategies and to promote the further research of biomedical luminescent probes for HClO/ClO-.
Collapse
Affiliation(s)
- Shaoqing Dong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | | | | | | | | |
Collapse
|
21
|
Ma Y, Yin J, Li G, Gao W, Lin W. Simultaneous sensing of nucleic acid and associated cellular components with organic fluorescent chemsensors. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213144] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Yin X, Sun Y, Geng X, Li J, Yang R, Zhang K, Qu L, Li Z. Spatiotemporally Monitoring Cell Viability through Programmable Mitochondrial Membrane Potential Transformation by Using Fluorescent Carbon Dots. ACTA ACUST UNITED AC 2020; 4:e1900261. [DOI: 10.1002/adbi.201900261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/25/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Xiaohui Yin
- College of ChemistryHenan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical ApplicationsZhengzhou University Zhengzhou 450001 China
| | - Yuanqiang Sun
- College of ChemistryHenan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical ApplicationsZhengzhou University Zhengzhou 450001 China
| | - Xin Geng
- College of ChemistryHenan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical ApplicationsZhengzhou University Zhengzhou 450001 China
| | - Jianjun Li
- College of ChemistryHenan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical ApplicationsZhengzhou University Zhengzhou 450001 China
| | - Ran Yang
- College of ChemistryHenan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical ApplicationsZhengzhou University Zhengzhou 450001 China
| | - Ke Zhang
- Department of Chemistry and Chemical BiologyNortheastern University Boston MA 02115 USA
| | - Lingbo Qu
- College of ChemistryHenan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical ApplicationsZhengzhou University Zhengzhou 450001 China
| | - Zhaohui Li
- College of ChemistryHenan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical ApplicationsZhengzhou University Zhengzhou 450001 China
| |
Collapse
|
23
|
Meng F, Zhang C, Li D, Tian Y. Aggregation induced emission-active two-photon absorption zwitterionic chromophore for bioimaging application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 226:117571. [PMID: 31622830 DOI: 10.1016/j.saa.2019.117571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/18/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
The fabrication of two-photon absorption material is a versatile approach to achieve high resolution bioimaging with low phototoxicity yet remain sophisticated. Herein, a zwitterionic chromophore, MF, with D-π-A configuration has been rational designed and synthesized. Remarkably, MF exhibited enhanced one- and two-photon fluorescent in the aggregation states. Additionally, the obtained MFNPs encapsulated by Pluronic F-127, could be employed as a two-photon fluorescent probe for bioimaging. The results reveal that MFNPs could target mitochondria by using two-photon confocal microscopy and stimulated emission depletion nanoscopy methods.
Collapse
Affiliation(s)
- Fei Meng
- Institute of Physics Science and Information Technology, College of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, PR China; Department of Food and Environmental Engineering, Chuzhou Vocational and Technical College, Chuzhou, 239000, PR China
| | - Chengkai Zhang
- Institute of Physics Science and Information Technology, College of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, PR China
| | - Dandan Li
- Institute of Physics Science and Information Technology, College of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, PR China.
| | - Yupeng Tian
- Institute of Physics Science and Information Technology, College of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, PR China.
| |
Collapse
|
24
|
Li D, Li B, Wang S, Zhang C, Cao H, Tian X, Tian Y. Modification of side chain of conjugated molecule for enhanced charge transfer and two-photon activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117448. [PMID: 31400746 DOI: 10.1016/j.saa.2019.117448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
Amounts of strategies implemented to obtain improved two-photon absorption responses but remains challenging. Herein, a serials zwitterionic chromophores, TSEO1-3, with D-π-A configuration were rational designed and synthesized. Notably, by minor modification of the side chain, the obtained TSEO3 exhibited enhanced two-photon activity and considerable two-photon imaging in vitro and in vivo. It manifested that appropriate modifications of side chains that are linked to conjugated frameworks can improve the intermolecular packing order and boost charge transfer favoring two-photon activity.
Collapse
Affiliation(s)
- Dandan Li
- Institutes of Physics Science and Information Technology, Anhui University, Hefei 230601, PR China; Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, PR China.
| | - Bo Li
- Institutes of Physics Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Siyou Wang
- School of Life Science, Anhui University, Hefei 230601, PR China
| | - Chengkai Zhang
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, PR China
| | - Hongzhi Cao
- School of Life Science, Anhui University, Hefei 230601, PR China
| | - Xiaohe Tian
- School of Life Science, Anhui University, Hefei 230601, PR China
| | - Yupeng Tian
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, PR China.
| |
Collapse
|
25
|
He X, Wu C, Qian Y, Li Y, Ding F, Zhou Z, Shen J. Symmetrical bis-salophen probe serves as a selectively and sensitively fluorescent switch of gallium ions in living cells and zebrafish. Talanta 2019; 205:120118. [DOI: 10.1016/j.talanta.2019.120118] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/27/2019] [Accepted: 07/03/2019] [Indexed: 12/25/2022]
|
26
|
Abstract
Monitoring cell viability is a crucial task essential for the fundamental studies in apoptosis, necrosis, and drug discovery. Cell apoptosis and necrosis are significant to maintain the cell population, and their abnormality can lead to severe diseases including cancer. During cell death, significant changes occur in the intracellular contents and physical properties, such as decrease of esterase activity, depolarization of the mitochondrial membrane potential (ΔΨm), increase of caspase content, dissipation of membrane asymmetry, and loss of membrane integrity. To detect cell viability, the fluorescent probes have been developed by taking advantage of these biological parameters and using various fluorescence mechanisms. These fluorescent probes can serve as powerful tools to facilitate the research in biology and pathology. In this Account, the representative examples of the fluorescent probes for cell viability during the past decades have been summarized and classified into five types based on the biological changes. The basic principle, design strategy, fluorescence mechanisms, and molecular construction of these fluorescent probes have been discussed. Furthermore, the intrinsic characteristics and merits of these probes have been illustrated. Particularly, this Account describes our recent works for the design and synthesis of the fluorescent probes to detect cell viability in the dual-color and reversible modes. The dual-color and reversible fluorescent probes are highlighted owing to their unique benefits in accurate and dynamic detection of cell viability. In general, the dual-color fluorescent probes were constructed based on the loss of esterase activity during cell death. Excited-state intramolecular proton transfer (ESIPT) and intramolecular charge transfer (ICT) process were exploited for the probe design. The construction of such dual-color probes were realized by the acetate of the phenyl group on fluorophores. Esterases in healthy cells hydrolyze the acetate and bring a spectral shift to the probes. Moreover, reversible fluorescent probes for cell viability were designed based on the depolarization of ΔΨm, with relocalization properties dependent on ΔΨm. The probes target mitochondria in healthy cells with high ΔΨm, while they are relocalized into the nucleus in unhealthy cells with depolarized ΔΨm. As ΔΨm is reversibly changed according to the cell viability, these probes reversibly detect cell viability. The reversible and simultaneously dual-color fluorescent probes were developed based on the relocalization mode and aggregation-induced emission shift. The probes target mitochondria to form aggregates with deep-red emission, while they migrate into the nucleus to present in monomers with green fluorescence. In this manner, the probes enable dual-color and reversible detection of cell viability. Fluorescent probes for cell viability based on sensing the membrane integrity, caspase activity, and membrane symmetry are also presented. High-polarity and large-size fluorescent probes impermeable to the intact lipid bilayer selectively target apoptotic cells with a destructive plasma membrane. Fluorescent probes sensing caspases in a turn-on manner exclusively light up apoptotic cells with caspase expression. Membrane-impermeable probes with high affinity to phosphatidylserine (PS) specifically stain the plasma membrane of dead cells, since PS flip-flops to the outer leaflet of the membrane during cell death. In summary, this Account illustrates the basic principles, design strategies, characteristics, and advantages of the fluorescent probes for cell viability, and it highlights the dual-color and reversible probes, which can promote the development of fluorescent probes, apoptosis studies, drug discovery, and other relative areas.
Collapse
Affiliation(s)
- Minggang Tian
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Yanyan Ma
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
27
|
Feng Z, Li D, Zhang M, Shao T, Shen Y, Tian X, Zhang Q, Li S, Wu J, Tian Y. Enhanced three-photon activity triggered by the AIE behaviour of a novel terpyridine-based Zn(ii) complex bearing a thiophene bridge. Chem Sci 2019; 10:7228-7232. [PMID: 31588291 PMCID: PMC6677111 DOI: 10.1039/c9sc01705d] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/06/2019] [Indexed: 12/12/2022] Open
Abstract
Multiphoton bioimaging benefits from good penetration of tissue, low phototoxicity and high resolution. Hence, development of efficient multiphoton imaging agents is highly desirable but remains challenging. Herein, a novel terpyridine-based Zn(ii) complex bearing a thiophene bridge was designed rationally and fabricated. Thanks to its aggregation-induced emission (AIE), DZ1 emitted bright yellow-green fluorescence (λ em = 575 nm) under physiological conditions. The three-photon spectral changes of DZ1 when binding with RNA unambiguously reflected its RNA-specific targeting behaviour, resulting in twofold enhancement in three-photon action cross-sections located at the second near-infrared window (1700 nm).
Collapse
Affiliation(s)
- Zhihui Feng
- Institutes of Physics Science and Information Technology , College of Chemistry and Chemical Engineering , Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province , Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei 230601 , People's Republic of China . ;
| | - Dandan Li
- Institutes of Physics Science and Information Technology , College of Chemistry and Chemical Engineering , Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province , Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei 230601 , People's Republic of China . ;
| | - Mingzhu Zhang
- Institutes of Physics Science and Information Technology , College of Chemistry and Chemical Engineering , Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province , Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei 230601 , People's Republic of China . ;
| | - Tao Shao
- Institutes of Physics Science and Information Technology , College of Chemistry and Chemical Engineering , Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province , Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei 230601 , People's Republic of China . ;
| | - Yu Shen
- Institutes of Physics Science and Information Technology , College of Chemistry and Chemical Engineering , Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province , Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei 230601 , People's Republic of China . ;
| | - Xiaohe Tian
- School of Life Science , Anhui University , Hefei 230601 , P. R. China
| | - Qiong Zhang
- Institutes of Physics Science and Information Technology , College of Chemistry and Chemical Engineering , Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province , Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei 230601 , People's Republic of China . ;
| | - Shengli Li
- Institutes of Physics Science and Information Technology , College of Chemistry and Chemical Engineering , Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province , Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei 230601 , People's Republic of China . ;
| | - Jieying Wu
- Institutes of Physics Science and Information Technology , College of Chemistry and Chemical Engineering , Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province , Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei 230601 , People's Republic of China . ;
| | - Yupeng Tian
- Institutes of Physics Science and Information Technology , College of Chemistry and Chemical Engineering , Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province , Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei 230601 , People's Republic of China . ;
| |
Collapse
|
28
|
Tian M, Sun J, Dong B, Lin W. Unique pH-Sensitive RNA Binder for Ratiometric Visualization of Cell Apoptosis. Anal Chem 2019; 91:10056-10063. [DOI: 10.1021/acs.analchem.9b01959] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Minggang Tian
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Jie Sun
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Baoli Dong
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| |
Collapse
|
29
|
Chen JJ, Xu YC, Gan ZL, Peng X, Yi XY. Zinc Complexes with Tridentate Pyridyl-Pyrrole Ligands and their Use as Catalysts in CO2
Fixation into Cyclic Carbonates. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801246] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jing-Jing Chen
- College of Chemistry and Chemical Engineering; Central South University; 410083 Changsha Hunan P.R. China
| | - Yao-Chun Xu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province; College of Optoelectronic Engineering; Shenzhen University; 518060 Shenzhen China
| | - Zhi-Liang Gan
- College of Chemistry and Chemical Engineering; Central South University; 410083 Changsha Hunan P.R. China
| | - Xiao Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province; College of Optoelectronic Engineering; Shenzhen University; 518060 Shenzhen China
| | - Xiao-Yi Yi
- College of Chemistry and Chemical Engineering; Central South University; 410083 Changsha Hunan P.R. China
| |
Collapse
|
30
|
Zhao Y, Zhang C, Liu J, Li D, Tian X, Wang A, Li S, Wu J, Tian Y. Dual-channel fluorescent probe bearing two-photon activity for cell viability monitoring. J Mater Chem B 2019. [DOI: 10.1039/c9tb00512a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We developed a dual-channel two-photon fluorescence probe to monitor cell viability.
Collapse
Affiliation(s)
- Yanqian Zhao
- College of Chemistry and Chemical Engineering
- Institutes of Physics Science and Information Technology
- Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Anhui University
| | - Chengkai Zhang
- College of Chemistry and Chemical Engineering
- Institutes of Physics Science and Information Technology
- Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Anhui University
| | - Jiejie Liu
- School of Life Science
- Anhui University
- Hefei 230601
- P. R. China
| | - Dandan Li
- College of Chemistry and Chemical Engineering
- Institutes of Physics Science and Information Technology
- Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Anhui University
| | - Xiaohe Tian
- School of Life Science
- Anhui University
- Hefei 230601
- P. R. China
| | - Aidong Wang
- School of Chemistry and Chemical Engineering
- Huangshan College
- Huangshan University
- Huangshan 245041
- P. R. China
| | - Shengli Li
- College of Chemistry and Chemical Engineering
- Institutes of Physics Science and Information Technology
- Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Anhui University
| | - Jieying Wu
- College of Chemistry and Chemical Engineering
- Institutes of Physics Science and Information Technology
- Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Anhui University
| | - Yupeng Tian
- College of Chemistry and Chemical Engineering
- Institutes of Physics Science and Information Technology
- Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Anhui University
| |
Collapse
|
31
|
Tian M, Sun J, Dong B, Lin W. Dynamically Monitoring Cell Viability in a Dual-Color Mode: Construction of an Aggregation/Monomer-Based Probe Capable of Reversible Mitochondria-Nucleus Migration. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Minggang Tian
- Institute of Fluorescent Probes for Biological Imaging; School of Chemistry and Chemical Engineering; School of Materials Science and Engineering; University of Jinan; Jinan Shandong 250022 P. R. China
| | - Jie Sun
- Institute of Fluorescent Probes for Biological Imaging; School of Chemistry and Chemical Engineering; School of Materials Science and Engineering; University of Jinan; Jinan Shandong 250022 P. R. China
| | - Baoli Dong
- Institute of Fluorescent Probes for Biological Imaging; School of Chemistry and Chemical Engineering; School of Materials Science and Engineering; University of Jinan; Jinan Shandong 250022 P. R. China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging; School of Chemistry and Chemical Engineering; School of Materials Science and Engineering; University of Jinan; Jinan Shandong 250022 P. R. China
| |
Collapse
|
32
|
Tian M, Sun J, Dong B, Lin W. Dynamically Monitoring Cell Viability in a Dual-Color Mode: Construction of an Aggregation/Monomer-Based Probe Capable of Reversible Mitochondria-Nucleus Migration. Angew Chem Int Ed Engl 2018; 57:16506-16510. [PMID: 30371018 DOI: 10.1002/anie.201811459] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Indexed: 01/10/2023]
Abstract
Mitochondria and nucleus play crucial roles during cell apoptosis process. In this work, a unique fluorescent probe capable of reversible migration between mitochondria and nucleus, as well as detection of cell viability in a dual-color mode is presented. The dual-color probe targets mitochondria in healthy cells, to form aggregates with deep-red emission. It migrates into nucleus and binds to DNA to form monomers with green fluorescence during apoptosis. Interestingly, the migration is reversible dependent on cell viability, which enables the dynamic visualization of apoptosis process. With the probe, mitochondria and nucleus can be visualized in dual colors during apoptosis, and the cell viability could be monitored by the emission color and localization of the probe.
Collapse
Affiliation(s)
- Minggang Tian
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China
| | - Jie Sun
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China
| | - Baoli Dong
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China
| |
Collapse
|
33
|
Fang B, Zhu Y, Hu L, Shen Y, Jiang G, Zhang Q, Tian X, Li S, Zhou H, Wu J, Tian Y. Series of C^N^C Cyclometalated Pt(II) Complexes: Synthesis, Crystal Structures, and Nonlinear Optical Properties in the Near-Infrared Region. Inorg Chem 2018; 57:14134-14143. [DOI: 10.1021/acs.inorgchem.8b01967] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Bin Fang
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, China
| | - Yingzhong Zhu
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, China
| | - Lei Hu
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, China
| | - Yu Shen
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, China
| | - Guoqing Jiang
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, China
| | - Qiong Zhang
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, China
| | - Xiaohe Tian
- School of Life Science, Anhui University, Hefei 230039, China
| | - Shengli Li
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, China
| | - Hongping Zhou
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, China
| | - Jieying Wu
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, China
| | - Yupeng Tian
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, China
| |
Collapse
|