1
|
Pushpanandan P, Ravikanth M. Synthesis and Properties of Stable 20π Porphyrinoids. CHEM REC 2022; 22:e202200144. [PMID: 35896952 DOI: 10.1002/tcr.202200144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/01/2022] [Indexed: 11/09/2022]
Abstract
The 20π porphyrinoids are immediate higher homologues of 18π porphyrins and differ from porphyrins in aromaticity which in turn affects the structure, properties and chemical reactivities. Research over the years indicated that the 20π porphyrinoids can be stabilized as non-aromatic/anti-aromatic or Mobius aromatic macrocycles using different strategies such as core-modification of porphyrins, non-metal/metal complexation of porphyrins, peripheral modification of porphyrins and expanded porphyrinoids. The structural properties such as aromaticity of the macrocycle can be controlled by choosing the right synthetic strategy. This review will provide an overview of the development in the chemistry of 20π porphyrinoids giving emphasize on the synthesis, structure and electronic properties of these macrocycles which have huge potential for various applications.
Collapse
Affiliation(s)
- Poornenth Pushpanandan
- Department of Chemistry, Indian Institute of Technology Bombay, Macrocyclic Lab, Lab No. 338, 400076, Mumbai, India
| | - Mangalampalli Ravikanth
- Department of Chemistry, Indian Institute of Technology Bombay, Macrocyclic Lab, Lab No. 338, 400076, Mumbai, India
| |
Collapse
|
2
|
Liu N, Morimoto H, Wu F, Lv X, Xiao B, Kuzuhara D, Pan J, Qiu F, Aratani N, Shen Z, Yamada H, Xue S. Synthesis of Planar meso-Aryl Rosarins: A Reversible Antiaromatic/Aromatic Interconversion. Org Lett 2022; 24:3609-3613. [DOI: 10.1021/acs.orglett.2c01147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ningchao Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Hirofumi Morimoto
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Fan Wu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaojuan Lv
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Bentian Xiao
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Daiki Kuzuhara
- Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551, Japan
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Naoki Aratani
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hiroko Yamada
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| |
Collapse
|
3
|
Liu N, Osterloh WR, Huang H, Tang X, Mei P, Kuzuhara D, Fang Y, Pan J, Yamada H, Qiu F, Kadish KM, Xue S. Synthesis, Characterization, and Electrochemistry of Copper Dibenzoporphyrin(2.1.2.1) Complexes. Inorg Chem 2022; 61:3563-3572. [PMID: 35167271 DOI: 10.1021/acs.inorgchem.1c03596] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Three copper dibenzoporphyrin(2.1.2.1) complexes having two dipyrromethene units connected through o-phenylen bridges and 4-MePh, Ph, or F5Ph substituents at the meso positions of the dipyrrins were synthesized and characterized according to their spectral, electrochemical, and structural properties. As indicated by the single-crystal X-ray structures, all three derivatives have highly bent molecular structures, with angles between each planar dipyrrin unit ranging from 89° to 85°, indicative of a nonaromatic molecule. The insertion of copper(II) into dibenzoporphyrins(2.1.2.1) induced a change in the macrocyclic cavity shape from rectangular in the case of the free-base precursors to approximately square for the metalated copper derivatives. Solution electron paramagnetic resonance (EPR) spectra at 100 K showed hyperfine coupling of the Cu(II) central metal ion and the N nucleus in the highly bent molecular structures. Electrochemical measurements in CH2Cl2 or N,N-dimethylformamide (DMF) containing 0.1 M tetrabutylammonium perchlorate (TBAP) were consistent with ring-centered electron transfers and, in the case of reduction, were assigned to electron additions involving two equivalent π centers on the bent nonaromatic molecule. The potential separation between the two reversible one-electron reductions ranged from 230 to 400 mV in DMF, indicating a moderate-to-strong interaction between the equivalent redox-active dipyrrin units of the dibenzoporphyrins(2.1.2.1). The experimentally measured highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gaps ranged from 2.14 to 2.04 eV and were smaller than those seen for the planar copper tetraarylporphyrins(1.1.1.1), (Ar)4PCu.
Collapse
Affiliation(s)
- Ningchao Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - W Ryan Osterloh
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Hongliang Huang
- Tianjin Key Laboratory of Green Chemical Engineering Process Engineering, Tiangong University, Tianjin 300387, China
| | - Xinyue Tang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Peifeng Mei
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Daiki Kuzuhara
- Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Yuanyuan Fang
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hiroko Yamada
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Karl M Kadish
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.,Tianjin Key Laboratory of Green Chemical Engineering Process Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
4
|
Xue S, Liu N, Mei P, Kuzuhara D, Zhou M, Pan J, Yamada H, Qiu F. Porphyrin(2.1.2.1) as a novel binucleating ligand: synthesis and molecular structures of mono- and di-rhodium(I) complexes. Chem Commun (Camb) 2021; 57:12808-12811. [PMID: 34783800 DOI: 10.1039/d1cc05641g] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first example of monovalent and bimetallic porphyrins(2.1.2.1), the rhodium(I) complex of porphyrin(2.1.2.1), was readily obtained under controlled conditions. The coordinated rhodium(I) drastically influenced the molecular structure and optical and electronic properties. Our results clearly demonstrate that porphyrin(2.1.2.1) could be developed as a new binucleating ligand for the fabrication of bimetallic complexes.
Collapse
Affiliation(s)
- Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China. .,Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Changsha, Hunan 410081, China
| | - Ningchao Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Peifeng Mei
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Daiki Kuzuhara
- Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551, Japan
| | - Mingbo Zhou
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Changsha, Hunan 410081, China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Hiroko Yamada
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
5
|
Xue S, Liu N, Mei P, Kuzuhara D, Aratani N, Qiu F, Yamada H. Binuclear Rhodium(I) Complex of a Dimethylvinylene-Bridged Distorted Hexaphyrin(2.1.2.1.2.1). Inorg Chem 2021; 60:16070-16073. [PMID: 34672545 DOI: 10.1021/acs.inorgchem.1c02609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A highly distorted binuclear rhodium(I) complex, 2Rh, was successfully synthesized from hexaphyrin(2.1.2.1.2.1) containing dimethylvinylene-bridges between dipyrrin units. IR spectroscopy, 1H NMR spectroscopy, and X-ray crystallography revealed that the complex 2Rh consists of two rhodium(I) ions coordinated to two dipyrrin units. Rh complexation induced a transformation from a trans-/cis-/trans- to trans-/cis-/cis-conformation on the dimethylvinylene-bridges. This is the first example of rhodium(I)-ion-induced cis-/trans-isomerization in the porphyrin derivatives. Theoretical calculations of 2Rh predicted the presence of intramolecular charge-transfer absorption due to the distorted molecular structure.
Collapse
Affiliation(s)
- Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Ningchao Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Peifeng Mei
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Daiki Kuzuhara
- Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551, Japan
| | - Naoki Aratani
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Hiroko Yamada
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
6
|
Abstract
AbstractPorphyrinoids containing vinylene bridges, such as triphyrin(2.1.1), porphycene, porphyrin(2.1.2.1), and hexaphyrin(2.1.2.1.2.1), are a relatively new family of porphyrinoids. Vinylene bridges give porphyrinoids a lower symmetry and a flexibility of the framework and they permit cis/trans-isomerization reactions; these factors confer unique properties to these substances, such as coordination to metal ions and aromaticity switching. In this account, the synthesis, crystal structures, and properties of new porphyrinoids containing vinylene bridges are summarized.1 Introduction2 Triphyrin(2.1.1)3 Porphycene4 Porphyrin(2.1.2.1)5 Hexaphyrin(2.1.2.1.2.1)6 Conclusion
Collapse
Affiliation(s)
| | - Hiroko Yamada
- Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST)
| |
Collapse
|
7
|
Vinylene-Bridged Cyclic Dipyrrin and BODIPY Trimers. Int J Mol Sci 2020; 21:ijms21218041. [PMID: 33126711 PMCID: PMC7662884 DOI: 10.3390/ijms21218041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022] Open
Abstract
Vinylene-bridged cyclic boron–difluoride complex of dipyrrin (BODIPY) trimers were successfully prepared from expanded dimethyl-vinylene bridged hexaphyrin(2.1.2.1.2.1) Me-Hex that has the structure of alternate dipyrrins and vinylene bridges. The hexaphyrin(2.1.2.1.2.1) Me-Hex can coordinate with boron ions to afford five kinds of cyclic BODIPYs given by step-by-step boron complexations. Crystal structures of all cyclic BODIPYs except for 3BF2-Me-Hex(b) formed non-planar structures. The theoretical calculation predicted that mono-/bis-boron cyclic BODIPYs show the intramolecular charge transfer (ICT) characteristics, whereas tri-boron cyclic BODIPYs have no ICT characteristics. Reflecting these electronic properties, tri-boron cyclic BODIPYs exhibit weak fluorescence in the red region, but mono-/bis-boron cyclic BODIPYs exhibit no emission. Vinylene bridged cyclic dipyrrin trimer Me-Hex is the novel porphyrinoid ligand allowed to control the boron coordination under different reaction conditions to form various boron complexes.
Collapse
|
8
|
Lopes SMM, Pineiro M, Pinho e Melo TMVD. Corroles and Hexaphyrins: Synthesis and Application in Cancer Photodynamic Therapy. Molecules 2020; 25:E3450. [PMID: 32751215 PMCID: PMC7435872 DOI: 10.3390/molecules25153450] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 11/21/2022] Open
Abstract
Corroles and hexaphyrins are porphyrinoids with great potential for diverse applications. Like porphyrins, many of their applications are based on their unique capability to interact with light, i.e., based on their photophysical properties. Corroles have intense absorptions in the low-energy region of the uv-vis, while hexaphyrins have the capability to absorb light in the near-infrared (NIR) region, presenting photophysical features which are complementary to those of porphyrins. Despite the increasing interest in corroles and hexaphyrins in recent years, the full potential of both classes of compounds, regarding biological applications, has been hampered by their challenging synthesis. Herein, recent developments in the synthesis of corroles and hexaphyrins are reviewed, highlighting their potential application in photodynamic therapy.
Collapse
Affiliation(s)
| | | | - Teresa M. V. D. Pinho e Melo
- Coimbra Chemistry Centre and Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (S.M.M.L.); (M.P.)
| |
Collapse
|
9
|
Szyszko B, Przewoźnik M, Białek MJ, Białońska A, Chmielewski PJ, Latos-Grażyński L. Conformation-Dependent Response to the Protonation of Diphenanthrioctaphyrin(1.1.1.0.1.1.1.0): A Route to Pseudorotaxane-Like Structures. Chemistry 2020; 26:8555-8566. [PMID: 32203626 DOI: 10.1002/chem.202000940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/21/2020] [Indexed: 12/14/2022]
Abstract
Diphenanthrioctaphyrin(1.1.1.0.1.1.1.0), an expanded carbaporphyrinoid incorporating two phenanthrenylene moieties, exists as two separate, yet interconvertible, locked stereoisomers. These species demonstrate complex dynamic behavior upon protonation, consisting in multiple conformational rearrangements and anion-binding events. The formation of one of the final dicationic forms is accompanied by the inclusion of a complex anion(s) within the macrocyclic cavity yielding a pseudorotaxane-like host-guest complex. Protonation with trifluoroacetic or dichloroacetic acids followed by neutralization afforded a conformation-switching cycle, which involves six structurally different species. Analogous acidification with chiral 10-camphorsulfonic acid and subsequent neutralization generated one of the free base stereoisomers with enantiomeric excess. Therefore, it was shown that the simple acid-base chemistry of diphenanthrioctaphyrin can act as stimulus, inducing chirality into the system, allowing for the manipulation of the stereochemical information imprinted into the enantiomers of the macrocycle.
Collapse
Affiliation(s)
- Bartosz Szyszko
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50383, Wrocław, Poland
| | - Monika Przewoźnik
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50383, Wrocław, Poland
| | - Michał J Białek
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50383, Wrocław, Poland
| | - Agata Białońska
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50383, Wrocław, Poland
| | - Piotr J Chmielewski
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50383, Wrocław, Poland
| | | |
Collapse
|
10
|
Xue S, Kuzuhara D, Aratani N, Yamada H. Control of Aromaticity and
cis
‐/
trans
‐Isomeric Structure of Non‐Planar Hexaphyrin(2.1.2.1.2.1) and Metal Complexes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Songlin Xue
- Graduate School of Science and TechnologyNara Institute of Science and Technology 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| | - Daiki Kuzuhara
- Faculty of Science and EngineeringIwate University 4-3-5 Ueda Morioka Iwate 020-8551 Japan
| | - Naoki Aratani
- Graduate School of Science and TechnologyNara Institute of Science and Technology 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| | - Hiroko Yamada
- Graduate School of Science and TechnologyNara Institute of Science and Technology 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| |
Collapse
|
11
|
Xue S, Kuzuhara D, Aratani N, Yamada H. Control of Aromaticity and cis-/trans-Isomeric Structure of Non-Planar Hexaphyrin(2.1.2.1.2.1) and Metal Complexes. Angew Chem Int Ed Engl 2019; 58:12524-12528. [PMID: 31287217 DOI: 10.1002/anie.201906946] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Indexed: 11/10/2022]
Abstract
Vinylene-bridged hexaphyrin(2.1.2.1.2.1) was synthesized from dipyrrolyl diphenylethenes by acid-catalyzed condensation reactions. Freebase hexaphyrin(2.1.2.1.2.1) forms a distorted structure with non-aromatic characteristics. The aromaticity and molecular configuration of non-planar hexaphyrin(2.1.2.1.2.1) can be controlled by insertion of metal ions. Freebase and zinc complexes show a distorted structure without macrocyclic aromaticity, whereas copper complexes show a figure-of-eight structure with macrocyclic aromaticity. It is the first example of aromaticity conversion of a distorted expanded porphyrin involving vinylene bridges.
Collapse
Affiliation(s)
- Songlin Xue
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Daiki Kuzuhara
- Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate, 020-8551, Japan
| | - Naoki Aratani
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Hiroko Yamada
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|