1
|
Basu Baul TS, Hlychho B, Das Pramanik S, Lyčka A, Roy P, Mahmoud AG, Guedes da Silva MFC. Organotin(IV) complexes derived from 2,6-diacetylpyridine bis(2-hydroxybenzoylhydrazone) as prospective anti-proliferative agents: Synthesis, characterization, structures and in vitro anticancer activity. J Inorg Biochem 2024; 261:112693. [PMID: 39208488 DOI: 10.1016/j.jinorgbio.2024.112693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Six organotin(IV) complexes, viz., [Me2Sn(L)] (1), [n-Bu2Sn(L)] (2), [n-Oct2Sn(L)] (3), [Bz2Sn(L)]·0.5C7H8 (4), [n-BuSn(L)Cl] (5), and [PhSn(L)Cl] (6), were synthesized using a 2,6-diacetylpyridine bis(2-hydroxybenzoylhydrazone), H2L. Compounds were characterized by Fourier transform infrared (FT-IR), High-resolution mass spectrometry (HRMS), and solutions Fourier transform nuclear magnetic resonance (FT-NMR) spectroscopies. The structures 1-6 were established by single-crystal X-ray diffraction (SC-XRD) analysis. Diffraction results evidenced that complexes 1-6 were seven-coordinated mononuclear species with the equatorial plane comprising the pentagonal N3O2 chelate ring of the doubly deprotonated L and two axial ligands, either R (R = Me, n-Bu, n-Oct, Bz) or R (n-Bu or Ph) and Cl ligands. Additionally, the photophysical properties were examined due to the enhanced conjugation and rigidity of the molecules while thermogravimetric analysis was carried out to evaluate the thermal stabilities of compounds. The anti-proliferative activity of the complexes 1-6 was tested against prostate cancer cells (DU-145) and normal human embryonic kidney cells (HEK-293). Among the compounds, dibutyltin compound 2 exhibited increased anti-proliferative activity, with an IC50 value of 6.16 ± 1.56 μM. The investigation of its mechanism of action involves using AO/EB (acridine orange/ethidium bromide) and ROS (reactive oxygen species) generation assays. This likely detects apoptotic morphological alterations in the nucleus of the cells, with ROS generation ultimately leading to apoptosis and cell death. The superior activity of 2 may be attributed to the C···H contacts and respective higher de outside and di inside distances from the Hirshfeld surface. Thus, these compounds could be a promising alternative to classical chemotherapy agents.
Collapse
Affiliation(s)
- Tushar S Basu Baul
- Centre for Advanced Studies in Chemistry, North-Eastern Hill University, NEHU Permanent Campus, Umshing, Shillong 793 022, India; Sophisticated Analytical Instrument Facility, North-Eastern Hill University, NEHU Permanent Campus, Umshing, Shillong 793 022, India.
| | - Bietlaichhai Hlychho
- Centre for Advanced Studies in Chemistry, North-Eastern Hill University, NEHU Permanent Campus, Umshing, Shillong 793 022, India
| | - Siddhartha Das Pramanik
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Antonin Lyčka
- University of Hradec Králové, Faculty of Science, Rokitanského 62, CZ-500 03, Hradec Králové 3, Czech Republic
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Abdallah G Mahmoud
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - M Fátima C Guedes da Silva
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
2
|
Imperato M, Nicolini A, Boniburini M, Gómez-Coca S, Ruiz E, Santanni F, Sorace L, Cornia A. Phase-dependent polymerization isomerism in the coordination complexes of a flexible bis(β-diketonato) ligand. Dalton Trans 2024; 53:18762-18781. [PMID: 39495486 DOI: 10.1039/d4dt02574a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
First prepared in the late 70s, the pro-ligand 1,3-bis(3,5-dioxo-1-hexyl)benzene (H2bdhb) contains two acetoacetyl terminations linked to a central 1,3-phenylene unit through dimethylene bridges. Since each termination can be either in diketonic or keto-enolic form, in organic solution it exists as a mixture of three spectroscopically resolvable tautomers. In the presence of pyridine, Co2+ and the bdhb2- anion form a crystalline dimeric compound with formula [Co2(bdhb)2(py)4] (2) and a Co⋯Co separation of more than 11 Å. Complex 2 contains two pseudo-octahedrally coordinated and non-interacting high-spin cobalt(II) ions (S = 3/2) displaying a large easy-plane anisotropy (D ∼ 70 cm-1), as consistently indicated by magnetic measurements, X-band EPR spectra, and complete active space self-consistent field/N-electron valence state perturbation theory (CASSCF/NEVPT2) calculations. At cryogenic temperatures (T < 7 K) and in an applied static magnetic field, the compound shows detectably slow magnetic relaxation, which occurs through direct and Raman mechanisms. Combined mass spectrometry, UV-Vis, and 1H/2H NMR data, including an isotopic labelling experiment and a determination of molecular weight by diffusion ordered spectroscopy (DOSY), show that 2 rearranges to monomeric high-spin [Co(bdhb)(py)x] species (x = 0, 1, or 2) in organic solution (CH2Cl2, THF) with concomitant partial dissociation of the py ligands. The X-band EPR spectra in a frozen CH2Cl2/toluene matrix concurrently suggest a significant alteration of the coordination environment upon dissolution. These observations are fairly well reproduced by density functional theory (DFT) and CASSCF/NEVPT2 calculations on the lowest Gibbs free energy conformers of each species, as provided by an extensive conformational search based on meta-dynamics simulations and semiempirical tight-binding methods. After the vanadyl analogue, compound 2 provides the second example of polymerization isomerism in the 1 : 1 adducts of bdhb2- with divalent metal ions.
Collapse
Affiliation(s)
- Manuel Imperato
- Dipartimento di Scienze Chimiche e Geologiche e UdR INSTM, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 213/A, 41125 Modena, Italy
| | - Alessio Nicolini
- Dipartimento di Scienze Chimiche e Geologiche e UdR INSTM, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| | - Matteo Boniburini
- Dipartimento di Scienze Chimiche e Geologiche e UdR INSTM, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| | - Silvia Gómez-Coca
- Departament de Química Inorgànica i Orgànica, Institut de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Eliseo Ruiz
- Departament de Química Inorgànica i Orgànica, Institut de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Fabio Santanni
- Dipartimento di Chimica "Ugo Schiff" e UdR INSTM, Università degli Studi di Firenze, via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Lorenzo Sorace
- Dipartimento di Chimica "Ugo Schiff" e UdR INSTM, Università degli Studi di Firenze, via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Andrea Cornia
- Dipartimento di Scienze Chimiche e Geologiche e UdR INSTM, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| |
Collapse
|
3
|
Manohar EM, Dhandapani HN, Roy S, Pełka R, Rams M, Konieczny P, Tothadi S, Kundu S, Dey A, Das S. Tetranuclear Co II4O 4 Cubane Complex: Effective Catalyst Toward Electrochemical Water Oxidation. Inorg Chem 2024; 63:4883-4897. [PMID: 38494956 DOI: 10.1021/acs.inorgchem.3c03956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The reaction of Co(OAc)2·6H2O with 2,2'-[{(1E,1'E)-pyridine-2,6-diyl-bis(methaneylylidene)bis(azaneylylidene)}diphenol](LH2) a multisite coordination ligand and Et3N in a 1:2:3 stoichiometric ratio forms a tetranuclear complex Co4(L)2(μ-η1:η1-OAc)2(η2-OAc)2]· 1.5 CH3OH· 1.5 CHCl3 (1). Based on X-ray diffraction investigations, complex 1 comprises a distorted Co4O4 cubane core consisting of two completely deprotonated ligands [L]2- and four acetate ligands. Two distinct types of CoII centers exist in the complex, where the Co(2) center has a distorted octahedral geometry; alternatively, Co(1) has a distorted pentagonal-bipyramidal geometry. Analysis of magnetic data in 1 shows predominant antiferromagnetic coupling (J = -2.1 cm-1), while the magnetic anisotropy is the easy-plane type (D1 = 8.8, D2 = 0.76 cm-1). Furthermore, complex 1 demonstrates an electrochemical oxygen evolution reaction (OER) with an overpotential of 325 mV and Tafel slope of 85 mV dec-1, required to attain a current density of 10 mA cm-2 and moderate stability under alkaline conditions (pH = 14). Electrochemical impedance spectroscopy studies reveal that compound 1 has a charge transfer resistance (Rct) of 2.927 Ω, which is comparatively lower than standard Co3O4 (5.242 Ω), indicating rapid charge transfer kinetics between electrode and electrolyte solution that enhances higher catalytic activity toward OER kinetics.
Collapse
Affiliation(s)
- Ezhava Manu Manohar
- Department of Basic Sciences, Chemistry Discipline, Institute of Infrastructure, Technology, Research, and Management, Near Khokhra Circle, Maninagar East, Ahmedabad, Gujarat 380026, India
| | - Hariharan N Dhandapani
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Soumalya Roy
- Department of Basic Sciences, Chemistry Discipline, Institute of Infrastructure, Technology, Research, and Management, Near Khokhra Circle, Maninagar East, Ahmedabad, Gujarat 380026, India
| | - Robert Pełka
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, Krakow PL-31342, Poland
| | - Michał Rams
- Institute of Physics, Jagiellonian University, Łojasiewicza 11, Kraków 30348, Poland
| | - Piotr Konieczny
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, Krakow PL-31342, Poland
| | - Srinu Tothadi
- Analytical and Environmental Sciences Division and Centralized Instrumentation Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, India
| | - Subrata Kundu
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Atanu Dey
- Department of Chemistry, Gandhi Institute of Technology and Management (GITAM), NH 207, Nagadenehalli, Doddaballapur Taluk, Bengaluru, Karnataka 561203, India
| | - Sourav Das
- Department of Basic Sciences, Chemistry Discipline, Institute of Infrastructure, Technology, Research, and Management, Near Khokhra Circle, Maninagar East, Ahmedabad, Gujarat 380026, India
| |
Collapse
|
4
|
Zahradníková E, Sutter JP, Halaš P, Drahoš B. Trigonal prismatic coordination geometry imparted by a macrocyclic ligand: an approach to large axial magnetic anisotropy for Co(II). Dalton Trans 2023. [PMID: 38015562 DOI: 10.1039/d3dt02639f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Large uniaxial magnetic anisotropy, expressed by a negative value of the axial zero-field splitting parameter D, has been achieved in a series of trigonal prismatic Co(II) complexes with the general formula [Co(L)X]Y, where L = 1,5,13,17,22-pentaazatricyclo[15.2.2.17,11]docosa-7,9,11(22)-triene, X = Cl-(1a,b), Br-(2), N3-(3), NCO-(4), NCS-(5), NCSe-(6), and Y = Cl-(1), Br-(2), NCS-(4), NCSe-(5), ClO4-(3,6). Complexes 1-6 are six-coordinate with the distorted trigonal prismatic geometry imparted by the pentadentate pyridine-/piperazine-based macrocyclic ligand L and by one monovalent coligand X-. Based on magnetic studies, all complexes 1-6 exhibit strong magnetic anisotropy with negative D-values ranging from about -20 to -41 cm-1. This variation in D (i.e. the increase of magnetic anisotropy) parallels the trend obtained by theoretical calculations and the lesser distortion of the coordination sphere with respect to the trigonal prismatic reference geometry. AC magnetic susceptibility investigations revealed field-induced single-molecule magnet behaviour for all complexes except Cl- derivative 1. The series investigated represents a rare example of Co(II) complexes with a robust trigonal prismatic geometry.
Collapse
Affiliation(s)
- Eva Zahradníková
- Department of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic.
| | - Jean-Pascal Sutter
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS), Université de Toulouse, CNRS, Toulouse, France.
| | - Petr Halaš
- Department of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic.
| | - Bohuslav Drahoš
- Department of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic.
| |
Collapse
|
5
|
Dey A, Ali J, Moorthy S, Gonzalez JF, Pointillart F, Singh SK, Chandrasekhar V. Field induced single ion magnet behavior in Co II complexes in a distorted square pyramidal geometry. Dalton Trans 2023; 52:14807-14821. [PMID: 37791680 DOI: 10.1039/d3dt01769a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
We report three CoII-based complexes with the general formula [CoII(L)(X)2] by changing the halide/pseudo-halide ions [X = NCSe (1SeCN); Cl (2Cl) and Br (3Br)]. The obtained τ5 and CShM values confirm a distorted square pyramidal geometry around the CoII ion in all these complexes. In these three complexes, the central CoII ion is situated above the basal plane of the square pyramidal geometry. The extent of distortion from the ideal SPY-5 geometry differs upon changing the coordinating halide/pseudo-halide ion in these complexes. This essentially results in the alteration of the anisotropic parameter D and hence impacts the magnetic properties in these complexes. This phenomenon has been corroborated with the aid of theoretical investigations. All these complexes display field-induced SIM behaviour with magnetic relaxation occurring through a combination of processes depending on the applied dc magnetic field values and dilution.
Collapse
Affiliation(s)
- Atanu Dey
- Department of Chemistry, Gandhi Institute of Technology and Management (GITAM), NH 207, Nagadenehalli, Doddaballapur Taluk, Bengaluru 561203, India.
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500 046, India.
| | - Junaid Ali
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500 046, India.
| | - Shruti Moorthy
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India.
| | - Jessica Flores Gonzalez
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, 35000 Rennes, France.
| | - Fabrice Pointillart
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, 35000 Rennes, France.
| | - Saurabh Kumar Singh
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India.
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500 046, India.
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
6
|
Wang LX, Wu XF, Jin XX, Li JY, Wang BW, Liu JY, Xiang J, Gao S. Slow magnetic relaxation in 8-coordinate Mn(II) compounds. Dalton Trans 2023; 52:14797-14806. [PMID: 37812439 DOI: 10.1039/d3dt02307a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The design and synthesis of high-spin Mn(II)-based single-molecule magnets (SMMs) have not been well developed to a great extent, as compared with a large number of SMMs based on the other first row transition metal complexes. In light of our success in designing Fe(II), Co(II) and Fe(III)-based SMMs with a high coordination number of 8, it is of great interest to design Mn(II) analogues with such a strategy. In this contribution, four Mn(II) compounds, [MnII(Ln)2](ClO4)2 (1-4) were obtained from reactions of neutral tetradentate ligands, L1-L4, with hydrated MnII(ClO4)2 (L1 = 2,9-bis(carbomethoxy)-1,10-phenanthroline, L2 = 2,9-bis(carbomethoxy)-2,2'-dipyridine, L3 = N2,N9-dibutyl-1,10-phenanthroline-2,9-dicarboxamide, L4 = 6,6'-bis(2-(tert-butyl)-2H-tetrazol-5-yl)-2,2'-bipyridine). Their crystal structures have been determined by X-ray crystallography and it clearly shows that the Mn(II) centers in these compounds have an oversaturated coordination number of 8. Their magnetic properties have been investigated in detail; to our surprise, all of these Mn(II) compounds show interesting slow magnetic relaxation behaviors under an applied direct current field, although they have very small negative D values.
Collapse
Affiliation(s)
- Li-Xin Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, Hubei, P. R. China
| | - Xiao-Fan Wu
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, P. R. China.
| | - Xin-Xin Jin
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, P. R. China.
| | - Jia-Yi Li
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, Hubei, P. R. China
| | - Bing-Wu Wang
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, P. R. China.
| | - Ji-Yan Liu
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.
| | - Jing Xiang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, Hubei, P. R. China
| | - Song Gao
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, P. R. China.
- School of Chemistry, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
7
|
Adhikari S, Sheikh AH, Kansız S, Dege N, Baildya N, Mahmoudi G, Choudhury NA, Butcher RJ, Kaminsky W, Talledo S, Lopato EM, Bernhard S, Kłak J. Supramolecular Co(II) Complexes Based on Dithiolate and Dicarboxylate Ligands: Crystal structures, Theoretical studies, Magnetic Properties, and Catalytic Activity Studies in Photocatalytic Hydrogen Evolution. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
8
|
Kumar Sahu P, Kharel R, Shome S, Goswami S, Konar S. Understanding the unceasing evolution of Co(II) based single-ion magnets. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Sasnovskaya VD, Zorina LV, Simonov SV, Talantsev AD, Yagubskii EB. [M II(H 2dapsc)]-[Cr(CN) 6] (M = Mn, Co) Chain and Trimer Complexes: Synthesis, Crystal Structure, Non-Covalent Interactions and Magnetic Properties. Molecules 2022; 27:8518. [PMID: 36500611 PMCID: PMC9737345 DOI: 10.3390/molecules27238518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
Four new heterometallic complexes combining [MII(H2dapsc)]2+ cations with the chelating H2dapsc {2,6-diacetylpyridine-bis(semicarbazone)} Schiff base ligand and [Cr(CN)6]3- anion were synthesized: {[MII(H2dapsc)]CrIII(CN)6K(H2O)2.5(EtOH)0.5}n·1.2n(H2O), M = Mn (1) and Co (2), {[Mn(H2dapsc)]2Cr(CN)6(H2O)2}Cl·H2O (3) and {[Co(H2dapsc)]2Cr(CN)6(H2O)2}Cl·2EtOH·3H2O (4). In all the compounds, M(II) centers are seven-coordinated by N3O2 atoms of H2dapsc in the equatorial plane and N or O atoms of two apical -CN/water ligands. Crystals 1 and 2 are isostructural and contain infinite negatively charged chains of alternating [MII(H2dapsc)]2+ and [CrIII(CN)6]3- units linked by CN-bridges. Compounds 3 and 4 consist of centrosymmetric positively charged trimers in which two [MII(H2dapsc)]2+ cations are bound through one [CrIII(CN)6]3- anion. All structures are regulated by π-stacking of coplanar H2dapsc moieties as well as by an extensive net of hydrogen bonding. Adjacent chains in 1 and 2 interact also by coordination bonds via a pair of K+ ions. The compounds containing MnII (1, 3) and CoII (2, 4) show a significant difference in magnetic properties. The ac magnetic measurements revealed that complexes 1 and 3 behave as a spin glass and a field-induced single-molecule magnet, respectively, while 2 and 4 do not exhibit slow magnetic relaxation in zero and non-zero dc fields. The relationship between magnetic properties and non-covalent interactions in the structures 1-4 was traced.
Collapse
Affiliation(s)
- Valentina D. Sasnovskaya
- Institute of Problems of Chemical Physics RAS, Federal Research Center of Problems of Chemical Physics and Medical Chemistry RAS, Chernogolovka 142432, Russia
| | - Leokadiya V. Zorina
- Institute of Problems of Chemical Physics RAS, Federal Research Center of Problems of Chemical Physics and Medical Chemistry RAS, Chernogolovka 142432, Russia
- Institute of Solid State Physics RAS, Chernogolovka 142432, Russia
| | - Sergey V. Simonov
- Institute of Problems of Chemical Physics RAS, Federal Research Center of Problems of Chemical Physics and Medical Chemistry RAS, Chernogolovka 142432, Russia
- Institute of Solid State Physics RAS, Chernogolovka 142432, Russia
| | - Artem D. Talantsev
- Institute of Problems of Chemical Physics RAS, Federal Research Center of Problems of Chemical Physics and Medical Chemistry RAS, Chernogolovka 142432, Russia
| | - Eduard B. Yagubskii
- Institute of Problems of Chemical Physics RAS, Federal Research Center of Problems of Chemical Physics and Medical Chemistry RAS, Chernogolovka 142432, Russia
| |
Collapse
|
10
|
Bhunia S, Chattopadhyay S. Mono-anionic succinic acid bridged cationic cobalt(III/II/III) compounds of N2O2 donor ‘reduced Schiff base’ ligands containing perchlorate counter ions: Synthesis, structures and different non-covalent interactions in self-assembly. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
11
|
Huang XC, Yong W, Moorthy S, Su ZY, Kong JJ, Kumar Singh S. A pentagonal bipyramidal Co(II) single-ion magnet based on an asymmetric tetradentate ligand with easy plane anisotropy. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Field-Induced Slow Magnetic Relaxation in Co II Cyclopropane-1,1-dicarboxylates. Molecules 2022; 27:molecules27196537. [PMID: 36235074 PMCID: PMC9572064 DOI: 10.3390/molecules27196537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
New CoII substituted malonate field-induced molecular magnets {[Rb6Co3(cpdc)6(H2O)12]∙6H2O}n (1) and [Cs2Co(cpdc)2(H2O)6]n (2) (where cpdc2− stands for cyclopropane-1,1-dicarboxylic acid dianions) were synthesized. Both compounds contain mononuclear bischelate fragments {CoII(cpdc)2(H2O)2}2− where the quasi-octahedral cobalt environment (CoO6) is complemented by water molecules in apical positions. The alkali metal atoms play the role of connectors between the bischelate fragments to form 3D and 2D polymeric structures for 1 and 2, respectively. Analysis of dc magnetic data using the parametric Griffith Hamiltonian for high-spin CoII supported by ab initio calculations revealed that both compounds have an easy axis of magnetic anisotropy. Compounds 1 and 2 exhibit slow magnetic relaxation under an external magnetic field (HDC = 1000 and 1500 Oe, respectively).
Collapse
|
13
|
Razquin-Bobillo L, Pajuelo-Corral O, Artetxe B, Zabala-Lekuona A, Choquesillo-Lazarte D, Rodríguez-Diéguez A, San Sebastian E, Cepeda J. Combined experimental and theoretical investigation on the magnetic properties derived from the coordination of 6-methyl-2-oxonicotinate to 3d-metal ions. Dalton Trans 2022; 51:9780-9792. [PMID: 35704920 DOI: 10.1039/d2dt00838f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five new compounds are reported herein starting from 2-hydroxy-6-methylnicotinic acid (H2h6mnic) and first-row transition metal ions, although H2h6mnic shows a prototropy in solution to lead to the 6-methyl-2-oxonicotinate (6m2onic) ligand that is the molecule eventually present in the compounds. The structural and chemical characterization reveals the following chemical formulae: {[MnNa(μ3-6m2onic)2(μ-6m2onic)(MeOH)]·H2O·MeOH}n (1Mn), {[M2Na2(μ3-6m2onic)2(μ-6m2onic)2(μ-H2O)(H2O)6](NO3)2}n [MII = Co (2Co) and Ni (3Ni)], 2[Cu2(6m2onic)3(μ-6m2onic)(MeOH)]·[Cu2(6m2onic)2(μ-6m2onic)2]·2[Cu(6m2onic)2(MeOH)]·32H2O (4Cu) and {[Cu(μ-6m2onic)2]·6H2O}n (5Cu) (where 6m2onic = 6-methyl-2-oxonicotinate). An unusual structural diversity is observed for the compounds, ranging from isolated complexes (in 4Cu), 1D arrays (in 1Mn and 5Cu) and 3D frameworks (in 2Co and 3Ni). Magnetic properties have been studied for all compounds. Analysis of the magnetic dc susceptibility and magnetization data for 4Cu and 5Cu suggests the occurrence of ferromagnetic exchange, which is well explained by broken-symmetry and CASSCF calculations. The sizeable easy-plane magnetic anisotropy present in compound 2Co allows for a field-induced magnet behaviour with an experimental effective energy barrier of 16.2 cm-1, although the slow relaxation seems to be best described through Raman and direct processes in agreement with the results of ab initio calculations.
Collapse
Affiliation(s)
- Laura Razquin-Bobillo
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia-San Sebastián, Spain.
| | - Oier Pajuelo-Corral
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia-San Sebastián, Spain.
| | - Beñat Artetxe
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940, Leioa, Spain
| | - Andoni Zabala-Lekuona
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia-San Sebastián, Spain.
| | - Duane Choquesillo-Lazarte
- Laboratorio de Estudios Cristalográficos, IACT, CSIC-Universidad de Granada, Avda. de las Palmeras 4, 18100 Armilla, Spain
| | - Antonio Rodríguez-Diéguez
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Eider San Sebastian
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia-San Sebastián, Spain.
| | - Javier Cepeda
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia-San Sebastián, Spain.
| |
Collapse
|
14
|
Sutter JP, Béreau V, Jubault V, Bretosh K, Pichon C, Duhayon C. Magnetic anisotropy of transition metal and lanthanide ions in pentagonal bipyramidal geometry. Chem Soc Rev 2022; 51:3280-3313. [PMID: 35353106 DOI: 10.1039/d2cs00028h] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The magnetic anisotropy associated with a pentagonal bipyramidal (PBP) coordination sphere is examined on the basis of experimental and theoretical investigations. The origin and the characteristics of this anisotropy are discussed in relation to the electronic configuration of the metal ions. The effects of crystal field, structural distortion, and a second-coordination sphere on the observed anisotropies for transition meal and lanthanide ions are outlined. For the Ln derivatives, we focus on compounds showing SMM-like behavior (i.e. slow relaxation of their magnetization) in order to highlight the essential chemical and structural parameters for achieving strong axial anisotropy. The use of PBP complexes to impart controlled magnetic anisotropy in polynuclear species such as SMMs or SCMs is also addressed. This review of the magnetic anisotropies associated with a pentagonal bipyramidal coordination sphere for transition metal and lanthanide ions is intended to highlight some general trends that can guide chemists towards designing a compound with specific properties.
Collapse
Affiliation(s)
- Jean-Pascal Sutter
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS), Université de Toulouse, CNRS, Toulouse, France.
| | - Virginie Béreau
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS), Université de Toulouse, CNRS, Toulouse, France. .,Université de Toulouse, Institut Universitaire de Technologie Paul Sabatier-Département de Chimie, Av. Georges Pompidou, F-81104 Castres, France
| | - Valentin Jubault
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS), Université de Toulouse, CNRS, Toulouse, France.
| | - Kateryna Bretosh
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS), Université de Toulouse, CNRS, Toulouse, France.
| | - Céline Pichon
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS), Université de Toulouse, CNRS, Toulouse, France.
| | - Carine Duhayon
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS), Université de Toulouse, CNRS, Toulouse, France.
| |
Collapse
|
15
|
Comba P, Rajaraman G, Sarkar A, Velmurugan G. What controls the magnetic anisotropy in heptacoordinate high-spin cobalt(II) complexes? A theoretical perspective. Dalton Trans 2022; 51:5175-5183. [PMID: 35274660 DOI: 10.1039/d1dt03903b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The magnetic anisotropy of sixteen seven-coordinate high-spin CoII complexes with O, N, Cl and I donors was investigated with state-of-the-art ab initio CASSCF/NEVPT2 calculations and compared with experimental data. Based on the nature of the equatorial and axial ligands, which were found to tune the zero-field splitting, the complexes were classified into four groups. The experimental zero-field splitting parameters D which, for the various structures are in a range of +30 to +60 cm-1, as well as the g and E values are well reproduced. The investigation of the electronic structure shows that in these pentagonal bipyramidal complexes the donors and symmetry in the equatorial plane play an important role in the values of the axial zero-field splitting parameter D, and breaking of the horizontal plane of symmetry was found to enhance the magnitude of the D value. Although negative values of D are a desired condition for SIMs, many CoII based SIMs with positive zero-field splitting are fundamentally important to understand the nature of magnetic anisotropy, and seven coordinate CoII complexes with a large overall crystal field splitting might provide a way forward in this class of molecules.
Collapse
Affiliation(s)
- Peter Comba
- Heidelberg University, Institute of Inorganic Chemistry and Interdisciplinary Center for Scientific Computing, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| | - Arup Sarkar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| | - Gunasekaran Velmurugan
- Heidelberg University, Institute of Inorganic Chemistry and Interdisciplinary Center for Scientific Computing, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
| |
Collapse
|
16
|
Srivastava AK, Mondal A, Konar S, Pal S. A tetra Co(II/III) complex with an open cubane Co 4O 4 core and square-pyramidal Co(II) and octahedral Co(III) centres: bifunctional electrocatalytic activity towards water splitting at neutral pH. Dalton Trans 2022; 51:4510-4521. [PMID: 35234225 DOI: 10.1039/d1dt04086c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The reaction of 2,6-diformyl-4-methylphenol, 4-methoxybenzoylhydrazine and Co(OAc)2·4H2O in 1 : 2 : 2 mole ratio in methanol under aerobic conditions produced in 61% yield a tetranuclear complex having the molecular formula [CoIICoIII(μ-OAc)(μ3-OH)(μ-L)]2 where OAc- and L3- represent acetate and N',N''-(5-methyl-2-oxido-1,3-phenylene)bis(methan-1-yl-1-ylidene)bis(4-methoxybenzoylhydrazonate), respectively. The elemental analysis and the mass spectrometric data confirmed the molecular formula of the complex. It is electrically non-conducting and paramagnetic. The complex crystallized as acetonitrile solvate. The X-ray structure shows that each Co(II) centre has a distorted square-pyramidal NO4 coordination sphere, while each Co(III) centre is in a distorted octahedral NO5 environment. The four metal atoms and the four bridging O-atoms form an open cubane type Co4O4 motif. In the crystal lattice, self-assembly of the solvated complex via intermolecular O-H⋯O interaction leads to a two-dimensional network structure. The infrared and electronic spectroscopic features of the complex are consistent with its molecular structure. Cryomagnetic measurements together with theoretical calculations suggest the presence of easy-axis anisotropy for the square-pyramidal Co(II) centres. The complex is redox-active and displays metal centred oxidation and reduction responses on the anodic and cathodic sides, respectively, of the Ag/AgCl electrode. Bifunctional heterogeneous electrocatalytic activity of the complex towards O2 and H2 evolution reactions (OER and HER) in neutral aqueous medium has been explored in detail.
Collapse
Affiliation(s)
| | - Arpan Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Samudranil Pal
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India.
| |
Collapse
|
17
|
Kornowicz A, Terlecki M, Justyniak I, Prochowicz D, van Leusen J, Kögerler P, Lewiński J. Cyclodextrin-Templated Co(II) Grids: Symmetry Control over Supramolecular Topology and Magnetic Properties. Inorg Chem 2022; 61:2499-2508. [PMID: 35072458 PMCID: PMC8826275 DOI: 10.1021/acs.inorgchem.1c03344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
While inherent complexation
properties and propensity for self-organization
of cyclodextrins (CDs) render them potentially promising scaffolds
of magnetic materials, this research area is still at an embryonic
stage. We report on the synthesis and structure characterization of
a new sandwich-type complex, [(α-CD)2Co3Li6(H2O)9] (α-1), which represents a smaller analogue of the previously characterized
[(γ-CD)2Co4Li8(H2O)12] (γ-1) cluster. A comprehensive
structural analysis of α-1 and a careful reinvestigation
of γ-1 reveal how the symmetry of CD ligands determines
the molecular composition and supramolecular arrangements of Co/Li
sandwich-type complexes. Furthermore, the first comparative studies
of the magnetic properties in this type of system point to subtle
differences in the magnetic behavior of both compounds. The sandwich-type
complexes α-1 and γ-1 exhibit
field-induced slow magnetic relaxation, defining a new family of magnetic
materials with a pillared grid-like supramolecular structure composed
of weakly interacting CoII centers forming an SMM. Cyclodextrin-based coordination systems
are potentially
promising scaffolds of supramolecular materials, including functional
magnetic systems. A comprehensive structural analysis of α-
and γ-cyclodextrin-based Co(II) coordination complexes reveals
how the symmetry of macrocyclic ligands determines the molecular composition
and supramolecular arrangements of Co/Li sandwich-type structures.
Furthermore, the first comparative studies of the magnetic properties
in this type of system point to subtle differences in the magnetic
behavior of both compounds.
Collapse
Affiliation(s)
- Arkadiusz Kornowicz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Michał Terlecki
- Faculty of Chemistry,Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Iwona Justyniak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Daniel Prochowicz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jan van Leusen
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Paul Kögerler
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Janusz Lewiński
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Faculty of Chemistry,Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
18
|
Li HQ, Sun YC, Shi L, Chen FL, Shen FX, Zhao Y, Wang XY. Modulating the Structures and Magnetic Properties of Dy(III) Single-Molecule Magnets through Acid-Base Regulation. Inorg Chem 2022; 61:2272-2283. [PMID: 35025491 DOI: 10.1021/acs.inorgchem.1c03639] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chemical modulation on the structures and physical properties of the coordination complexes is of great interest for the preparation of new functional materials. By changing the acidity or basicity of the reaction medium, the deprotonation degree of a multidentate ligand with multiple active protons, H4daps (H4daps = N',N'″-((1E,1'E)-pyridine-2,6-diylbis(ethan-1-yl-1-ylidene))bis(2-hydroxybenzohydrazide)), can be regulated on purpose. With this ligand of different deprotonation and charges, three new DyIII complexes ([Dy(H3daps)(CH3COO)2(EtOH)]·CH3COOH (1Dy), [Dy2(H2daps)2(EtOH)2(H2O)2(MeOH)2](CF3SO3)2·(H2O)2 (2Dy), and [Dy3(H1daps)2(H2daps)(μ3-OH)(EtOH)(H2O)] (3Dy)) of different nuclearities (mono-, di-, and trinuclear for 1Dy to 3Dy, respectively) have been synthesized and characterized structurally and magnetically. Analyses on the related bond lengths and resulting hydrogen bond modes in the complexes provide the details of the deprotonation position and the charge of the ligands, which can be in the form of H3daps-, H2daps2-, and H1daps3-. Interestingly, the more deprotonated ligand can act as a bridging ligand between the DyIII centers using the phenol and/or carbonyl oxygen atoms, which leads to the multinuclear structures. Magnetic studies on these complexes revealed that complex 1Dy is a field-induced single-molecule magnet (SMM), while complexes 2Dy and 3Dy show SMM behavior under a zero dc field.
Collapse
Affiliation(s)
- Hong-Qing Li
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yu-Chen Sun
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Le Shi
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Feng-Li Chen
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fu-Xing Shen
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xin-Yi Wang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
19
|
Qin Y, Wu Y, Luo S, Xi J, Guo Y, Ding Y, Zhang J, Liu X. Modulation of the magnetic dynamics of pentagonal-bipyramidal Co( ii) complexes by fine-tuning the coordination microenvironment. Dalton Trans 2022; 51:17089-17096. [DOI: 10.1039/d2dt02345h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dynamic magnetic behaviours of a series of Co(ii) SIMs with pentagonal-bipyramidal geometry have been modulated by an alteration of the ligand field effect.
Collapse
Affiliation(s)
- Yuanyuan Qin
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yuewei Wu
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Shuchang Luo
- College of Chemical Engineering, Guizhou University of Engineering Science, Bijie 551700, China
| | - Jing Xi
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yan Guo
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yi Ding
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Jun Zhang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Xiangyu Liu
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
20
|
Peng M, Wu XF, Wang LX, Chen SH, Xiang J, Jin XX, Yiu SM, Wang BW, Gao S, Lau TC. Slow magnetic relaxation in high-coordinate Co(II) and Fe(II) compounds bearing neutral tetradentate ligands. Dalton Trans 2021; 50:15327-15335. [PMID: 34636819 DOI: 10.1039/d1dt02575a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first-row transition metal compounds, [MII(L1)2](ClO4)2 (M = Ni (1); Co (2)), have been prepared by treatment of a neutral tetradentate ligand (L1 = N2,N9-dibutyl-1,10-phenanthroline-2,9-dicarboxamide) with metal perchlorate salts in MeOH. Both compounds have been structurally characterized by X-ray crystallography and it was found that the coordination numbers are 6 and 7, respectively. The reaction of 6,6'-bis(2-tbutyl-tetrazol-5-yl)-2,2'-bipyridine (L2) with hydrated FeII(ClO4)2 afforded a 8-coordinate Fe(II) compound, [FeII(L2)2](ClO4)2 (3); however its reaction with hydrated CoII(ClO4)2 resulted in 6-coordinate [CoII(L2)2](ClO4)2. It is interesting to observe field-induced slow magnetic relaxation in the 7-coordinate Co(II) compound 2 and 8-coordinate Fe(II) compound 3, which further supports the validity of designing high coordination number compounds as single-molecule magnets. Direct current magnetic studies demonstrate that 2 has a very large positive D value (56.2 cm-1) and a small E value (0.66 cm-1), indicating easy plane magnetic anisotropy. Consistent with the larger D value, an effective spin-reversal barrier of Ueff = 100 K (71.4 cm-1) is obtained, which is the highest value reported for 7-coordinate Co(II) complexes with a pentagonal bipyramidal geometry. In contrast, 8-coordinate Fe(II) compound 3 exhibits uniaxial magnetic anisotropy.
Collapse
Affiliation(s)
- Min Peng
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, HuBei, P. R. China.
| | - Xiao-Fan Wu
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, P. R. China.
| | - Li-Xin Wang
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, HuBei, P. R. China.
| | - Si-Huai Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, P. R. China
| | - Jing Xiang
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, HuBei, P. R. China.
| | - Xin-Xin Jin
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, P. R. China.
| | - Shek-Man Yiu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P. R. China.
| | - Bing-Wu Wang
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, P. R. China.
| | - Song Gao
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, P. R. China. .,South China University of Technology, P. R. China
| | - Tai-Chu Lau
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P. R. China.
| |
Collapse
|
21
|
|
22
|
Bazhenova T, Zorina L, Simonov S, Manakin Y, Kornev A, Lyssenko K, Mironov V, Gilmutdinov I, Yagubskii E. A novel family of hepta-coordinated Cr(III) complexes with a planar pentadentate N3O2 Schiff base ligand: synthesis, structure and magnetism. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Sahu PK, Mondal A, Konar S. A trapped hexaaqua Co II complex between the polyanionic sheets of decavanadate reveals high axial anisotropy and field induced SIM behaviour. Dalton Trans 2021; 50:3825-3831. [PMID: 33599634 DOI: 10.1039/d0dt04339g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we report an inorganic compound [{Co(H2O)6}2+{Na4V10O28}2-] (1) in which the polyanionic sheets of decavanadate play the role of a diamagnetic matrix that reduces the dipolar-dipolar and spin-spin interactions between [Co(H2O)6]+2 units to suppress the fast tunnelling of magnetization. Structural analysis reveals that each [Co(H2O)6]+2 complex is surrounded by four decavanadates and separated by a large internuclear distance (9 Å). It was also found that the adjacent decavanadates are connected via sodium ions and form a 2D sheet of the inorganic layer in which the [Co(H2O)6]2+ ions are present in between two layers. Detailed dc (direct current) and ac (alternating current) magnetic measurements disclose the presence of large easy-axis anisotropy (D = -102 cm-1) and field induced slow magnetic relaxation behaviour with a spin reversal barrier of Ueff = 50 K. Additionally, the temperature dependence of the relaxation time reveals that the Raman and QTM processes mainly play an important role rather than the thermally activated Orbach process in the overall relaxation dynamics of the studied compound. To analyse the electronic structure and magnetic properties of compound 1, ab initio calculations were performed which further support the experimental observations. Notably, the Ueff value of 1 represents the highest energy barrier reported for POM based SMMs with transition metal ions to date.
Collapse
Affiliation(s)
- Pradip Kumar Sahu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India.
| | | | | |
Collapse
|
24
|
Wu Y, Xi J, Xiao T, Ferrando-Soria J, Ouyang Z, Wang Z, Luo S, Liu X, Pardo E. Switching of easy-axis to easy-plane anisotropy in cobalt( ii) complexes. Inorg Chem Front 2021. [DOI: 10.1039/d1qi01208h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In situ microcalorimetry monitored assembly and coligand induced switching of the magnetic anisotropy sign have been observed in a β-diketonate-Co(ii) system.
Collapse
Affiliation(s)
- Yuewei Wu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Jing Xi
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Tongtong Xiao
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jesús Ferrando-Soria
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMOL), Universidad de Valencia, Paterna 46980, Valencia, Spain
| | - Zhongwen Ouyang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhenxing Wang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shuchang Luo
- College of Chemical Engineering, Guizhou University of Engineering Science, Bijie 551700, China
| | - Xiangyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
- China State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, China
| | - Emilio Pardo
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMOL), Universidad de Valencia, Paterna 46980, Valencia, Spain
| |
Collapse
|
25
|
Bazhenova TA, Zorina LV, Simonov SV, Mironov VS, Maximova OV, Spillecke L, Koo C, Klingeler R, Manakin YV, Vasiliev AN, Yagubskii EB. The first pentagonal-bipyramidal vanadium(III) complexes with a Schiff-base N 3O 2 pentadentate ligand: synthesis, structure and magnetic properties. Dalton Trans 2020; 49:15287-15298. [PMID: 33112327 DOI: 10.1039/d0dt03092a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A series of three mononuclear pentagonal-bipyramidal V(iii) complexes with the equatorial pentadentate N3O2 ligand (2,6-diacethylpyridinebis(benzoylhydrazone), H2DAPBH) in the different charge states (H2DAPBH0, HDAPBH1-, DAPBH2-) and various apical ligands (Cl-, CH3OH, SCN-) were synthesized and characterized structurally and magnetically: [V(H2DAPBH)Cl2]Cl·C2H5OH (1), [V(HDAPBH)(NCS)2]·0.5CH3CN·0.5CH3OH (2) and [V(DAPBH)(CH3OH)2]Cl·CH3OH (3). All three complexes reveal paramagnetic behavior, resulting from isolated S = 1 spins with positive zero-field splitting energy expected for the high-spin ground state of the V3+ (3d2) ion in a PBP coordination. Detailed high-field EPR measurements for compound 3 show that its magnetic properties are best described by using the spin Hamiltonian with the positive ZFS energy (D = +4.1 cm-1) and pronounced dimer-like antiferromagnetic spin coupling (J = -1.1 cm-1). Theoretical analysis based on superexchange calculations reveals that the long-range spin coupling between distant V3+ ions (8.65 Å) is mediated through π-stacking contacts between the planar DAPBH2- ligands of two neighboring [V(DAPBH)(CH3OH)2]+ complexes.
Collapse
Affiliation(s)
- Tamara A Bazhenova
- Institute of Problems of Chemical Physics, RAS, Chernogolovka 142432, Russia.
| | | | - Sergey V Simonov
- Institute of Solid State Physics, RAS, Chernogolovka 142432, Russia
| | - Vladimir S Mironov
- Institute of Problems of Chemical Physics, RAS, Chernogolovka 142432, Russia. and Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics", RAS, Moscow, Russia.
| | - Olga V Maximova
- Institute of Problems of Chemical Physics, RAS, Chernogolovka 142432, Russia. and Lomonosov Moscow State University, Moscow 119991, Russia and National University of Science and Technology "MISiS", Moscow 119049, Russia
| | - Lena Spillecke
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany.
| | - Changhyun Koo
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany.
| | - Rüdiger Klingeler
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany. and Centre for Advanced Materials (CAM), Heidelberg University, 69120 Heidelberg, Germany
| | - Yuriy V Manakin
- Institute of Problems of Chemical Physics, RAS, Chernogolovka 142432, Russia.
| | - Alexander N Vasiliev
- Lomonosov Moscow State University, Moscow 119991, Russia and National Research South Ural State University, Chelyabinsk 454080, Russia
| | - Eduard B Yagubskii
- Institute of Problems of Chemical Physics, RAS, Chernogolovka 142432, Russia.
| |
Collapse
|
26
|
Sarkar A, Dey S, Rajaraman G. Role of Coordination Number and Geometry in Controlling the Magnetic Anisotropy in Fe II , Co II , and Ni II Single-Ion Magnets. Chemistry 2020; 26:14036-14058. [PMID: 32729641 DOI: 10.1002/chem.202003211] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/22/2022]
Abstract
Since the last decade, the focus in the area of single-molecule magnets (SMMs) has been shifting constructively towards the development of single-ion magnets (SIMs) based on transition metals and lanthanides. Although ground-breaking results have been witnessed for DyIII -based SIMs, significant results have also been obtained for some mononuclear transition metal SIMs. Among others, studies based on CoII ion are very prominent as they often exhibit high magnetic anisotropy or zero-field splitting parameters and offer a large barrier height for magnetisation reversal. Although CoII possibly holds the record for having the largest number of zero-field SIMs known for any transition metal ion, controlling the magnetic anisotropy in these systems are is still a challenge. In addition to the modern spectroscopic techniques, theoretical studies, especially ab initio CASSCF/NEVPT2 approaches, have been used to uncover the electronic structure of various CoII SIMs. In this article, with some selected examples, the aim is to showcase how varying the coordination number from two to eight, and the geometry around the CoII centre alters the magnetic anisotropy. This offers some design principles for the experimentalists to target new generation SIMs based on the CoII ion. Additionally, some important FeII /FeIII and NiII complexes exhibiting large magnetic anisotropy and SIM properties are also discussed.
Collapse
Affiliation(s)
- Arup Sarkar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Sourav Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| |
Collapse
|
27
|
Slow Magnetic Relaxation in a One-Dimensional Coordination Polymer Constructed from Hepta-Coordinate Cobalt(II) Nodes. MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6040045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A one-dimensional coordination polymer was synthesized employing hepta-coordinate CoII as nodes and dicyanamide as linkers. Detailed direct current (DC) and alternating current (AC) magnetic susceptibility measurements reveal the presence of field-induced slow magnetic relaxation behavior of the magnetically isolated seven-coordinate CoII center with an easy-plane magnetic anisotropy. Detailed ab initio calculations were performed to understand the magnetic relaxation processes. To our knowledge, the reported complex represents the first example of slow magnetic relaxation in a one-dimensional coordination polymer constructed from hepta-coordinate CoII nodes and dicyanamide linkers.
Collapse
|
28
|
Stojičkov M, Sturm S, Čobeljić B, Pevec A, Jevtović M, Scheitler A, Radanović D, Senft L, Turel I, Andjelković K, Miehlich M, Meyer K, Ivanović‐Burmazović I. Cobalt(II), Zinc(II), Iron(III), and Copper(II) Complexes Bearing Positively Charged Quaternary Ammonium Functionalities: Synthesis, Characterization, Electrochemical Behavior, and SOD Activity. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marko Stojičkov
- Faculty of Chemistry University of Belgrade Studentski trg 12‐16 11000 Belgrade Serbia
| | - Sabrina Sturm
- Department of Chemistry and Pharmacy Friedrich‐Alexander University Erlangen‐Nürnberg Egerlandstr. 1 91058 Erlangen Germany
| | - Božidar Čobeljić
- Faculty of Chemistry University of Belgrade Studentski trg 12‐16 11000 Belgrade Serbia
| | - Andrej Pevec
- Faculty of Chemistry and Chemical Technology University of Ljubljana Večna pot 113 1000 Ljubljana Slovenia
| | - Mima Jevtović
- Faculty of Chemistry University of Belgrade Studentski trg 12‐16 11000 Belgrade Serbia
| | - Andreas Scheitler
- Department of Chemistry and Pharmacy Friedrich‐Alexander University Erlangen‐Nürnberg Egerlandstr. 1 91058 Erlangen Germany
| | - Dušanka Radanović
- Institute of Chemistry Technology and Metallurgy University of Belgrade Njegoševa 12, P.O. Box 815 11000 Belgrade Serbia
| | - Laura Senft
- Department of Chemistry and Pharmacy Friedrich‐Alexander University Erlangen‐Nürnberg Egerlandstr. 1 91058 Erlangen Germany
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology University of Ljubljana Večna pot 113 1000 Ljubljana Slovenia
| | - Katarina Andjelković
- Faculty of Chemistry University of Belgrade Studentski trg 12‐16 11000 Belgrade Serbia
| | - Matthias Miehlich
- Department of Chemistry and Pharmacy Friedrich‐Alexander University Erlangen‐Nürnberg Egerlandstr. 1 91058 Erlangen Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy Friedrich‐Alexander University Erlangen‐Nürnberg Egerlandstr. 1 91058 Erlangen Germany
| | - Ivana Ivanović‐Burmazović
- Department of Chemistry and Pharmacy Friedrich‐Alexander University Erlangen‐Nürnberg Egerlandstr. 1 91058 Erlangen Germany
- Department Chemie Ludwigs‐Maximilians‐Universität Butenandtstraße 5‐13 81377 München Germany
| |
Collapse
|
29
|
Mondal A, Kharwar AK, Sahu PK, Konar S. Alignment of Axial Anisotropy in a 1D Coordination Polymer shows Improved Field Induced Single Molecule Magnet Behavior over a Mononuclear Seven Coordinated Fe II Complex. Chem Asian J 2020; 15:2681-2688. [PMID: 32603028 DOI: 10.1002/asia.202000666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 06/26/2020] [Indexed: 11/11/2022]
Abstract
Herein, we report a CN-bridged alternating FeII -NiII 1D chain to ensure the alignment of axial anisotropy and improve the single molecule magnet (SMM) behavior in seven coordinated FeII compound. The chain was constructed from hepta coordinated Fe(II) complex as an anisotropic building unit and diamagnetic nickel tetra cyanate as a bridging ligand. The magnetic measurements show the easy-axis anisotropy of the seven coordinated Fe(II) complex and field induced SMM behavior with spin reversal energy barrier Ueff =61(2) K (42 cm-1 ) and pre-exponential relaxation time τ0 =1.9×10-8 s. The detailed analysis of the relaxation dynamics discloses that the Orbach process plays an important role in slow relaxation of magnetization for this compound. Notably, this example represents a remarkable energy barrier observed in hepta coordinated Fe(II) SMMs. The ab initio calculations estimate the magnitude of axial anisotropy and show the parallel orientation of the anisotropic axis throughout the 1D polymeric chain. In addition, it is also reported that the presence of weak π accepter ligands in the distorted axial position enhance the easy-axis anisotropy.
Collapse
Affiliation(s)
- Arpan Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass road, Bhauri, Bhopal, 462066, MP, India
| | - Ajit Kumar Kharwar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass road, Bhauri, Bhopal, 462066, MP, India
| | - Pradip Kumar Sahu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass road, Bhauri, Bhopal, 462066, MP, India
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass road, Bhauri, Bhopal, 462066, MP, India
| |
Collapse
|
30
|
Chand S, Pal A, Saha R, Das P, Sahoo R, Chattaraj PK, Das MC. Two Closely Related Zn(II)-MOFs for Their Large Difference in CO2 Uptake Capacities and Selective CO2 Sorption. Inorg Chem 2020; 59:7056-7066. [DOI: 10.1021/acs.inorgchem.0c00551] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Santanu Chand
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| | - Arun Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| | - Ranajit Saha
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| | - Prasenjit Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| | - Rupam Sahoo
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| | - Pratim K. Chattaraj
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
- Centre for Theoretical Studies, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Madhab C. Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| |
Collapse
|
31
|
Acharya J, Sarkar A, Kumar P, Kumar V, Flores Gonzalez J, Cador O, Pointillart F, Rajaraman G, Chandrasekhar V. Influence of ligand field on magnetic anisotropy in a family of pentacoordinate Co II complexes. Dalton Trans 2020; 49:4785-4796. [PMID: 32211713 DOI: 10.1039/d0dt00315h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A family of mononuclear penta-coordinated CoII complexes, [Co(L)Cl2]·CH3OH (1), [Co(L)Br2] (2) and [Co(L)(NCS)2] (3) (where L is 1-mesityl-N,N-bis(pyridin-2-ylmethyl)methanamine) were synthesized and characterized. In these complexes, the neutral non-planar ligand, L, binds to three coordination sites around the metal center while two others are bound by anionic halide/pseudo halide ligands. The coordination geometry of the complexes is dictated by the coordinated anionic ligands. Thus, the coordination geometry around the metal ion is distorted trigonal bipyramidal for complexes 1 and 3, while it is distorted square pyramidal for complex 2. Ab initio CASSCF/NEVPT2 calculations on the complexes reveal the presence of an easy plane magnetic anisotropy with the D and E/D values being, 13.3 and 0.14 cm-1 for 1; 36.1 and 0.24 cm-1 for 2 and ±8.6 and 0.32 cm-1 for 3. These values are in good agreement with the values that were extracted from the experimental DC data. AC magnetic measurements reveal the presence of a field-induced slow relaxation of magnetization. However, clear maxima in the out-of-phase susceptibility curves were not observed for 1 and 3. For complex 2, peak maxima were observed when the measurements were carried out under an applied field of 1400 Oe which allowed an analysis of the dynamics of the slow relaxation of magnetization. This revealed that the relaxation is mainly controlled by the Raman and direct processes with the values of the parameters found to be: B = 0.77(15) s-1 K-6.35, n = 6.35(12) and A = 3.41(4) × 10-10 s-1 Oe-4 K-1 and m = 4 (fixed). The ab initio calculation which showed the multifunctional nature of the electronic states of the complexes justifies the absence of zero-field SIM behaviour of the complexes. The magnitude and sign of the D and E values and their relationship with the covalency of the metal-ligand bonds was analysed by the CASSCF/NEVPT2 as well as AILFT calculations.
Collapse
Affiliation(s)
- Joydev Acharya
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Arup Sarkar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400 076, India.
| | - Pawan Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Vierandra Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Jessica Flores Gonzalez
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Olivier Cador
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Fabrice Pointillart
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400 076, India.
| | - Vadapalli Chandrasekhar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India. and Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500107, India
| |
Collapse
|
32
|
Mondal A, Wu S, Sato O, Konar S. Effect of Axial Ligands on Easy‐Axis Anisotropy and Field‐Induced Slow Magnetic Relaxation in Heptacoordinated Fe
II
Complexes. Chemistry 2020; 26:4780-4789. [DOI: 10.1002/chem.201905166] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Arpan Mondal
- Department of ChemistryIndian Institute of, Science Education and Research, Bhopal Bhopal By-pass Road, Bhauri Bhopal 462066 Madhya Pradesh India
| | - Shu‐Qi Wu
- Institute for Materials Chemistry and Engineering & IRCCSKyushu University 744 Motooka Nishi-ku 819-0395 Fukuoka Japan
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering & IRCCSKyushu University 744 Motooka Nishi-ku 819-0395 Fukuoka Japan
| | - Sanjit Konar
- Department of ChemistryIndian Institute of, Science Education and Research, Bhopal Bhopal By-pass Road, Bhauri Bhopal 462066 Madhya Pradesh India
| |
Collapse
|
33
|
Drahoš B, Císařová I, Laguta O, Santana VT, Neugebauer P, Herchel R. Structural, magnetic, redox and theoretical characterization of seven-coordinate first-row transition metal complexes with a macrocyclic ligand containing two benzimidazolyl N-pendant arms. Dalton Trans 2020; 49:4425-4440. [PMID: 32176762 DOI: 10.1039/d0dt00166j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A structurally new heptadentate derivative of a 15-membered pyridine-based macrocycle containing two benzimidazol-2-yl-methyl N-pendant arms (L = 3,12-bis((1H-benzimidazol-2-yl)methyl)-6,9-dioxa-3,12,18-triazabicyclo[12.3.1]octadeca-1(18),14,16-triene) was synthesized and its complexes with the general formula [M(L)](ClO4)2·1.5CH3NO2 (M = MnII (1), FeII (2), CoII (3) and NiII (4)) were thoroughly investigated. X-ray crystal structures confirmed that all complexes are seven-coordinate with axially compressed pentagonal bipyramidal geometry having the largest distortion for NiII complex 4. FeII, CoII and NiII complexes 2, 3 and 4 show rather large magnetic anisotropy manifested by moderate to high obtained values of the axial zero-field splitting parameter D (7.9, 40.3, and -17.2 cm-1, respectively). Magneto-structural correlation of the FeII, CoII and NiII complexes with L and with previously studied structurally similar ligands revealed a significant impact of the functional group in pendant arms on the magnetic anisotropy especially that of the CoII and NiII complexes and some recommendations concerning the ligand-field design important for anisotropy tuning in future. Furthermore, complex 3 showed field-induced single-molecule magnet behavior described with the Raman (C = 507 K-n s-1 for n = 2.58) relaxation process. The magnetic properties of the studied complexes were supported by theoretical calculations, which very well correspond with the experimental data of magnetic anisotropy. Electrochemical measurements revealed high positive redox potentials for M3+/2+ couples and high negative redox potentials for M2+/+ couples, which indicate the stabilization of the oxidation state +ii expected for the σ-donor/π-acceptor ability of benzimidazole functional groups.
Collapse
Affiliation(s)
- Bohuslav Drahoš
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46, Olomouc, Czech Republic.
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 00, Prague, Czech Republic
| | - Oleksii Laguta
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200, Brno, Czech Republic
| | - Vinicius T Santana
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200, Brno, Czech Republic
| | - Petr Neugebauer
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200, Brno, Czech Republic
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46, Olomouc, Czech Republic.
| |
Collapse
|
34
|
Fan MF, Wang HM, Nan LJ, Wang AJ, Luo X, Yuan PX, Feng JJ. The mimetic assembly of cobalt prot-porphyrin with cyclodextrin dimer and its application for H2O2 detection. Anal Chim Acta 2020; 1097:78-84. [DOI: 10.1016/j.aca.2019.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/28/2019] [Accepted: 11/03/2019] [Indexed: 01/19/2023]
|
35
|
Bretosh K, Béreau V, Duhayon C, Pichon C, Sutter JP. A ferromagnetic Ni( ii)–Cr( iii) single-chain magnet based on pentagonal bipyramidal building units. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01489f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first example of a ferromagnetic Ni(ii)–Cr(iii) single-chain magnet fashioned using pentagonal bipyramidal Ni(ii) complexes with Ising-type anisotropy.
Collapse
Affiliation(s)
- Kateryna Bretosh
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS)
- Université de Toulouse
- CNRS
- Toulouse
- France
| | - Virginie Béreau
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS)
- Université de Toulouse
- CNRS
- Toulouse
- France
| | - Carine Duhayon
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS)
- Université de Toulouse
- CNRS
- Toulouse
- France
| | - Céline Pichon
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS)
- Université de Toulouse
- CNRS
- Toulouse
- France
| | - Jean-Pascal Sutter
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS)
- Université de Toulouse
- CNRS
- Toulouse
- France
| |
Collapse
|
36
|
Peng G, Chen Y, Li B. One-dimensional lanthanide coordination polymers supported by pentadentate Schiff-base and diphenyl phosphate ligands: single molecule magnet behavior and photoluminescence. NEW J CHEM 2020. [DOI: 10.1039/d0nj00533a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four one-dimensional lanthanide coordination polymers constructed from Ln2 dimers showing single molecule magnet behavior and photoluminescence are reported.
Collapse
Affiliation(s)
- Guo Peng
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Yue Chen
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Bo Li
- College of Chemistry and Pharmaceutical Engineering
- Nanyang Normal University
- Nanyang 473061
- P. R. China
| |
Collapse
|
37
|
Yi G, Zhang C, Zhao W, Cui H, Chen L, Wang Z, Chen XT, Yuan A, Liu YZ, Ouyang ZW. Structure, magnetic anisotropy and relaxation behavior of seven-coordinate Co(ii) single-ion magnets perturbed by counter-anions. Dalton Trans 2020; 49:7620-7627. [DOI: 10.1039/d0dt01232g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A series of mononuclear seven-coordinate complexes with the same coordination unit [Co(BPA-TPA)]2+ (BPA-TPA = pentapyidyldiamine) display the different slow magnetic relaxation processes perturbed by the variation of the counter anions.
Collapse
Affiliation(s)
- Gangji Yi
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- P. R. China
| | - Chunyang Zhang
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- P. R. China
| | - Wen Zhao
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- P. R. China
| | - Huihui Cui
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Lei Chen
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- P. R. China
| | - Zhenxing Wang
- Wuhan National High Magnetic Field Center& School of Physics
- Huazhong University of Science and Technology
- Wuhan 430074
- P. R. China
| | - Xue-Tai Chen
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- P. R. China
| | - Yuan-Zhong Liu
- Suzhou Institute of Biomedical Engineering and Technology
- Chinese Academy of Sciences
- Suzhou 215163
- P. R. China
- Jinan Guoke Medical Technology Development Co
| | - Zhong-Wen Ouyang
- Wuhan National High Magnetic Field Center& School of Physics
- Huazhong University of Science and Technology
- Wuhan 430074
- P. R. China
| |
Collapse
|
38
|
A Series of Field-Induced Single-Ion Magnets Based on the Seven-Coordinate Co(II) Complexes with the Pentadentate (N3O2) H2dapsc Ligand. MAGNETOCHEMISTRY 2019. [DOI: 10.3390/magnetochemistry5040058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A series of five new mononuclear pentagonal bipyramidal Co(II) complexes with the equatorial 2,6-diacetylpyridine bis(semicarbazone) ligand (H2dapsc) and various axial pseudohalide ligands (SCN, SeCN, N(CN)2, C(CN)3, and N3) was prepared and structurally characterizated: [Co(H2dapsc)(SCN)2]∙0.5C2H5OH (1), [Co(H2dapsc)(SeCN)2]∙0.5C2H5OH (2), [Co(H2dapsc)(N(CN)2)2]∙2H2O (3), [Co(H2dapsc)(C(CN)3)(H2O)](NO3)∙1.16H2O (4), and {[Co(H2dapsc)(H2O)(N3)][Co(H2dapsc)(N3)2]}N3∙4H2O (5). The combined analyses of the experimental DС and AC magnetic data of the complexes (1–5) and two other earlier described those of this family [Co(H2dapsc)(H2O)2)](NO3)2∙2H2O (6) and [Co(H2dapsc)(Cl)(H2O)]Cl∙2H2O (7), their theoretical description and the ab initio CASSCF/NEVPT2 calculations reveal large easy-plane magnetic anisotropies for all complexes (D = + 35 − 40 cm‒1). All complexes under consideration demonstrate slow magnetic relaxation with dominant Raman and direct spin–phonon processes at static magnetic field and so they belong to the class of field-induced single-ion magnets (SIMs).
Collapse
|
39
|
Reis NV, Marinho MV, Simões TRG, Metz KC, Vaz RC, Oliveira WX, Pereira CL, Barros WP, Pinheiro CB, Giese SO, Hughes DL, Pirota KR, Nunes WC, Stumpf HO. Structural versatility driven by the flexible di(4-pyridyl) sulfide ligand: From cobalt(II) single-ion magnets to sheet-like copper(II) weak antiferromagnets. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Mondal A, Kharwar AK, Konar S. Sizeable Effect of Lattice Solvent on Field Induced Slow Magnetic Relaxation in Seven Coordinated CoII Complexes. Inorg Chem 2019; 58:10686-10693. [DOI: 10.1021/acs.inorgchem.9b00615] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arpan Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Ajit Kumar Kharwar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| |
Collapse
|
41
|
Hay MA, McMonagle CJ, Wilson C, Probert MR, Murrie M. Trigonal to Pentagonal Bipyramidal Coordination Switching in a Co(II) Single-Ion Magnet. Inorg Chem 2019; 58:9691-9697. [DOI: 10.1021/acs.inorgchem.9b00515] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Moya A. Hay
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Charles J. McMonagle
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Claire Wilson
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Michael R. Probert
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Mark Murrie
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| |
Collapse
|
42
|
Yang RC, Wang DR, Liu JL, Wang YF, Lin WQ, Leng JD, Zhou AJ. Phosphine Oxide Ligand Based Tetrahedral Co II Complexes with Field-induced Slow Magnetic Relaxation Behavior Modified by Terminal Ligands. Chem Asian J 2019; 14:1467-1471. [PMID: 30865374 DOI: 10.1002/asia.201900280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/12/2019] [Indexed: 11/08/2022]
Abstract
Two isostructural mononuclear CoII complexes, [Co(xantpo)(NCE)2 ] (E=S (1) and O (2); xantpo=9,9-dimethyl-4,5-bis(diphenylphosphoryl) xanthene), supported by a bidentate phosphine oxide ligand are reported. The cobalt complexes exhibit characteristic tetrahedral structures coordinated with two oxygen and two nitrogen atoms. Magnetic property measurements show their similar static magnetic behaviours but very different dynamic magnetic behaviours. Both complexes show field-induced slow magnetic relaxation behaviours, but the relaxation of 2 is much slower than that of 1. Fittings to the magnetic data and ab initio CASSCF calculations reveal significant changes in the zero field splitting (ZFS) parameters (D and E), which can be attributed to the small geometrical changes of the Co ions and the different ligand field strength of the two terminal ligands.
Collapse
Affiliation(s)
- Rui-Chong Yang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Dan-Ru Wang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Jun-Liang Liu
- Key Lab of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yu-Fei Wang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China.,Analytical and Testing Center of Guangzhou University, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Wei-Quan Lin
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China.,Analytical and Testing Center of Guangzhou University, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Ji-Dong Leng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Ai-Ju Zhou
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| |
Collapse
|
43
|
Pal A, Chand S, Boquera JC, Lloret F, Lin JB, Pal SC, Das MC. Three Co(II) Metal–Organic Frameworks with Diverse Architectures for Selective Gas Sorption and Magnetic Studies. Inorg Chem 2019; 58:6246-6256. [DOI: 10.1021/acs.inorgchem.9b00471] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arun Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, WB, India
| | - Santanu Chand
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, WB, India
| | - Joan Cano Boquera
- Departament de Química Inorgànica, Instituto de Ciencia Molecular (ICMol), Facultat de Química de la Universitat de València, C/Catedrático José Beltrán 2, 46980 Paterna, Spain
| | - Francesc Lloret
- Departament de Química Inorgànica, Instituto de Ciencia Molecular (ICMol), Facultat de Química de la Universitat de València, C/Catedrático José Beltrán 2, 46980 Paterna, Spain
| | - Jian-Bin Lin
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Shyam Chand Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, WB, India
| | - Madhab C. Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, WB, India
| |
Collapse
|
44
|
Field Induced Single Ion Magnetic Behaviour in Square-Pyramidal Cobalt(II) Complexes with Easy-Plane Magnetic Anisotropy. MAGNETOCHEMISTRY 2019. [DOI: 10.3390/magnetochemistry5010012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Two penta-coordinate CoII complexes with formulae [Co(14-TMC)Cl](BF4) (1, 14-TMC = 1,4,8,11-Tetramethyl-1,4,8,11-tetraazacyclotetradecane) and [Co(12-TBC)Cl](ClO4)·(MeCN) (2, 12-TBC = 1,4,7,10-Tetrabenzyl-1,4,7,10-tetraazacyclododecane) were synthesized and characterized. Structural analysis revealed that ligand coordinates to the CoII centre in a tetradentate fashion and the fifth position is occupied by chloride ion and the geometries around CoII centres are best described as distorted square pyramidal. Detailed magnetic measurements disclose the presence of significant easy-plane magnetic anisotropy and field induced slow magnetic relaxation behaviours of the studied complexes. More insight into the magnetic anisotropy has been given using ab initio theory calculations, which agree well with the experimental values and further confirmed the easy-plane magnetic anisotropy.
Collapse
|
45
|
Tupolova YP, Shcherbakov IN, Popov LD, Lebedev VE, Tkachev VV, Zakharov KV, Vasiliev AN, Korchagin DV, Palii AV, Aldoshin SM. Field-induced single-ion magnet behaviour of a hexacoordinated Co(ii) complex with easy-axis-type magnetic anisotropy. Dalton Trans 2019; 48:6960-6970. [DOI: 10.1039/c9dt00770a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study presents the novel hexacoordinated Co(ii) mononuclear complex with SIM behavior.
Collapse
Affiliation(s)
- Yulia P. Tupolova
- Department of Chemistry
- Southern Federal University
- Rostov-on-Don
- Russia
| | | | - Leonid D. Popov
- Department of Chemistry
- Southern Federal University
- Rostov-on-Don
- Russia
| | | | - Valery V. Tkachev
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences
- Moscow Region
- Russia
| | | | - Alexander N. Vasiliev
- Physics Faculty
- M.V. Lomonosov Moscow State University
- Moscow 119991
- Russia
- National University of Science and Technology “MISiS”
| | - Denis V. Korchagin
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences
- Moscow Region
- Russia
| | - Andrei V. Palii
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences
- Moscow Region
- Russia
- Institute of Applied Physics
- Chisinau
| | - Sergey M. Aldoshin
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences
- Moscow Region
- Russia
| |
Collapse
|
46
|
Maity S, Mondal A, Konar S, Ghosh A. The role of 3d–4f exchange interaction in SMM behaviour and magnetic refrigeration of carbonato bridged CuII2LnIII2 (Ln = Dy, Tb and Gd) complexes of an unsymmetrical N2O4 donor ligand. Dalton Trans 2019; 48:15170-15183. [DOI: 10.1039/c9dt02627d] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The role of exchange interaction between Cu(ii) and Ln(iii) ions in SMM behaviour and magnetocaloric effects has been extensively investigated by both experimental and theoretical CASSCF/RASSI-SO/SINGLE_ANISO methods.
Collapse
Affiliation(s)
- Souvik Maity
- Department of Chemistry
- University College of Science
- University of Calcutta
- Kolkata 700009
- India
| | - Arpan Mondal
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal 462066
- India
| | - Sanjit Konar
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal 462066
- India
| | - Ashutosh Ghosh
- Department of Chemistry
- University College of Science
- University of Calcutta
- Kolkata 700009
- India
| |
Collapse
|
47
|
Mondal AK, Jover J, Ruiz E, Konar S. Single-ion magnetic anisotropy in a vacant octahedral Co(ii) complex. Dalton Trans 2018; 48:25-29. [PMID: 30417181 DOI: 10.1039/c8dt03862g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first example of a pentacoordinate CoII single-ion magnet based on a P-donor ligand with vacant octahedral coordination geometry is reported here. Thorough magnetic measurements reveal the presence of field induced slow relaxation behavior with an easy-plane magnetic anisotropy. The combined theoretical and experimental studies disclose that direct and quantum tunneling processes become dominant at low temperature to relax the magnetization; however, from the thermal dependence of relaxation time it can be observed that the optical or acoustic Raman processes become important to the overall relaxation process.
Collapse
Affiliation(s)
- Amit Kumar Mondal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal-462066, India.
| | | | | | | |
Collapse
|
48
|
Shen FX, Li HQ, Miao H, Shao D, Wei XQ, Shi L, Zhang YQ, Wang XY. Heterometallic M IILn III (M = Co/Zn; Ln = Dy/Y) Complexes with Pentagonal Bipyramidal 3d Centers: Syntheses, Structures, and Magnetic Properties. Inorg Chem 2018; 57:15526-15536. [PMID: 30500167 DOI: 10.1021/acs.inorgchem.8b02875] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We herein reported the syntheses, structures, and magnetic properties of three dinuclear heterometallic MIILnIII complexes, namely, [MIILnIII(H2L)(CH3OH)2(NO3)2](NO3)·S (M = Co, Ln = Dy, S = MeOH (1CoDy); M = Zn, Ln = Dy, S = MeOH (2ZnDy); M = Co, Ln = Y, S = MeNO2 (3CoY), H4L = 2,6-diacetylpyridine bis[2-(semicarbazono) propionylhydrazone]. Synthesized from the predesigned multidentate ligand H4L, which has two different coordination pockets (smaller N3O2 and larger N2O4 pockets) suitable for either a 3d or a 4f metal center, all these complexes have very similar structures, where the MII centers possess a pentagonal bipyramidal (PBP) geometry and the LnIII sites have a tetradecahedron geometry. Magnetic measurements on these compounds revealed the existence of weak ferromagnetic coupling between the Co2+ and Dy3+ centers and the field-induced slow magnetic relaxation of all three complexes. Furthermore, theoretical calculation on all these complexes indicates that although the change of the diamagnetic Zn2+ ion to the paramagnetic Co2+ ion only slightly modifies the local magnetic anisotropy of the Dy3+ ion, the weak Co-Dy magnetic interaction decreases the energy barrier. These compounds are the first systematic results of a heterometallic 3d-4f single-molecule magnet containing predesigned PBP 3d metal ions.
Collapse
Affiliation(s)
- Fu-Xing Shen
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Hong-Qing Li
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Hao Miao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Dong Shao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Xiao-Qin Wei
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Le Shi
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology , Nanjing Normal University , Nanjing 210023 , China
| | - Xin-Yi Wang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| |
Collapse
|