1
|
Cao H, Guo Y, Li B, Tang Q, Hao H, Wang Z, Xu C. Extraction and complexation of trivalent americium and lanthanides using an asymmetric picolinic acid-derived tridentate N,O-hybrid ligand. Dalton Trans 2024. [PMID: 39670795 DOI: 10.1039/d4dt03016h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The extraction and complexation of trivalent americium (Am) and lanthanides (Ln) using an asymmetric picolinic acid-derived tridentate N,O-hybrid ligand, 6-(dioctylcarbamoyl)picolinic acid (DOAPA), have been studied through both experimental and theoretical methods. DOAPA exhibits effective and fast extraction of Am(III) and Ln(III). The extraction is driven by favorable enthalpy change. Slope analysis, absorption spectroscopy and NMR titration indicate that both Am(III) and Ln(III) coordinate with DOAPA to form complexes of a 1 : 3 stoichiometry (metal to ligand). Meanwhile, luminescence and mass spectral studies suggest that three deprotonated tridentate DOAPA ligands (L-) substitute all the H2O molecules in the primary coordination sphere of Eu(III), resulting in the extraction of a neutral complex into the organic phase. Further theoretical calculations reveal that a more robust interaction between DOAPA and Am(III) relative to Eu(III) as well as a higher degree of covalence in Am-N/O bonds than in Eu-N/O bonds leads to slight selectivity of Am(III) over Eu(III).
Collapse
Affiliation(s)
- Hong Cao
- Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China.
| | - Yuxiao Guo
- Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China.
| | - Bin Li
- Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China.
| | - Qilong Tang
- Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China.
| | - Huaixin Hao
- Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China.
| | - Zhipeng Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China.
| | - Chao Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
2
|
Leung K, Ilgen AG. Modeling separation of lanthanides via heterogeneous ligand binding. Phys Chem Chem Phys 2024. [PMID: 39018152 DOI: 10.1039/d4cp00880d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Individual lanthanide elements have physical/electronic/magnetic properties that make each useful for specific applications. Several of the lanthanides cations (Ln3+) naturally occur together in the same ores. They are notoriously difficult to separate from each other due to their chemical similarity. Predicting the Ln3+ differential binding energies (ΔΔE) or free energies (ΔΔG) at different binding sites, which are key figures of merit for separation applications, will help design of materials with lanthanide selectivity. We apply ab initio molecular dynamics (AIMD) simulations and density functional theory (DFT) to calculate ΔΔG for Ln3+ coordinated to ligands in water and embedded in metal-organic frameworks (MOFs), and ΔΔE for Ln3+ bonded to functionalized silica surfaces, thus circumventing the need for the computational costly absolute binding (free) energies ΔG and ΔE. Perturbative AIMD simulations of water-inundated simulation cells are applied to examine the selectivity of ligands towards adjacent Ln3+ in the periodic table. Static DFT calculations with a full Ln3+ first coordination shell, while less rigorous, show that all ligands examined with net negative charges are more selective towards the heavier lanthanides than a charge-neutral coordination shell made up of water molecules. Amine groups are predicted to be poor ligands for lanthanide-binding. We also address cooperative ion binding, i.e., using different ligands in concert to enhance lanthanide selectivity.
Collapse
Affiliation(s)
- Kevin Leung
- Geochemistry Department, MS 0750, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA.
| | - Anastasia G Ilgen
- Geochemistry Department, MS 0750, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA.
| |
Collapse
|
3
|
Wu Q, Hao H, Liu Y, Sha LT, Wang WJ, Shi WQ, Wang Z, Yan ZY. Selective Separation of Americium(III), Curium(III), and Lanthanide(III) by Aqueous and Organic Competitive Extraction. Inorg Chem 2024; 63:462-473. [PMID: 38141022 DOI: 10.1021/acs.inorgchem.3c03331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Adding hydrophilic ligands into aqueous solutions for the selective binding of actinides(III) is acknowledged as an advanced strategy in Ln(III)/An(III) separation. In view of the recycling and radioactive waste disposal of the minor actinide, there remains an urgent need to design and develop the appropriate ligand for selective separation of An(III) from Ln(III). Herein, four novel hydrophilic ligands with hard-soft hybrid donors, derived from the pyridine and phenanthroline skeletons, were designed and synthesized as masking agents for selective complexation of An(III) in the aqueous phase. The known N,N,N',N'-tetraoctyl diglycolamide (TODGA) was used as lipophilic extractant in the organic phase for extraction of Ln(III), and a new strategy for the competitive extraction of An(III) and Ln(III) was developed based on TODGA and the above hydrophilic ligands. The optimal hydrophilic ligand of N,N'-bis(2-hydroxyethyl)-2,9-dicarboxamide-1,10-phenanthroline (2OH-DAPhen) displayed exceptional selectivity toward Am(III) over Ln(III), with the concentrations of HNO3 ranging from 0.05 to 3.0 M. The maximum separation factors were up to 1365 for Eu/Am, 417.66 for Eu/Cm, and 42.38 for La/Am. The coordination mode and bonding property of 2OH-DAPhen with Ln(III) were investigated by 1H NMR titration, UV-vis spectrophotometric titration, luminescence titration, FT-IR, ESI-HRMS analysis, and DFT calculations. The results revealed that the predominant species formed in the aqueous phase was a 1:1 ligand/metal complex. DFT calculations also confirmed that the affinity of 2OH-DAPhen for Am(III) was better than that for Eu(III). The present work using a competitive extraction strategy developed a feasible alternative method for the selective separation of trivalent actinides from lanthanides.
Collapse
Affiliation(s)
- Qiang Wu
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Huaixin Hao
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Yang Liu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100084, China
| | - Lei-Tao Sha
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Wei-Jia Wang
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100084, China
| | - Zhipeng Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Ze-Yi Yan
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, China
| |
Collapse
|
4
|
Wang Q, Liu Z, Song YF, Wang D. Recent Advances in the Study of Trivalent Lanthanides and Actinides by Phosphinic and Thiophosphinic Ligands in Condensed Phases. Molecules 2023; 28:6425. [PMID: 37687254 PMCID: PMC10489984 DOI: 10.3390/molecules28176425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023] Open
Abstract
The separation of trivalent actinides and lanthanides is a key step in the sustainable development of nuclear energy, and it is currently mainly realized via liquid-liquid extraction techniques. The underlying mechanism is complicated and remains ambiguous, which hinders the further development of extraction. Herein, to better understand the mechanism of the extraction, the contributing factors for the extraction are discussed (specifically, the sulfur-donating ligand, Cyanex301) by combing molecular dynamics simulations and experiments. This work is expected to contribute to improve our systematic understanding on a molecular scale of the extraction of lanthanides and actinides, and to assist in the extensive studies on the design and optimization of novel ligands with improved performance.
Collapse
Affiliation(s)
- Qin Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China;
| | - Ziyi Liu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China;
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Dongqi Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China;
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Multidisciplinary Initiative Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Yang Y, Lan Y, Liu Q, Zhu L, Hao X, Zhou J, Yang S, Tian G. A computational study on the coordination modes and electron absorption spectra of the complexes U(iv) with N, N, N', N'-tetramethyl-diglycolamide and anions. RSC Adv 2023; 13:23947-23954. [PMID: 37577087 PMCID: PMC10413335 DOI: 10.1039/d3ra04206e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/03/2023] [Indexed: 08/15/2023] Open
Abstract
Lipophilic N,N,N',N'-tetraalkyl-diglycolamides (TRDGAs) are promising extractants for actinides separation in spent nuclear fuel reprocessing. Usually, in the extracted complexes of actinide and lanthanide ions of various oxidation states, the metal ions are completely surrounded by 2 or 3 TRDGA molecules, and the counter anions do not directly coordinate with them. In contrast, the extracted complexes of U(iv) from different media presenting different absorption spectra indicate that the anions (Cl- and NO3-) are directly involved in the coordination with U(iv) in the first inner sphere. Based on this exceptional observation in solvent extraction, taking the coordination of U(iv) with N,N,N',N'-tetramethyl-diglycolamide (TMDGA, the smallest analogue of TRDGA) as the research object, we mimic the behaviours of counterions (Cl- and NO3-) and the water molecule during coordination of TMDGA with U(iv), especially combining with the simulation of the absorption spectra. We demonstrate that during the complexing of TMDGA to U(iv), the counterion Cl- will occupy one coordination number in the inner coordination sphere, and NO3- will occupy two by bidentate type; however, the ubiquitous water cannot squeeze in the inner coordination sphere. In addition, the coordination of Cl- and NO3- is proved to favour the extraction with the lower binding energy. Moreover, the simulation of absorption spectra is in good agreement with the observation from experiments, further verifying the aforementioned conclusion. This work in some way will provide guidance to improve the computation methods in research of actinides by mimicking the absorption spectra of actinide ions in different complexes.
Collapse
Affiliation(s)
- Yating Yang
- Department of Radiochemistry, China Institute of Atomic Energy Beijing 102413 China
| | - Youshi Lan
- Department of Radiochemistry, China Institute of Atomic Energy Beijing 102413 China
| | - Qian Liu
- Department of Radiochemistry, China Institute of Atomic Energy Beijing 102413 China
| | - Liyang Zhu
- Department of Radiochemistry, China Institute of Atomic Energy Beijing 102413 China
| | - Xuan Hao
- Department of Radiochemistry, China Institute of Atomic Energy Beijing 102413 China
| | - Jin Zhou
- Department of Radiochemistry, China Institute of Atomic Energy Beijing 102413 China
| | - Suliang Yang
- Department of Radiochemistry, China Institute of Atomic Energy Beijing 102413 China
| | - Guoxin Tian
- Department of Radiochemistry, China Institute of Atomic Energy Beijing 102413 China
| |
Collapse
|
6
|
Zhang J, Tanjedrew N, Wenzel M, Royla P, Du H, Kiatisevi S, Lindoy LF, Weigand JJ. Selective Separation of Lithium, Magnesium and Calcium using 4-Phosphoryl Pyrazolones as pH-Regulated Receptors. Angew Chem Int Ed Engl 2023; 62:e202216011. [PMID: 36625760 DOI: 10.1002/anie.202216011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
Ensuring continuous and sustainable lithium supply requires the development of highly efficient separation processes such as LLE (liquid-liquid extraction) for both primary sources and certain waste streams. In this work, 4-phosphoryl pyrazolones are used in an efficient pH-controlled stepwise separation of Li+ from Ca2+ , Mg2+ , Na+ and K+ . The factors affecting LLE process, such as the substitution pattern of the extractant, diluent/water distribution, co-ligand, pH, and speciation of the metal complexes involved, were systematically investigated. The maximum extraction efficiency of Li+ at pH 6.0 was 94 % when Mg2+ and Ca2+ were previously separated at pH<5.0, proving that the separation of these ions is possible by simply modulating the pH of the aqueous phase. Our study points a way to separation of lithium from acid brine or from spent lithium ion battery leaching solutions, which supports the future supply of lithium in a more environmentally friendly and sustainable manner.
Collapse
Affiliation(s)
- Jianfeng Zhang
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Narisara Tanjedrew
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Marco Wenzel
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Philipp Royla
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Hao Du
- National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Supavadee Kiatisevi
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Leonard F Lindoy
- School of Chemistry, F11, University of Sydney, Sydney, NSW-2006, Australia
| | - Jan J Weigand
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
7
|
Zhang J, Wenzel M, Schnaars K, Hennersdorf F, Lindoy LF, Weigand JJ. Highly Tunable 4-Phosphoryl Pyrazolone Receptors for Selective Rare-Earth Separation. Inorg Chem 2023; 62:3212-3228. [PMID: 36752766 DOI: 10.1021/acs.inorgchem.2c04221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Highly selective rare-earth separation has become increasingly important due to the indispensable role of these elements in various cutting-edge technologies including clean energy. However, the similar physicochemical properties of rare-earth elements (REEs) render their separation very challenging, and the development of new selective receptors for these elements is potentially of very considerable economic and environmental importance. Herein, we report the development of a series of 4-phosphoryl pyrazolone receptors for the selective separation of trivalent lanthanum, europium, and ytterbium as the representatives of light, middle, and heavy REEs, respectively. X-ray crystallography studies were employed to obtain solid-state structures across 11 of the resulting complexes, allowing comparative structure-function relationships to be probed, including the effect of lanthanide contraction that occurs along the series from lanthanum to europium to ytterbium and which potentially provides a basis for REE ion separation. In addition, the influence of ligand structure and lipophilicity on lanthanide binding and selectivity was systematically investigated via n-octanol/water distribution and liquid-liquid extraction (LLE) studies. Corresponding stoichiometry relationships between solid and solution states were well established using slope analyses. The results provide new insights into some fundamental lanthanide coordination chemistry from a separation perspective and establish 4-phosphoryl pyrazolone derivatives as potential practical extraction reagents for the selective separation of REEs in the future.
Collapse
Affiliation(s)
- Jianfeng Zhang
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, Dresden 01062, Germany
| | - Marco Wenzel
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, Dresden 01062, Germany
| | - Kathleen Schnaars
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, Dresden 01062, Germany
| | - Felix Hennersdorf
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, Dresden 01062, Germany
| | - Leonard F Lindoy
- School of Chemistry, F11, University of Sydney, New South Wales 2006, Sydney, Australia
| | - Jan J Weigand
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, Dresden 01062, Germany.,Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
8
|
Kongasseri A, Madhesan T, Mitra S, Rao CVSB, Nagarajan S, Chinaraga PK, Deivasigamani P, Mohan AM. Fast and selective reversed-phase high performance liquid chromatographic separation of UO 2 2+ and Th 4+ ions using surface modified C 18 silica monolithic supports with target specific ionophoric ligands. RSC Adv 2023; 13:3317-3328. [PMID: 36756448 PMCID: PMC9869661 DOI: 10.1039/d2ra07495h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
Reprocessing nuclear-spent fuels is highly demanded for enhanced resource efficacy and removal of the associated radiotoxicity. The present work elucidates the rapid separation of UO2 2+ and Th4+ ions using a reversed-phase high-performance liquid chromatographic (RP-HPLC) technique by dynamically modifying the surface of a C18 silica monolith column with target-specific ionophoric ligands. For the dynamic modification, four analogous aromatic amide ligands, N 1,N 1,N 3,N 3,N 5,N 5-hexa(alkyl)benzene-1,3,5-tricarboxamide (alkyl = butyl, hexyl, octyl, and decyl) as column modifiers were synthesized. The complexation properties and retention profiles of the amide-based column modifiers for the selective and sequential separation of UO2 2+ and Th4+ ions were investigated. In addition, the selective separation of UO2 2+ and Th4+ ions among the competitive ions of similar chemical properties were also studied. The ionophore immobilized C18 silica monolith columns demonstrated a varying degree of retention behavior for UO2 2+ and Th4+ ions (UO2 2+ is retained longer than Th4+ under all analytical conditions), eventually leading to rapid separations within a period of ≤5 min. A 0.1 M solution of 2-hydroxyisobutyric acid (HIBA, 1 mL min-1) served as the mobile phase, and the qualitative and quantitative assessment of the sequentially separated 5f metal ions was achieved through post-column derivatization reaction, using arsenazo(iii) as a post-column reagent (PCR; 1.5 mL min-1) prior to analysis using a UV-vis detector, at 665 nm (λ max). The developed technique was further evaluated by standardizing various analytical parameters, including modifier concentration, mobile phase pH, mobile phase flow rate, etc., to yield the best chromatographic separation. Also, the conceptual role of alkyl chain length (in the modifier) on the retention behavior of the studied metal ions was evaluated for cutting-edge future applications.
Collapse
Affiliation(s)
- Aswanidevi Kongasseri
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT) Vellore Tamil Nadu 632014 India +91-9600061952
| | - Thirumalai Madhesan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT) Vellore Tamil Nadu 632014 India +91-9600061952
| | - Suchashrita Mitra
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT) Vellore Tamil Nadu 632014 India +91-9600061952
| | - C. V. S. Brahmananda Rao
- Fuel Chemistry Division, Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research (IGCAR)KalpakkamTamil Nadu 603102India
| | - Sivaraman Nagarajan
- Fuel Chemistry Division, Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research (IGCAR)KalpakkamTamil Nadu 603102India
| | - Pitchaiah Kancharlapalli Chinaraga
- Fuel Chemistry Division, Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research (IGCAR)KalpakkamTamil Nadu 603102India
| | - Prabhakaran Deivasigamani
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT) Vellore Tamil Nadu 632014 India +91-9600061952
| | - Akhila Maheswari Mohan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT) Vellore Tamil Nadu 632014 India +91-9600061952
| |
Collapse
|
9
|
Ebenezer C, Solomon RV. Complexation of N‐Heterocyclic Substituted 1,10‐Phenanthroline‐2,9‐diamide with Am
3+
/Eu
3+
Ions for Nuclear Waste Water Treatment. ChemistrySelect 2022. [DOI: 10.1002/slct.202203535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Cheriyan Ebenezer
- Department of Chemistry Madras Christian College (Autonomous) [Affiliated to the University of Madras Chennai 600 059 Tamil Nadu India
| | - Rajadurai Vijay Solomon
- Department of Chemistry Madras Christian College (Autonomous) [Affiliated to the University of Madras Chennai 600 059 Tamil Nadu India
| |
Collapse
|
10
|
Cao R, Tang P, Yang X, Sun Z. DFT-based study on the molecular interaction of hydrochloric acid with different extractants. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Abigail Jennifer G, Ebenezer C, Vijay Solomon R. Selective Complexation of trivalent Americium over Europium with substituted Triazolebipyridine-based Ligand in High Level-Liquid Waste- A DFT investigation. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Zhang Y, Duan W, Wang Q, Zheng L, Wang J, Chen J, Sun T. Covalency between the uranyl ion and dithiophosphinate by sulfur K-edge X-ray absorption spectroscopy and density functional theory. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:11-20. [PMID: 34985418 PMCID: PMC8733989 DOI: 10.1107/s160057752101198x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
The dithiophosphinic acids (HS2PR2) have been used for the selective separation of trivalent actinides (AnIII) from lanthanides (LnIII) over the past decades. The substituents on the dithiophosphinic acids dramatically impact the separation performance, but the mechanism is still open for debate. In this work, two dithiophosphinic acids with significantly different AnIII/LnIII separation performance, i.e. diphenyl dithiophosphinic acid (HS2PPh2) and bis(ortho-trifluoromethylphenyl) dithiophosphinic acid [HS2P(o-CF3C6H4)2], are employed to understand the substituent effect on the bonding covalency between the S2PR2- anions (R = Ph and o-CF3C6H4) and the uranyl ion by sulfur K-edge X-ray absorption spectroscopy (XAS) in combination with density functional theory calculations. The two UO2(S2PR2)(EtOH) complexes display similar XAS spectra, in which the first pre-edge feature with an intensity of 0.16 is entirely attributed to the transitions from S 1s orbitals to the unoccupied molecular orbitals due to the mixing between U 5f and S 3p orbitals. The Mulliken population analysis indicates that the amount of \% S 3p character in these orbitals is essentially identical for the UO2(S2PPh2)2(EtOH) and UO2[S2P(o-CF3C6H4)2]2(EtOH) complexes, which is lower than that in the U 6d-based orbitals. The essentially identical covalency in U-S bonds for the two UO2(S2PR2)2(EtOH) complexes are contradictory to the significantly different AnIII/LnIII separation performance of the two dithiophosphinic acids, thus the covalency seems to be unable to account for substituent effects in the AnIII/LnIII separation by the dithiophosphinic acids. The results in this work provide valuable insight into the understanding of the mechanism in the AnIII/LnIII separation by the dithiophosphinic acids.
Collapse
Affiliation(s)
- Yusheng Zhang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Wuhua Duan
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Qiang Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Lei Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Jianchen Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Jing Chen
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Taoxiang Sun
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
13
|
Yang X, Wang S, Xu L, Yan Q, Xu C, Matveev P, Lei L, Xiao C. New tetradentate N, O-hybrid phenanthroline-derived organophosphorus extractants for the separation and complexation of trivalent actinides and lanthanides. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01153k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Comparison of the extraction and separation properties between two novel phenanthroline-derived organophosphorus ligands, Et-Ph-BPPhen and Et-Ph-PIPhen.
Collapse
Affiliation(s)
- Xiao Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shihui Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lei Xu
- Institute of Nuclear-Agricultural Science, Zhejiang University, Hangzhou 310058, China
| | - Qiang Yan
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Chao Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Petr Matveev
- Radiochemistry Division, Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Lecheng Lei
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
14
|
Wang S, Wang C, Yang XF, Yu JP, Tao WQ, Yang SL, Ren P, Yuan LY, Chai ZF, Shi WQ. Selective Separation of Am(III)/Eu(III) by the QL-DAPhen Ligand under High Acidity: Extraction, Spectroscopy, and Theoretical Calculations. Inorg Chem 2021; 60:19110-19119. [PMID: 34860506 DOI: 10.1021/acs.inorgchem.1c02916] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although 1,10-phenanthroline-based ligands have recently shown vast opportunities for the separation of trivalent actinides (Ans(III)) from lanthanides (Lns(III)), the optimization and design of the extractant structure based on the phenanthroline framework remain hotspots for further improving the separation. Following the strategy of hard and soft donor atom combination, for the first time, the quinoline group was attached to the 1,10-phenanthroline skeleton, giving a lipophilic ligand, 2,9-diacyl-bis((3,4-dihydroquinoline-1((2H)-yl)-1),10-phenanthroline (QL-DAPhen)), for Am(III)/Eu(III) separation. In the presence of sodium nitrate, the ligand can effectively extract Am(III) over Eu(III) in HNO3 solution, with the separation factor (SFAm/Eu) ranging from 29 to 44. The coordination chemistry of Eu(III) with QL-DAPhen was investigated by slope analysis, NMR titration, UV-vis titration, Fourier transform infrared spectroscopy, electrospray ionization-mass spectrometry, and theoretical calculations. The experimental results unanimously confirm that the ligand forms both 1:1 and 1:2 complexes with Eu(III), and the stability constants (log β) of each of the two complexes were obtained. Density functional theory calculations show that the Am-N bonds have more covalent characteristics than the Eu-N bonds in the complexes, which reveals the reason why the ligand preferentially bonds with Am(III). Meanwhile, the thermodynamic analysis reveals that the 1:1 complex is more thermodynamically stable than the 1:2 complex. The findings of this work have laid a solid theoretical foundation for the application of phenanthroline-based ligands in the separation of An(III) from practical systems.
Collapse
Affiliation(s)
- Shuai Wang
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, P.R. China.,Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Cui Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xiao-Fan Yang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China.,Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, P.R. China
| | - Ji-Pan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Wu-Qing Tao
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, P.R. China
| | - Su-Liang Yang
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, P.R. China
| | - Peng Ren
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Li-Yong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhi-Fang Chai
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, P.R. China.,Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China.,Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P.R. China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
15
|
Kirst C, Tietze J, Ebeling M, Horndasch L, Karaghiosoff K. The Formation of P-C Bonds Utilizing Organozinc Reagents for the Synthesis of Aryl- and Heteroaryl-Dichlorophosphines. J Org Chem 2021; 86:17337-17343. [PMID: 34730367 DOI: 10.1021/acs.joc.1c01560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aryl- and heteroaryl-dichlorophosphines are mildly and selectively made in a one-pot synthesis in moderate to good yields starting from the respective aryl bromides or five-membered heterocycles, following lithiation with nBuLi, transmetalation with ZnCl2, and subsequently the reaction with PCl3. Selected aryl- and heteroaryl-dichlorophosphines were successfully synthesized using this reaction method and could easily be purified after isolation. The intermediate formation of the organozinc species is essential, as it prevents the formation of multiple substitution products. Important are also the reaction conditions: the usage of the proper solvent for the respective aromatic precursors and removal of the remaining salts by addition of a dioxane/pentane mixture. Depending on the solvent and steric demand of the substituent, mono- and bis-substitution products can be formed but formation also prevented. Hereby, different organozinc species might play an important role.
Collapse
Affiliation(s)
- Christin Kirst
- Department of Chemistry, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13 (D), 81377 Munich, Germany
| | - Jonathan Tietze
- Department of Chemistry, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13 (D), 81377 Munich, Germany
| | - Marian Ebeling
- Department of Chemistry, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13 (D), 81377 Munich, Germany
| | - Lukas Horndasch
- Department of Chemistry, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13 (D), 81377 Munich, Germany
| | - Konstantin Karaghiosoff
- Department of Chemistry, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13 (D), 81377 Munich, Germany
| |
Collapse
|
16
|
Song L, Wang X, Wang D, Xiao Q, Xu H, Li Q, He L, Ding S. 2-Carboxamido-6-(1H-pyrazol-3-yl)-pyridines as ligands for efficient separation of americium(III) from europium(III). Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Chapleski RC, Ivanov AS, Peterson KA, Bryantsev VS. Improving the theoretical description of Ln(III)/An(III) separation with phosphinic acid ligands: a benchmarking study of structure and selectivity. Phys Chem Chem Phys 2021; 23:19558-19570. [PMID: 34524309 DOI: 10.1039/d1cp02466c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The efficient separation of trivalent lanthanides from minor actinides with soft-donor ligands, while showing experimental promise, has theorists continuing to search for suitable approaches for describing and interpreting selectivity. To remedy this, we employ several computational methods in describing the structure of model M(H2PX2)3 complexes, with M = Eu and Am, and X = O, S, Se, and Te, and predicting the selectivity of model phosphinic acid ligands in Eu(III)/Am(III) separation. After first establishing a set of MP2 and CCSD(T)-DKH3 results as benchmarks, we evaluate several density functionals and descriptions of valence shells for their accuracy with respect to metal-ligand bonding and selectivity. We find that commonly employed functionals with a 0-27% range of exact exchange used with small-core effective core potentials or with an explicit treatment of the relativistic effects (DKH2) incorrectly predict a decrease in the metal-ligand bond distance in going from Eu(III) to Am(III) and completely fail to track a selectivity trend, even giving a wrong sign for some or all ligands. Surprisingly, when these functionals are used in conjunction with an f-in-core description of metal ions, the correct trend in selectivity is recovered, though Am-X distances are overestimated in relation to Eu-X. Functionals with high components of exact exchange (50%) and double-hybrid functionals are reasonably aligned with benchmark results, pointing to the problems of DFT with small exact exchange fractions to handle f-electrons. Natural bond orbital analyses reveal that these poorly performing functionals disproportionately overpopulate outer f orbitals in the model complexes. We anticipate that recommendations resulting from this work will lead to more accurate theoretical descriptions of lanthanide/actinide selectivity with soft-donor chalcogen-based ligands in the future.
Collapse
Affiliation(s)
- Robert C Chapleski
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 27831, USA.
| | - Alexander S Ivanov
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 27831, USA.
| | - Kirk A Peterson
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA.
| | - Vyacheslav S Bryantsev
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 27831, USA.
| |
Collapse
|
18
|
Cai Y, Yan Q, Wang M, Chen J, Fu H, Ye J, Conradson SD, Yuan L, Xu C, Feng W. Endowing 2,6-bis-triazolyl-pyridine of poor extraction with superior efficiency for actinide/lanthanide separation at high acidity by anchoring to a macrocyclic scaffold. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125745. [PMID: 33866294 DOI: 10.1016/j.jhazmat.2021.125745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/13/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Exploring nitrogen-containing extractants for recovering hazardous minor actinides that are workable in solutions of high acidity has been a challenge in nuclear waste treatment. Herein, we report our findings that 2,6-bis-triazolyl-pyridine (PyTri), which is ineffective as a hydrophobic ligand for minor actinide separation, turns into an excellent extractant that exhibits unexpectedly high efficiency and selectivity (SFAm/Eu = 172, 1 M HNO3) when attaching to pillar[5]arene platform. Surprisingly, the distribution ratio of Am(III) (DAm) is 4300 times higher than that of the acyclic PyTri ligand. The solvent extraction performance of this pillar[5]arene-achored PyTri not only far exceeds the best known pillar[5]arene ligands reported to date, but also stays comparable to other reported outstanding extractants. Slope analysis indicates that each P[5]A-PyTri can bind two metal ions, which is further corroborated by spectroscopic characterizations. Thermodynamic studies imply that the extraction process is exothermic and spontaneous in nature. Complexation investigation via EXAFS technique and DFT calculations strongly suggest that each Eu(III) ion is coordinated to three PyTri arms through a nine-coordination mode. This work provides a N-donor extractant that can operate at high acidity for minor actinide partitioning and implicates a promising approach for transforming poor extractants into superior ones.
Collapse
Affiliation(s)
- Yimin Cai
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Qiang Yan
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Mengxin Wang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jing Chen
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Haiying Fu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jiawei Ye
- Irradiation Preservation Technology Key Laboratory of Sichuan Province, Chengdu 610101, China
| | - Steven D Conradson
- Department of Complex Matter, Jozef Stefan Institute, 1000 Ljubljana, Slovenia; Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Lihua Yuan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Chao Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China.
| | - Wen Feng
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
19
|
A review of the alpha radiolysis of extractants for actinide lanthanide separation in spent nuclear fuel reprocessing. RADIOCHIM ACTA 2021. [DOI: 10.1515/ract-2021-1009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Radiation stability is one of the key properties to enable the efficient use of extractants in spent nuclear fuel with high radioactivity. The last several decades have witnessed a rapid progress in the radiation chemistry of extractants. A variety of studies and reviews pertinent to the radiation stability of extractants have been published. However, a thorough summary for the alpha radiolysis results of extractants is not available. In this review, we survey the development of alpha radiolysis of extractants for actinide lanthanide separation and compare their radiolysis behaviors induced by alpha particles and gamma rays. The discussion of alpha radiolysis of extractants is divided into three parts according to the functional groups of extractants (i.e., phosphine oxide, amide and bis-triazinyl bipyridines). Given the importance of radiation source to carry out alpha irradiation experiment, we first give a brief introduction to three practicable alpha radiation sources including alpha emitting isotopes, helium ion beam and reactor. We hope this review will provide useful information and unleash a broad palette of opportunities for researchers interested in radiation chemistry.
Collapse
|
20
|
Niu K, Yang F, Gaudin T, Ma H, Fang W. Theoretical Study of Effects of Solvents, Ligands, and Anions on Separation of Trivalent Lanthanides and Actinides. Inorg Chem 2021; 60:9552-9562. [PMID: 34161729 DOI: 10.1021/acs.inorgchem.1c00657] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Due to its associated low CO2 emissions, nuclear energy production is rapidly growing. In this context, the treatment of high-level liquid waste (HLLW) of nuclear plants is of high concern to both scientific and industrial communities. Specifically, the separation of An(III) and Ln(III) cations when processing nuclear fuel is a vitally important, yet challenging, step within HLLW because An(III) and Ln(III) have similar chemical properties in solution. To guide the choice of relevant ligands, anions, and solvents for this separation step, in this work, we calculate and compare the free energy of formation of different Am(III) and Eu(III) complexes (which are typical and important An(III) and Ln(III) cation examples), involving two different ligands and three different counter ions in four different solvents. Based on our calculations, we predict that the chosen solvent is a key factor in the extraction of Am(III) and Eu(III) in treatment of HLLW. This study supports a systematic, computation-assisted screening of solvents and extractive ligands with counter anions as a proficient method to optimize the separation of Ln(III) and An(III).
Collapse
Affiliation(s)
- Ke Niu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Feng Yang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Théophile Gaudin
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haibo Ma
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Weihai Fang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Department of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
21
|
Yang XF, Ren P, Yang Q, Geng JS, Zhang JY, Yuan LY, Tang HB, Chai ZF, Shi WQ. Strong Periodic Tendency of Trivalent Lanthanides Coordinated with a Phenanthroline-Based Ligand: Cascade Countercurrent Extraction, Spectroscopy, and Crystallography. Inorg Chem 2021; 60:9745-9756. [PMID: 34115461 DOI: 10.1021/acs.inorgchem.1c01035] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phenanthroline-diamide ligands have been reported in the selective separation of actinides over Eu(III); on the contrary, relevant basic coordination chemistry studies are still limited, and extraction under actual application conditions is rarely involved. In this work, N,N'-diethyl-N,N'-ditolyl-2,9-diamide-1,10-phenanthroline [Et-Tol-DAPhen (L)] was applied to explore the coordination performance of lanthanides in simulative high-level liquid waste. For the first time, cascade countercurrent extraction was conducted with Et-Tol-DAPhen as the extractant, which reveals the periodic tendency of the extraction efficiency of lanthanides to decrease gradually as the atomic number increases. Comparison of elements with similar radii verifies the hypothesis that the increase in the atomic number leads to a decrease in the ionic radius, thus reducing the coordination and extraction capacity of ligands. Slope analysis, electrospray ionization mass spectrometry, and ultraviolet-visible titration results show that the ligand forms 1:1 and 1:2 complexes with lanthanides and the coordination ability follows the tendency of extraction efficiency, and the first crystal structures of Lns(III) with a phenanthroline-diamide ligand, i.e., [LaL(NO3)3(H2O)] and [LaL2(NO3)2][(NO3)], were obtained, which confirms the conclusions described above. This work promises to enhance our comprehension of the chemical properties of Lns(III) and offer new clues for the design and synthesis of novel separation ligands.
Collapse
Affiliation(s)
- Xiao-Fan Yang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, China
| | - Peng Ren
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,School of Nuclear Science and Engineering, East China University of Technology, Nanchang, Jiangxi 330013, China
| | - Qi Yang
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, China
| | - Jun-Shan Geng
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Yu Zhang
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, China
| | - Li-Yong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Bin Tang
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Engineer Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Lipin R, Ebenezer C, Solomon RV. Theoretical evaluation of mixed N-, O- donor based TMPhenDA ligand in selective complexation with actinide (III) ions over lanthanide (III) ions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Wang Z, Li F, Wang X, Li B, Song L, Yang X, Xiao Q, Tang H, Ding S. Demonstration of a continuous counter-current extraction process based on a non-heterocyclic N-donor ligand NTAamide(n-Oct) for trivalent actinides/lanthanides separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Cai Y, Ansari SA, Fu K, Zhu B, Ma H, Chen L, Conradson SD, Qin S, Fu H, Mohapatra PK, Yuan L, Feng W. Highly efficient actinide(III)/lanthanide(III) separation by novel pillar[5]arene-based picolinamide ligands: A study on synthesis, solvent extraction and complexation. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124214. [PMID: 33129604 DOI: 10.1016/j.jhazmat.2020.124214] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
Selective extraction of highly radiotoxic actinides(III) is an important and challenging task in nuclear wastewater treatment. Many proposed ligands containing S or P atoms have drawbacks including high reagent consumption and possible secondary pollution after incineration. The present work reports five novel pillar[5]arene-based extractants that are anchored with picolinamide substituents of different electronic nature by varying spacer. These ligands reveal highly efficient separation of actinides(III) over lanthanides(III). Specifically, almost all of these ligands could extract Am(III) over Eu(III) selectively at around pH 3.0 (SFAm/Eu>11) with fast extraction kinetics. Variation of the pyridine nitrogen basicity via changing para-substitution leads to an increase in the distribution ratios by a factor of over 300 times for Am(III) with an electron-withdrawing group compared to those with an electron donating group. Investigation of complexation mechanism by slope analysis, NMR, IR, EXAFS, and DFT techniques indicates that each ligand binds two metal ions by pyridine nitrogen and amide oxygen. Finally, these ligands do not show obvious decrease in both extraction and separation ability after being exposed to 250 kGy absorbed gamma radiation. These results demonstrate the potential application of pillar[5]arene-picolinamides for actinide(III) separation.
Collapse
Affiliation(s)
- Yimin Cai
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Seraj A Ansari
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Kuirong Fu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Beichen Zhu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Haoyang Ma
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lixi Chen
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Steven D Conradson
- Department of Complex Matter, Jozef Stefan Institute, 1000 Ljubljana, Slovenia; Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Song Qin
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Haiying Fu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Prasanta K Mohapatra
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
| | - Lihua Yuan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Wen Feng
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
25
|
Xu L, Yang X, Wang Z, Wang S, Sun M, Xu C, Zhang X, Lei L, Xiao C. Unfolding the Extraction and Complexation Behaviors of Trivalent f-Block Elements by a Tetradentate N,O-Hybrid Phenanthroline Derived Phosphine Oxide Ligand. Inorg Chem 2021; 60:2805-2815. [PMID: 33502197 DOI: 10.1021/acs.inorgchem.0c03727] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this work, a tetradentate N,O-hybrid 2,9-bis(diphenylphosphine oxide)-1,10-phenanthroline (Ph2-BPPhen) ligand was studied for the coextraction of trivalent f-block elements from nitric acid media. The extraction as well as the complexation behaviors of Ph2-BPPhen with f-block elements were thoroughly investigated using 31P and 1H NMR spectrometry, UV-vis spectrophotometry, single crystal X-ray diffraction, and density functional theoretical (DFT) calculation. Ph2-BPPhen exhibits remarkably extraction ability for both Am(III) and Eu(III) and more than 99.5% of Am(III) and Eu(III) were extracted from 1.0 M HNO3 solution. Slope analysis suggests that both 2:1 and 1:1 ligand/metal complexes were probably formed during the extraction. The 1:1 and 2:1 Ln(III) complexes with Ph2-BPPhen were also identified in CH3OH solution by NMR spectrometry, and the stability constants were determined via UV-vis spectrophotometry. Structures of the 1:1 Eu(Ph2-BPPhen)(NO3)3 and Am(Ph2-BPPhen)(NO3)3 complexes were further elucidated by single X-ray crystallography and DFT calculations. The higher extractability of Ph2-BPPhen toward trivalent Am(III) and Eu(III) compared with the previously reported phenanthroline-derived amide and phosphonate ligands was attributed to the stronger affinity of the -P═O(R)2 group to metal ions. The results from this work indicate that the N,O-hybrid 1,10-phenanthroline derived phosphine oxide ligand can serve as a new and promising candidate for coextraction of trivalent f-block elements in the treatment of nuclear waste.
Collapse
Affiliation(s)
- Lei Xu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Xiao Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Zhipeng Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Shihui Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Mingze Sun
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Chao Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Xingwang Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Lecheng Lei
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| |
Collapse
|
26
|
Sun Z, Su L, Yao D, Yang X, Song X. Selective Separation of HNO 3 and HCl by Extraction: The Investigation on the Noncovalent Interaction between Extractants and Acids by Density Functional Theory. J Phys Chem B 2021; 125:1214-1226. [PMID: 33496172 DOI: 10.1021/acs.jpcb.0c09562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There is a huge demand for the highly selective separation of HNO3 and HCl in many industries, and solvent extraction is considered a feasible method. In this article, DFT calculations were performed to investigate the interactions between acids and extractants including alcohols, ketones, phosphorus, and amines. One of the significant findings to emerge from this study is that amines bind to acids through ion association. Nevertheless, the interaction between acids and alcohols, ketones, and phosphorus with a (RO)3P═O structure is mainly dominated by hydrogen bonds. The change of Gibbs free energy in the extraction process shows that the phosphorus ((RO)3P═O) is superior to other types of extractants in the selective separation of HNO3 and HCl. Furthermore, after the alkoxyl group (RO-) in phosphorus ((RO)3P═O) is replaced by RN- or R- with less electronegativity, the interaction between HCl and the substituted extractants transitions from a hydrogen bond to ion association, but there are still strong hydrogen bonds between them and HNO3. That will lead to a decrease in the selectivity of phosphorus due to the change in interaction types. This new understanding should help the design and screening of efficient extractants for the separation of mineral acids.
Collapse
Affiliation(s)
- Ze Sun
- Engineering Research Center of Resources Process Engineering, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.,School of Chemistry and Chemical Engineering, Qinghai Nationalities University, Xi'ning 810007, China
| | - Lei Su
- Engineering Research Center of Resources Process Engineering, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Doudou Yao
- Engineering Research Center of Resources Process Engineering, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaobo Yang
- School of Chemistry and Chemical Engineering, Qinghai Nationalities University, Xi'ning 810007, China
| | - Xingfu Song
- Engineering Research Center of Resources Process Engineering, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
27
|
Dong X, Cao H, Xu L, Wang Z, Chen J, Xu C. Advances in Environmental Coordination Chemistry of Np and Pu with Inorganic Anions in Aqueous Solution. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21080380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
28
|
Ren P, Huang PW, Yang XF, Zou Y, Tao WQ, Yang SL, Liu YH, Wu QY, Yuan LY, Chai ZF, Shi WQ. Hydrophilic Sulfonated 2,9-Diamide-1,10-phenanthroline Endowed with a Highly Effective Ligand for Separation of Americium(III) from Europium(III): Extraction, Spectroscopy, and Density Functional Theory Calculations. Inorg Chem 2020; 60:357-365. [PMID: 33319556 DOI: 10.1021/acs.inorgchem.0c03002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The design and development of a water-soluble heterocyclic ligand are believed to be an alternative way for improving the separation efficiency of actinides from lanthanides. Herein, we designed and synthesized a novel hydrophilic multidentate ligand: disulfonated N,N'-diphenyl-2,9-diamide-1,10-phenanthroline (DS-Ph-DAPhen) with soft and hard donor atoms, as a masking agent in aqueous solutions for Am(III) separation. The combination of N,N,N',N'-tetraoctyldiglycolamide in kerosene and DS-Ph-DAPhen in aqueous phases could separate Am(III) from Eu(III) across a range of nitric acid concentrations with very high selectivity. The coordination behaviors of Eu(III) with DS-Ph-DAPhen in aqueous solutions were studied by UV-vis titration, electrospray ionization mass spectrometry, and Fourier transform infrared spectra. The results indicated that Eu(III) ions could form both 1:1 and 1:2 complexes with the DS-Ph-DAPhen ligand in aqueous solution. Density functional theory calculation suggests that there are more covalent characters for Am-N bonds than that for Eu-N bonds in the complexes, which supports the better selectivity of the DS-Ph-DAPhen ligand toward Am(III) over Eu(III). This work demonstrates a feasible alternative approach to separating trivalent actinides from lanthanides with high selectivity.
Collapse
Affiliation(s)
- Peng Ren
- State Key Laboratory of Nuclear Resources and Environment, School of Nuclear Science and Technology, East China University of Technology, Nanchang, Jiangxi 330013, China.,Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Pin-Wen Huang
- Zhejiang University of Water Resources and Electric Power, Hangzhou, Zhejiang 310018, China
| | - Xiao-Fan Yang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Department of Radiochemistry, China Institute of Atomic Energy (CIAE), Beijing 102413, China
| | - Yao Zou
- State Key Laboratory of Nuclear Resources and Environment, School of Nuclear Science and Technology, East China University of Technology, Nanchang, Jiangxi 330013, China
| | - Wu-Qing Tao
- Department of Radiochemistry, China Institute of Atomic Energy (CIAE), Beijing 102413, China
| | - Su-Liang Yang
- Department of Radiochemistry, China Institute of Atomic Energy (CIAE), Beijing 102413, China
| | - Yun-Hai Liu
- State Key Laboratory of Nuclear Resources and Environment, School of Nuclear Science and Technology, East China University of Technology, Nanchang, Jiangxi 330013, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Yong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Engineer Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Engineer Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| |
Collapse
|
29
|
Wang Z, Zhang Y, Liu J, Song L, Wang X, Yang X, Xu C, Li J, Ding S. From "S" to "O": experimental and theoretical insights into the atmospheric degradation mechanism of dithiophosphinic acids. RSC Adv 2020; 10:40035-40042. [PMID: 35520876 PMCID: PMC9057479 DOI: 10.1039/d0ra08841b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 10/23/2020] [Indexed: 11/21/2022] Open
Abstract
Dithiophosphinic acids (DPAHs, expressed as R1R2PSSH) are a type of sulfur-donor ligand that have been vastly applied in hydrometallurgy. In particular, DPAHs have shown great potential in highly efficient trivalent actinide/lanthanide separation, which is one of the most challenging tasks in separation science and is of great importance for the development of an advanced fuel cycle in nuclear industry. However, DPAHs have been found liable to undergo oxidative degradation in the air, leading to significant reduction in the selectivity of actinide/lanthanide separation. In this work, the atmospheric degradation of five representative DPAH ligands was investigated for the first time over a sufficiently long period (180 days). The oxidative degradation process of DPAHs elucidated by ESI-MS, 31P NMR, and FT-IR analyses is R1R2PSSH → R1R2PSOH → R1R2POOH → R1R2POO-OOPR1R2, R1R2PSSH → R1R2PSS-SSPR1R2, and R1R2PSSH → R1R2PSOH → R1R2POS-SOPR1R2. Meanwhile, the determination of pK a values through pH titration and oxidation product by PXRD further confirms the S → O transformation in the process of DPAH deterioration. DFT calculations suggest that the hydroxyl radical plays the dominant role in the oxidation process of DPAHs and the order in which the oxidation products formed is closely related to the reaction energy barrier. Moreover, nickel salts of DPAHs have shown much higher chemical stability than DPAHs, which was also elaborated through molecular orbital (MO) and adaptive natural density portioning (AdNDP) analyses. This work unambiguously reveals the atmospheric degradation mechanism of DPAHs through both experimental and theoretical approaches. At the application level, the results not only provide an effective way to preserve DPAHs but could also guide the design of more stable sulfur-donor ligands in the future.
Collapse
Affiliation(s)
- Zhipeng Wang
- College of Chemistry, Sichuan University Chengdu 610064 China
| | - Yixiang Zhang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics, Molecular Engineering of the Ministry of Education, Tsinghua University Beijing 100084 China
| | - Jingjing Liu
- Department of Chemistry, Key Laboratory of Organic Optoelectronics, Molecular Engineering of the Ministry of Education, Tsinghua University Beijing 100084 China
| | - Lianjun Song
- College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xueyu Wang
- College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiuying Yang
- College of Chemistry, Sichuan University Chengdu 610064 China
| | - Chao Xu
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University Beijing 100084 China
| | - Jun Li
- Department of Chemistry, Key Laboratory of Organic Optoelectronics, Molecular Engineering of the Ministry of Education, Tsinghua University Beijing 100084 China
| | - Songdong Ding
- College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
30
|
Yang X, Su D, Song L, Wang X, Xiao Q, Feng Q, Ding S. Extraction and complexation of americium(III) and europium(III) by a N-donor ligand of 3,5-bis(2-pyridyl)pyrazole. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.115969] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Pu N, Su J, Xu L, Sun T, Batista ER, Chen J, Yang P, Shafer JC, Xu C. “Sweeping” Ortho Substituents Drive Desolvation and Overwhelm Electronic Effects in Nd3+ Chelation: A Case of Three Aryldithiophosphinates. Inorg Chem 2019; 59:161-171. [DOI: 10.1021/acs.inorgchem.9b01931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ning Pu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Jing Su
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Lei Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Taoxiang Sun
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Enrique R. Batista
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jing Chen
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Ping Yang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jenifer C. Shafer
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Chao Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
32
|
Zhang X, Kong X, Yuan L, Chai Z, Shi W. Coordination of Eu(III) with 1,10-Phenanthroline-2,9-dicarboxamide Derivatives: A Combined Study by MS, TRLIF, and DFT. Inorg Chem 2019; 58:10239-10247. [DOI: 10.1021/acs.inorgchem.9b01400] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xinrui Zhang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- University of Chinese Academy of Science, Beijing 100049, People’s Republic of China
| | - Xianghe Kong
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Liyong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Zhifang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People’s Republic of China
| | - Weiqun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|
33
|
Wang C, Wu QY, Kong XH, Wang CZ, Lan JH, Nie CM, Chai ZF, Shi WQ. Theoretical Insights into the Selective Extraction of Americium(III) over Europium(III) with Dithioamide-Based Ligands. Inorg Chem 2019; 58:10047-10056. [DOI: 10.1021/acs.inorgchem.9b01200] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cui Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-He Kong
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Chang-Ming Nie
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
34
|
Kumar R. S, Ashok Kumar SK. A light activated CMP conjugated 8-aminoquinoline turn-on fluorescent optode for selective determination of Th4+ in an aqueous environment. Dalton Trans 2019; 48:12607-12614. [DOI: 10.1039/c9dt01830a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new dibutyl(2-oxo-2-(quinolin-8-ylamino)ethyl)phosphinate (L) was designed, synthesised and developed as a light activated optode for Th4+ determination.
Collapse
Affiliation(s)
- Selva Kumar R.
- Department of Chemistry
- School of Advanced Sciences
- Vellore Institute of Technology
- Vellore-632014
- India
| | - S. K. Ashok Kumar
- Department of Chemistry
- School of Advanced Sciences
- Vellore Institute of Technology
- Vellore-632014
- India
| |
Collapse
|