1
|
Gómez Bustos D, Sreenivasan S, Pinter B. A computational study on the effect of structural isomerism on the excited state lifetime and redox energetics of archetype iridium photoredox catalyst platforms [Ir(ppy)2(bpy)]+ and Ir(ppy)3. J Chem Phys 2025; 162:024306. [PMID: 39807806 DOI: 10.1063/5.0239293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
This study investigates the impact of structural isomerism on the excited state lifetime and redox energetics of heteroleptic [Ir(ppy)2(bpy)]+ and homoleptic Ir(ppy)3 photoredox catalysts using ground-state and time-dependent density functional theory methods. While the ground- and excited-state reduction potentials differ only slightly among the isomers of these complexes, our findings reveal significant variations in the radiative and non-radiative decay rates of the reactivity-controlling triplet 3MLCT states of these closely related species. The observed differences in radiative decay rates could be traced back to variations in the transition dipole moment, vertical energy gaps, and spin-orbit coupling of the isomers. In [Ir(ppy)2(bpy)]+, transition dipole moment differences play a significant role in controlling the relative lifetime of the triplet states, which we rationalized by a vectorial analysis of permanent dipole moments of the ground and excited states. Regarding the two isomers of Ir(ppy)3, changes in radiative decay rates were primarily attributed to variations in vertical energy gaps and intensity borrowing from other singlet-singlet transitions driven by spin-orbit coupling. Non-radiative decay variations were assessed in terms of differences in reorganization energies, adiabatic energy gap, and spin-orbit coupling. For both complexes, reorganization energies associated with low-energy molecular vibrations and metal-ligand bond length changes following the de-excitation process were major contributors. These insights provide a deeper understanding of how molecular design can be leveraged to optimize the performance of iridium-based photoredox catalysts, potentially guiding the development of more efficient catalytic systems for future applications.
Collapse
Affiliation(s)
- Daniel Gómez Bustos
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Sreeprasad Sreenivasan
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Balazs Pinter
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, USA
| |
Collapse
|
2
|
Babón JC, Boudreault PLT, Esteruelas MA, Gaona MA, Izquierdo S, Oliván M, Oñate E, Tsai JY, Vélez A. Two Synthetic Tools to Deepen the Understanding of the Influence of Stereochemistry on the Properties of Iridium(III) Heteroleptic Emitters. Inorg Chem 2023; 62:19821-19837. [PMID: 37988596 PMCID: PMC10880056 DOI: 10.1021/acs.inorgchem.3c03133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/23/2023]
Abstract
Two complementary procedures are presented to prepare cis-pyridyl-iridium(III) emitters of the class [3b+3b+3b'] with two orthometalated ligands of the 2-phenylpyridine type (3b) and a third ligand (3b'). They allowed to obtain four emitters of this class and to compare their properties with those of the trans-pyridyl isomers. The finding starts from IrH5(PiPr3)2, which reacts with 2-(p-tolyl)pyridine to give fac-[Ir{κ2-C,N-[C6MeH3-py]}3] with an almost quantitative yield. Stirring the latter in the appropriate amount of a saturated solution of HCl in toluene results in the cis-pyridyl adduct IrCl{κ2-C,N-[C6MeH3-py]}2{κ1-Cl-[Cl-H-py-C6MeH4]} stabilized with p-tolylpyridinium chloride, which can also be transformed into dimer cis-[Ir(μ-OH){κ2-C,N-[C6MeH3-py]}2]2. Adduct IrCl{κ2-C,N-[C6MeH3-py]}2{κ1-Cl-[Cl-H-py-C6MeH4]} directly generates cis-[Ir{κ2-C,N-[C6MeH3-py]}2{κ2-C,N-[C6H4-Isoqui]}] and cis-[Ir{κ2-C,N-[C6MeH3-py]}2{κ2-C,N-[C6H4-py]}] by transmetalation from Li[2-(isoquinolin-1-yl)-C6H4] and Li[py-2-C6H4]. Dimer cis-[Ir(μ-OH){κ2-C,N-[C6MeH3-py]}2]2 is also a useful starting complex when the precursor molecule of 3b' has a fairly acidic hydrogen atom, suitable for removal by hydroxide groups. Thus, its reactions with 2-picolinic acid and acetylacetone (Hacac) lead to cis-Ir{κ2-C,N-[C6MeH3-py]}2{κ2-O,N-[OC(O)-py]} and cis-Ir{κ2-C,N-[C6MeH3-py]}2{κ2-O,O-[acac]}. The stereochemistry of the emitter does not significantly influence the emission wavelengths. On the contrary, its efficiency is highly dependent on and associated with the stability of the isomer. The more stable isomer shows a higher quantum yield and color purity.
Collapse
Affiliation(s)
- Juan C. Babón
- Departamento
de Química Inorgánica - Instituto de Síntesis
Química y Catálisis Homogénea (ISQCH) - Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Zaragoza - CSIC, 50009 Zaragoza, Spain
| | | | - Miguel A. Esteruelas
- Departamento
de Química Inorgánica - Instituto de Síntesis
Química y Catálisis Homogénea (ISQCH) - Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Zaragoza - CSIC, 50009 Zaragoza, Spain
| | - Miguel A. Gaona
- Departamento
de Química Inorgánica - Instituto de Síntesis
Química y Catálisis Homogénea (ISQCH) - Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Zaragoza - CSIC, 50009 Zaragoza, Spain
| | - Susana Izquierdo
- Departamento
de Química Inorgánica - Instituto de Síntesis
Química y Catálisis Homogénea (ISQCH) - Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Zaragoza - CSIC, 50009 Zaragoza, Spain
| | - Montserrat Oliván
- Departamento
de Química Inorgánica - Instituto de Síntesis
Química y Catálisis Homogénea (ISQCH) - Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Zaragoza - CSIC, 50009 Zaragoza, Spain
| | - Enrique Oñate
- Departamento
de Química Inorgánica - Instituto de Síntesis
Química y Catálisis Homogénea (ISQCH) - Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Zaragoza - CSIC, 50009 Zaragoza, Spain
| | - Jui-Yi Tsai
- Universal
Display Corporation, Ewing, New Jersey 08618, United States
| | - Andrea Vélez
- Departamento
de Química Inorgánica - Instituto de Síntesis
Química y Catálisis Homogénea (ISQCH) - Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Zaragoza - CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
3
|
Lindh L, Pascher T, Persson S, Goriya Y, Wärnmark K, Uhlig J, Chábera P, Persson P, Yartsev A. Multifaceted Deactivation Dynamics of Fe(II) N-Heterocyclic Carbene Photosensitizers. J Phys Chem A 2023; 127:10210-10222. [PMID: 38000043 DOI: 10.1021/acs.jpca.3c06983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Excited state dynamics of three iron(II) carbene complexes that serve as prototype Earth-abundant photosensitizers were investigated by ultrafast optical spectroscopy. Significant differences in the dynamics between the investigated complexes down to femtosecond time scales are used to characterize fundamental differences in the depopulation of triplet metal-to-ligand charge-transfer (3MLCT) excited states in the presence of energetically accessible triplet metal-centered (3MC) states. Novel insights into the full deactivation cascades of the investigated complexes include evidence of the need to revise the deactivation model for a prominent iron carbene prototype complex, a refined understanding of complex 3MC dynamics, and a quantitative discrimination between activated and barrierless deactivation steps along the 3MLCT → 3MC → 1GS path. Overall, the study provides an improved understanding of photophysical limitations and opportunities for the use of iron(II)-based photosensitizers in photochemical applications.
Collapse
Affiliation(s)
- Linnea Lindh
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
- Division of Computational Chemistry, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Torbjörn Pascher
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Samuel Persson
- Center for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Yogesh Goriya
- Center for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Kenneth Wärnmark
- Center for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Jens Uhlig
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Pavel Chábera
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Petter Persson
- Division of Computational Chemistry, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Arkady Yartsev
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
4
|
Gupta R, Sahni P, Jana SK, Negi A, Pal AK. Effect of substitution on deep-blue Ir(III) N-heterocyclic carbene (NHC) emitters. Dalton Trans 2023; 52:15597-15607. [PMID: 37840343 DOI: 10.1039/d3dt01947k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
The development of Ir(III)-NHC phosphors that display deep-blue luminescence without sacrificing the high photoluminescence quantum yield (PLQY) has become a pivotal area of research. In this respect, two novel deep-blue Ir-NHC emitters (C1 and C2) with strategically designed pro-carbenic imidazolium ligands (L1 and L2) incorporating a heavy bromine atom at the ligand-scaffold were synthesized in good yields (∼80% for L1, L2 and 65% for C1, C2). The ground and excited state properties of the complexes were photophysically determined and the results were found to be in accordance with theoretical calculations at the DFT and TD-DFT levels. Due to the strong σ-donation of the carbene ligands, complexes C1 and C2 displayed oxidation at low anodic potentials. Both the complexes showed deep-blue emission either in solution (λem ∼ 400-425 nm) or as PMMA-doped films of varying concentrations (λem ∼ 400 nm) with an ∼15 times enhanced PLQY with respect to benchmark Ir-NHC complexes. The strategy of incorporating the heavy bromine atom to reduce the molecular vibrations in C1 and C2 was further supported by ∼250 times reduced non-radiative decay constants (knr) and Huang-Rhys constants of C1 and C2 in comparison to those of the benchmark complexes. These facts were also supported by triplet frequency calculations of C1 and C2 to identify the absence of vibrations.
Collapse
Affiliation(s)
- Rahat Gupta
- Department of Chemistry, Indian Institute of Technology Jammu, Nagrota Bypass Road, Jammu and Kashmir-181221, India.
| | - Priya Sahni
- Department of Chemistry, Indian Institute of Technology Jammu, Nagrota Bypass Road, Jammu and Kashmir-181221, India.
| | - Salil K Jana
- Department of Chemistry, Indian Institute of Technology Jammu, Nagrota Bypass Road, Jammu and Kashmir-181221, India.
| | - Anshul Negi
- Department of Chemistry, Indian Institute of Technology Jammu, Nagrota Bypass Road, Jammu and Kashmir-181221, India.
| | - Amlan K Pal
- Department of Chemistry, Indian Institute of Technology Jammu, Nagrota Bypass Road, Jammu and Kashmir-181221, India.
| |
Collapse
|
5
|
Hatanaka M, Kato H, Sakai M, Kariya K, Nakatani S, Yoshimura T, Inagaki T. Insights into the Luminescence Quantum Yields of Cyclometalated Iridium(III) Complexes: A Density Functional Theory and Machine Learning Approach. J Phys Chem A 2023; 127:7630-7637. [PMID: 37651718 DOI: 10.1021/acs.jpca.3c02179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Cyclometalated iridium(III) complexes have been used in various optical materials, including organic light-emitting diodes (OLEDs) and photocatalysts, and a deeper understanding and prediction of their luminescence quantum yields (LQYs) greatly aid in accelerating material design. In this study, we integrated density functional theory (DFT) calculations with machine learning (ML) techniques to extract factors controlling LQY. Although a substantial data set of Ir(III) complexes and their LQYs is indispensable for constructing accurate ML models to predict LQYs, generating this type of data set is challenging due to the complexities associated with ab initio calculations of LQYs. To address this issue, we investigated the nonradiative decay process of nine Ir(III) complexes emitting blue to green, each exhibiting varying experimental LQYs, by using DFT calculations. For all nine complexes, the quenching process was induced by the rotation of the single bond in one of the ligands, which converted the six-coordinate structure to the five-coordinate structure. Since the decay mechanism was common for the nine Ir(III) complexes, parameters correlated with LQYs could be used as objective variables instead of LQYs. Based on this idea, we collected a data set featuring Ir(III) complexes and the energy differences between their six- and five-coordinate triplet structures, which correlated with LQYs. We also constructed ML models using the calculated LQYs as the objective variables with the parameters from the ground-state calculations as explanatory variables. The analyses of the constructed model revealed that the LUMO energy of the ligand made the most significant negative contribution to LQY. This suggests that the potential energy surface of the metal-to-ligand charge transfer (MLCT) excited state, which stabilizes the six-coordinate structure, is reduced by decreasing the energy of the unoccupied orbitals.
Collapse
Affiliation(s)
- Miho Hatanaka
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Hiromoto Kato
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Minami Sakai
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikokma, Nara 630-0192, Japan
| | - Kosuke Kariya
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Shunsuke Nakatani
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Takayoshi Yoshimura
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Taichi Inagaki
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
6
|
Kagalwala HN, Bueno L, Wanniarachchi H, Unruh DK, Hamal KB, Pavlich CI, Carlson GJ, Pinney KG, Mason RP, Lippert AR. Oxygen-Sensing Chemiluminescent Iridium(III) 1,2-Dioxetanes: Unusual Coordination and Activity. ANALYSIS & SENSING 2023; 3:e202200085. [PMID: 37006671 PMCID: PMC10061878 DOI: 10.1002/anse.202200085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Indexed: 11/23/2022]
Abstract
Next generation chemiluminescent iridium 1,2-dioxetane complexes have been developed which consist of the Schaap's 1,2-dioxetane scaffold directly attached to the metal center. This was achieved by synthetically modifying the scaffold precursor with a phenylpyridine moiety, which can act as a ligand. Reaction of this scaffold ligand with the iridium dimer [Ir(BTP)2(μ-Cl)]2 (BTP = 2-(benzo[b]thiophen-2-yl)pyridine) yielded isomers which depict ligation through either the cyclometalating carbon or, interestingly, the sulfur atom of one BTP ligand. Their corresponding 1,2-dioxetanes display chemiluminescent responses in buffered solutions, exhibiting a single, red-shifted peak at 600 nm. This triplet emission was effectively quenched by oxygen, yielding in vitro Stern-Volmer constants of 0.1 and 0.009 mbar-1 for the carbon-bound and sulfur compound, respectively. Lastly, the sulfur-bound dioxetane was further utilized for oxygen sensing in muscle tissue of living mice and xenograft models of tumor hypoxia, depicting the ability of the probe chemiluminescence to penetrate biological tissue (total flux ~ 106 p/s).
Collapse
Affiliation(s)
- Husain N Kagalwala
- Department of Chemistry, Southern Methodist University, Dallas, TX 75275-0314 (USA)
| | - Lorena Bueno
- Prognostic Imaging Research Laboratory, Pre-clinical Imaging Section, Department of Radiology, UT Southwestern Medical Center, Dallas, TX 75390-9058 (USA)
| | - Hashini Wanniarachchi
- Prognostic Imaging Research Laboratory, Pre-clinical Imaging Section, Department of Radiology, UT Southwestern Medical Center, Dallas, TX 75390-9058 (USA)
| | - Daniel K Unruh
- X-ray Diffraction Facility, Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061 (USA)
| | - Khagendra B Hamal
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798-7348 (USA)
| | - Cyprian I Pavlich
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798-7348 (USA)
| | - Graham J Carlson
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798-7348 (USA)
| | - Kevin G Pinney
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798-7348 (USA)
| | - Ralph P Mason
- Prognostic Imaging Research Laboratory, Pre-clinical Imaging Section, Department of Radiology, UT Southwestern Medical Center, Dallas, TX 75390-9058 (USA)
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, TX 75275-0314 (USA)
| |
Collapse
|
7
|
Comprehensive investigation of triplet states of red phosphorescent cationic Ir(III) complexes from cryogenic temperature. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02680-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Luo Y, Guo Y, Shou X, Chen Z, Xu Z, Tang D. Investigate the Relationship between Structure and Triplet Potential Energy Surface to Control the Phosphorescence Quantum Yield of Platinum(II) Complex: A Theoretical Investigation. Inorg Chem 2022; 61:9162-9172. [PMID: 35666779 DOI: 10.1021/acs.inorgchem.2c00749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Triplet potential energy surfaces are extremely important for phosphors because they are closely related to radiative and nonradiative decay processes. In this article, the correlations between the strctures and the triplet potential energy surfaces for Pt(II) complexes are investigated in detail with the help of density functional theory (DFT). The calculated results indicate that triplet hypersurface minima with different configurations, i.e., planar and bent, rely on the geometries of the platinum(II) complex. A bent configuration could cause an obvious decrease in the phosphorescence quantum yield, and an unusual low-lying triplet excited-state decay route is proposed. In addition, the extension of π-conjugation and addition of suitable substituents, for example arylboron, are promising strategies for changing the triplet hypersurface to achieve the minimum with a planar configuration, leading to a high phosphorescence quantum yield. Moreover, to predict the triplet hypersurface, a useful and simple strategy has been put forward. In our study, the relationship between the structure and the lowest-lying triplet potential energy surface of a Pt(II) complex is constructed, which is significant and meaningful for controlling the phosphorescence quantum yield to design high-performance phosphorescent materials used in the field of organic light-emitting diodes (OLEDs).
Collapse
Affiliation(s)
- Yafei Luo
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy (International Academy of Targeted Therapeutics and Innovation), Chongqing University of Arts and Sciences, Chongqing 402160, P. R. China
| | - Yu Guo
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy (International Academy of Targeted Therapeutics and Innovation), Chongqing University of Arts and Sciences, Chongqing 402160, P. R. China
| | - Xuecen Shou
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy (International Academy of Targeted Therapeutics and Innovation), Chongqing University of Arts and Sciences, Chongqing 402160, P. R. China
| | - Zhongzhu Chen
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy (International Academy of Targeted Therapeutics and Innovation), Chongqing University of Arts and Sciences, Chongqing 402160, P. R. China
| | - Zhigang Xu
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy (International Academy of Targeted Therapeutics and Innovation), Chongqing University of Arts and Sciences, Chongqing 402160, P. R. China
| | - Dianyong Tang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy (International Academy of Targeted Therapeutics and Innovation), Chongqing University of Arts and Sciences, Chongqing 402160, P. R. China
| |
Collapse
|
9
|
Lin WQ, Wang DR, Long WJ, Lin LS, Tao ZX, Liu JL, Liu ZQ, Leng JD. Stereoisomeric coordination polymers based on facial and meridional six-coordinate dysprosium(III ). Dalton Trans 2022; 51:5195-5202. [PMID: 35274652 DOI: 10.1039/d2dt00334a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Due to the small differences in the chemical properties of facial (fac) and meridional (mer) stereoisomers, selective synthesis of one of the isomers is challenging, especially for lanthanide complexes. By using a flexible bidentate phosphine oxide ligand, we managed to isolate three stereoisomeric 2D and 3D coordination polymers, in which six-coordinate Dy(III) ions possess fac- or mer-Cl3O3 coordination environments. Structural studies indicate that the stereochemistry differences result from their various supramolecular interactions (e.g., hydrogen bonding and π⋯π stacking). Magnetic property measurements reveal the different static and dynamic magnetic behaviours of the three stereoisomers. Ab initio CASSCF calculations were then performed which indicated that their distinct magnetic behaviours arise from their fac/mer configurations. Compared to fac-Dy(III), mer-Dy(III) possesses more axial ground-state KDs and higher first excited KDs.
Collapse
Affiliation(s)
- Wei-Quan Lin
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials, Guangzhou University, No. 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China.
| | - Dan-Ru Wang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials, Guangzhou University, No. 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China.
| | - Wei-Jian Long
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials, Guangzhou University, No. 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China.
| | - Li-Shan Lin
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials, Guangzhou University, No. 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China.
| | - Ze-Xian Tao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials, Guangzhou University, No. 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China.
| | - Jun-Liang Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials, Guangzhou University, No. 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China.
| | - Ji-Dong Leng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials, Guangzhou University, No. 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China.
| |
Collapse
|
10
|
Wang Y, Peng Q, Shuai Z. A computational scheme for evaluating the phosphorescence quantum efficiency: applied to blue-emitting tetradentate Pt(II) complexes. MATERIALS HORIZONS 2022; 9:334-341. [PMID: 34842258 DOI: 10.1039/d1mh00552a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Phosphorescent organic light-emitting diodes (PhOLEDs) are leading candidates for displays or lighting technologies. Recently, blue phosphorescent tetradentate Pt(II) complexes have been attracting extensive attention due to their high phosphorescence quantum efficiency and numerous chemical structures on account of flexible ligand frames and modifications. Using quantum chemistry coupled with our thermal vibration correlation function (TVCF) formalism, we investigated the triplet excited state energy surface and the decay processes involving both direct vibrational relaxation and minimum energy crossing point (MECP) via the transition state (3TS) to the ground state (S0) for 16 recently experimentally reported blue-emitting tetradentate Pt(II) emitters containing fused 5/6/6 metallocycles. We found that (i) in most cases, the direct vibrational relaxation deactivations dominated the triplet non-radiative decay because either the 3TS is too high or the MECP is not reachable. Hence, results from the TVCF formalism agreed well with the experiments for the phosphorescence quantum efficiency; (ii) only when both 3TS and MECP are low, for instance, for PtON1-oMe, deactivations via MECP dominated the triplet non-radiative decay.
Collapse
Affiliation(s)
- Yu Wang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | - Qian Peng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhigang Shuai
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
11
|
Adamovich V, Benavent L, Boudreault PLT, Esteruelas MA, López AM, Oñate E, Tsai JY. Pseudo-Tris(heteroleptic) Red Phosphorescent Iridium(III) Complexes Bearing a Dianionic C, N, C', N'-Tetradentate Ligand. Inorg Chem 2021; 60:11347-11363. [PMID: 34291933 PMCID: PMC9179949 DOI: 10.1021/acs.inorgchem.1c01303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
1-Phenyl-3-(1-phenyl-1-(pyridin-2-yl)ethyl)isoquinoline
(H2MeL) has been prepared by Pd(N-XantPhos)-catalyzed
“deprotonative cross-coupling processes”
to synthesize new phosphorescent red iridium(III) emitters (601–732
nm), including the carbonyl derivative Ir(κ4-cis-C,C′-cis-N,N′-MeL)Cl(CO)
and the acetylacetonate compound Ir(κ4-cis-C,C′-cis-N,N′-MeL)(acac). The tetradentate
6e-donor ligand (6tt′) of these complexes is formed by two
different bidentate units, namely, an orthometalated 2-phenylisoquinoline
and an orthometalated 2-benzylpyridine. The link between the bidentate
units reduces the number of possible stereoisomers of the structures
[6tt′ + 3b] (3b = bidentate 3e-donor ligand), with respect
to a [3b + 3b′ + 3b″] emitter containing three free
bidentate units, and it permits a noticeable stereocontrol. Thus,
the isomers fac-Ir(κ4-cis-C,C′-cis-N,N′-MeL){κ2-C,N-(C6H4-py)}, mer-Ir(κ4-cis-C,C′-cis-N,N′-MeL){κ2-C,N-(C6H3R-py)}, and mer-Ir(κ4-trans-C,C′-cis-N,N′-MeL){κ2-C,N-(C6HR-py)} (R =
H, Me) have also been selectively obtained. The new emitters display
short lifetimes (0.7–4.6 μs) and quantum yields in a
doped poly(methyl methacrylate) film at 5 wt % and 2-methyltetrahydrofuran
at room temperature between 0.08 and 0.58. The acetylacetonate complex
Ir(κ4-cis-C,C′-cis-N,N′-MeL)(acac) has been used as a dopant for a red
PhOLED device with an electroluminescence λmax of
672 nm and an external quantum efficiency of 3.4% at 10 mA/cm2. The proligand 1-phenyl-3-(1-phenyl-1-(pyridine-2-yl)ethyl)isoquinoline
is used to generate a new family of neutral phosphorescent red iridium(III)
emitters containing a tetradentate ligand, formed by two different
bidentate units, and a third bidentate ligand with a good stereocontrol
of the resulting [6tt′ + 3b] products. One of the new emitters
has been used in the fabrication of an OLED device.
Collapse
Affiliation(s)
- Vadim Adamovich
- Universal Display Corporation, Ewing, New Jersey 08618, United States
| | - Llorenç Benavent
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | | | - Miguel A Esteruelas
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Ana M López
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Enrique Oñate
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Jui-Yi Tsai
- Universal Display Corporation, Ewing, New Jersey 08618, United States
| |
Collapse
|
12
|
SHIMIZU N, MATSUMURA T, YAMASHITA K, MIYAKE T, SAWADA H. Analyses of Iridium(III) and Ruthenium(II) Phosphorescent Complexes with LC-TOFMS and LC-MS/MS. BUNSEKI KAGAKU 2021. [DOI: 10.2116/bunsekikagaku.70.481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Cheung WM, Chong MC, Sung HHY, Cheng SC, Williams ID, Ko CC, Leung WH. Synthesis, structure and reactivity of iridium complexes containing a bis-cyclometalated tridentate C^N^C ligand. Dalton Trans 2021; 50:8512-8523. [PMID: 34060573 DOI: 10.1039/d1dt01269j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In an effort to synthesize cyclometalated iridium complexes containing a tridentate C^N^C ligand, transmetallation of [Hg(HC^N^C)Cl] (1) (H2C^N^C = 2,6-bis(4-tert-butylphenyl)pyridine) with various organoiridium starting materials has been studied. The treatment of 1 with [Ir(cod)Cl]2 (cod = 1,5-cyclooctadiene) in acetonitrile at room temperature afforded a hexanuclear Ir4Hg2 complex, [Cl(κ2C,N-HC^N^C)(cod)IrHgIr(cod)Cl2]2 (2), which features Ir-Hg-Ir and Ir-Cl-Ir bridges. Refluxing 2 with sodium acetate in tetrahydrofuran (thf) resulted in cyclometalation of the bidentate HC^N^C ligand and formation of trinuclear [(C^N^C)(cod)IrHgIr(cod)Cl2] (3). On the other hand, refluxing [Ir(cod)Cl]2 with 1 and sodium acetate in thf yielded [Ir(C^N^C)(cod)(HgCl)] (4). Chlorination of 4 with PhICl2 gave [Ir(C^N^C)(cod)Cl]·HgCl2 (5·HgCl2) that reacted with tricyclohexylphosphine to yield Hg-free [Ir(C^N^C)(cod)Cl] (5). Chloride abstraction of 5 with silver(i) triflate (AgOTf) gave [Ir(C^N^C)(cod)(H2O)](OTf) (6) that can catalyze the cyclopropanation of styrene with ethyl diazoacetate. Reaction of 1 and [Ir(CO)2Cl(py)] (py = pyridine) with sodium acetate in refluxing thf afforded [Ir(C^N^C)(HgCl)(py)(CO)] (7), in which the carbonyl ligand is coplanar with the C^N^C ligand. On the other hand, refluxing 1 with (PPh4)[Ir(CO)2Cl2] and sodium acetate in acetonitrile gave [Ir(C^N^C)(κ2C,N-HC^N^C)(CO)] (8), the carbonyl ligand of which is trans to the pyridyl ring of the bidentate HC^N^C ligand. Upon irradiation with UV light 8 in thf was isomerized to 8', in which the carbonyl is trans to a phenyl group of the bidentate HC^N^C ligand. The isomer pair 8 and 8' exhibited emission at 548 and 514 nm in EtOH/MeOH at 77 K with lifetime of 84.0 and 64.6 μs, respectively. Protonation of 8 with p-toluenesulfonic acid (TsOH) afforded the bis(bidentate) tosylate complex [Ir(κ2C,N-HC^N^C)2(CO)(OTs)] (9) that could be reconverted to 8 upon treatment with sodium acetate. The electrochemistry of the Ir(C^N^C) complexes has been studied using cyclic voltammetry. Reaction of [Ir(PPh3)3Cl] with 1 and sodium acetate in refluxing thf led to isolation of the previously reported compound [Ir(κ2P,C-C6H4PPh2)2(PPh3)Cl] (10). The crystal structures of 2-5, 8, 8', 9 and 10 have been determined.
Collapse
Affiliation(s)
- Wai-Man Cheung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Man-Chun Chong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Herman H-Y Sung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Shun-Cheung Cheng
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Ian D Williams
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Chi-Chiu Ko
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Wa-Hung Leung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
14
|
Choi J, Ahn M, Lee JH, Ahn DS, Ki H, Oh I, Ahn CW, Choi EH, Lee Y, Lee S, Kim J, Cho DW, Wee KR, Ihee H. Ultrafast excited state relaxation dynamics in a heteroleptic Ir( iii) complex, fac-Ir(ppy) 2(ppz), revealed by femtosecond X-ray transient absorption spectroscopy. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01510e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The experimental and calculation results demonstrate that the 3MLppzCT state generated by the spin-forbidden transition rapidly relaxes to 3MLppyCT through internal conversion process with a time constant of ∼450 fs.
Collapse
|
15
|
Pinter P, Soellner J, Strassner T. Heteroleptic Cyclometalated NHC Iridium(III) complex with a bulky acetylacetonate: Photophysics of an unexplored class of compounds. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Soupart A, Alary F, Heully JL, Elliott PI, Dixon IM. Recent progress in ligand photorelease reaction mechanisms: Theoretical insights focusing on Ru(II) 3MC states. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213184] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
On the Possible Coordination on a 3MC State Itself? Mechanistic Investigation Using DFT-Based Methods. INORGANICS 2020. [DOI: 10.3390/inorganics8020015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Understanding light-induced ligand exchange processes is key to the design of efficient light-releasing prodrugs or photochemically driven functional molecules. Previous mechanistic investigations had highlighted the pivotal role of metal-centered (MC) excited states in the initial ligand loss step. The question remains whether they are equally important in the subsequent ligand capture step. This article reports the mechanistic study of direct acetonitrile coordination onto a 3MC state of [Ru(bpy)3]2+, leading to [Ru(bpy)2(κ1-bpy)(NCMe)]2+ in a 3MLCT (metal-to-ligand charge transfer) state. Coordination of MeCN is indeed accompanied by the decoordination of one pyridine ring of a bpy ligand. As estimated from Nudged Elastic Band calculations, the energy barrier along the minimum energy path is 20 kcal/mol. Interestingly, the orbital analysis conducted along the reaction path has shown that creation of the metallic vacancy can be achieved by reverting the energetic ordering of key dσ* and bpy-based π* orbitals, resulting in the change of electronic configuration from 3MC to 3MLCT. The approach of the NCMe lone pair contributes to destabilizing the dσ* orbital by electrostatic repulsion.
Collapse
|
18
|
Föller J, Friese DH, Riese S, Kaminski JM, Metz S, Schmidt D, Würthner F, Lambert C, Marian CM. On the photophysical properties of Ir III, Pt II, and Pd II (phenylpyrazole) (phenyldipyrrin) complexes. Phys Chem Chem Phys 2020; 22:3217-3233. [PMID: 31993597 DOI: 10.1039/c9cp05603c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The absorption and emission characteristics of (ppz)2(dipy)IrIII, (ppz)(dipy)PtII and (ppz)(dipy)PdII, where ppz stands for phenylpyrazole and dipy for a phenyl meso-substituted dipyrrin ligand, have been investigated by means of combined density functional theory and multireference configuration interaction including scalar relativistic and spin-orbit coupling effects. These results were compared with experimental spectra. The complexes exhibit a high density of low-lying electronically excited states originating from ligand-centered (LC) and metal-to-ligand charge transfer (MLCT) states involving the dipyrrin ligand. In addition, metal-centered (MC) states are found to be low-lying in the Pd complex. In all three cases, the first strong absorption band and the phosphorescence emission band stem from LC excitations on the dipyrrin ligand with small MLCT contributions. The MLCT states show more pronounced relaxation effects than the LC states, with the consequence that the first excited state with predominant singlet multiplicity is of SMLCT/LC type in the heavier Ir and Pt complexes. Substantial spin-orbit coupling between SMLCT/LC and TLC enables fast and efficient intersystem crossing (ISC) and a high triplet quantum yield. Phosphorescence rate constants are rather small in accord with the dominant LC character of the transitions. Out-of-plane distortion promotes nonradiative decay of the excited state population via the MC states thus explaining the lower phosphorescence quantum yield of the Pt complex. The spectral properties of the Pd complex are different in many aspects. Optimization of the S1 state yields a dipyrrin intraligand charge transfer (ILCT) state with highly distorted nuclear arrangement in the butterfly conformers leading to nonradiative deactivation. In contrast, the primarily excited SLC state and the SMLCT/LC state of the twist conformer have nearly equal adiabatic excitation energies. The lack of a driving force toward the SMLCT/LC minimum, the high fluorescence rate constant of the bright SLC state and its moderately efficient ISC to the triplet manifold explain the experimentally observed dual emission of the Pd complex at room temperature.
Collapse
Affiliation(s)
- Jelena Föller
- Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Scattergood PA, Ranieri AM, Charalambou L, Comia A, Ross DAW, Rice CR, Hardman SJO, Heully JL, Dixon IM, Massi M, Alary F, Elliott PIP. Unravelling the Mechanism of Excited-State Interligand Energy Transfer and the Engineering of Dual Emission in [Ir(C ∧N) 2(N ∧N)] + Complexes. Inorg Chem 2020; 59:1785-1803. [PMID: 31934759 DOI: 10.1021/acs.inorgchem.9b03003] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fundamental insights into the mechanism of triplet-excited-state interligand energy transfer dynamics and the origin of dual emission for phosphorescent iridium(III) complexes are presented. The complexes [Ir(C∧N)2(N∧N)]+ (HC∧N = 2-phenylpyridine (1a-c), 2-(2,4-difluorophenyl)pyridine (2a-c), 1-benzyl-4-phenyl-1,2,3-triazole (3a-c); N∧N = 1-benzyl-4-(pyrid-2-yl)-1,2,3-triazole (pytz, a), 1-benzyl-4-(pyrimidin-2-yl)-1,2,3-triazole (pymtz, b), 1-benzyl-4-(pyrazin-2-yl)-1,2,3-triazole (pyztz, c)) are phosphorescent in room-temperature fluid solutions from triplet metal-to-ligand charge transfer (3MLCT) states admixed with either ligand-centered (3LC) (1a, 2a, and 2b) or ligand-to-ligand charge transfer (3LL'CT) character (1c, 2c, and 3a-c). Particularly striking is the observation that pyrimidine-based complex 1b exhibits dual emission from both 3MLCT/3LC and 3MLCT/3LL'CT states. At 77 K, the 3MLCT/3LL'CT component is lost from the photoluminescence spectra of 1b, with emission exclusively arising from its 3MLCT/3LC state, while for 2c switching from 3MLCT/3LL'CT- to 3MLCT/3LC-based emission is observed. Femtosecond transient absorption data reveal distinct spectral signatures characteristic of the population of 3MLCT/3LC states for 1a, 2a, and 2b which persist throughout the 3 ns time frame of the experiment. These 3MLCT/3LC state signatures are apparent in the transient absorption spectra for 1c and 2c immediately following photoexcitation but rapidly evolve to yield spectral profiles characteristic of their 3MLCT/3LL'CT states. Transient data for 1b reveals intermediate behavior: the spectral features of the initially populated 3MLCT/3LC state also undergo rapid evolution, although to a lesser extent than that observed for 1c and 2c, behavior assigned to the equilibration of the 3MLCT/3LC and 3MLCT/3LL'CT states. Density functional theory (DFT) calculations enabled minima to be optimized for both 3MLCT/3LC and 3MLCT/3LL'CT states of 1a-c and 2a-c. Indeed, two distinct 3MLCT/3LC minima were optimized for 1a, 1b, 2a, and 2b distinguished by upon which of the two C∧N ligands the excited electron resides. The 3MLCT/3LC and 3MLCT/3LL'CT states for 1b are very close in energy, in excellent agreement with experimental data demonstrating dual emission. Calculated vibrationally resolved emission spectra (VRES) for the complexes are in excellent agreement with experimental data, with the overlay of spectral maxima arising from emission from the 3MLCT/3LC and 3MLCT/3LL'CT states of 1b convincingly reproducing the observed experimental spectral features. Analysis of the optimized excited-state geometries enable the key structural differences between the 3MLCT/3LC and 3MLCT/3LL'CT states of the complexes to be identified and quantified. The calculation of interconversion pathways between triplet excited states provides for the first time a through-space mechanism for a photoinduced interligand energy transfer process. Furthermore, examination of structural changes between the possible emitting triplet excited states reveals the key bond vibrations that mediate energy transfer between these states. This work therefore provides for the first time detailed mechanistic insights into the fundamental photophysical processes of this important class of complexes.
Collapse
Affiliation(s)
- Paul A Scattergood
- Department of Chemistry , University of Huddersfield , Huddersfield HD1 3DH , United Kingdom.,Centre for Functional Materials , University of Huddersfield , Huddersfield HD1 3DH , United Kingdom
| | - Anna M Ranieri
- School of Molecular and Life Sciences - Curtin Institute for Functional Materials and Interfaces , Curtin University , Building 500, Kent Street , Bentley , Western Australia 6845 , Australia
| | - Luke Charalambou
- Department of Chemistry , University of Huddersfield , Huddersfield HD1 3DH , United Kingdom
| | - Adrian Comia
- Department of Chemistry , University of Huddersfield , Huddersfield HD1 3DH , United Kingdom
| | - Daniel A W Ross
- Department of Chemistry , University of Huddersfield , Huddersfield HD1 3DH , United Kingdom
| | - Craig R Rice
- Department of Chemistry , University of Huddersfield , Huddersfield HD1 3DH , United Kingdom
| | - Samantha J O Hardman
- Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , United Kingdom
| | - Jean-Louis Heully
- Laboratoire de Chimie et Physique Quantiques , UMR 5626 CNRS/Université Toulouse 3 - Paul Sabatier, Université de Toulouse , 118 route de Narbonne , Toulouse 31062 , France
| | - Isabelle M Dixon
- Laboratoire de Chimie et Physique Quantiques , UMR 5626 CNRS/Université Toulouse 3 - Paul Sabatier, Université de Toulouse , 118 route de Narbonne , Toulouse 31062 , France
| | - Massimiliano Massi
- School of Molecular and Life Sciences - Curtin Institute for Functional Materials and Interfaces , Curtin University , Building 500, Kent Street , Bentley , Western Australia 6845 , Australia
| | - Fabienne Alary
- Laboratoire de Chimie et Physique Quantiques , UMR 5626 CNRS/Université Toulouse 3 - Paul Sabatier, Université de Toulouse , 118 route de Narbonne , Toulouse 31062 , France
| | - Paul I P Elliott
- Department of Chemistry , University of Huddersfield , Huddersfield HD1 3DH , United Kingdom.,Centre for Functional Materials , University of Huddersfield , Huddersfield HD1 3DH , United Kingdom
| |
Collapse
|
20
|
Fumanal M, Corminboeuf C, Smit B, Tavernelli I. Optical absorption properties of metal-organic frameworks: solid state versus molecular perspective. Phys Chem Chem Phys 2020; 22:19512-19521. [PMID: 32839805 DOI: 10.1039/d0cp03899g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The vast chemical space of metal and ligand combinations in Transition Metal Complexes (TMCs) gives rise to a rich variety of electronic excited states with local and non-local character such as intra-ligand (IL), metal-centered (MC), metal-to-ligand (MLCT) or ligand-to-metal charge-transfer (LMCT) states. Those features are equally found in metal organic frameworks (MOFs), defined as modular materials built from metal-nodes connected through organic-ligands. Because of the electronic and structural complexity of MOFs, the computational description of their excited states is a formidable challenge for which two different approaches have been usually followed: the solid state and the molecular perspective. The first consists in analysing the frontier electronic bands and crystal orbitals of the electronic ground state (GS) in periodic boundary conditions, while the latter points to an accurate computation of the excited states in representative clusters at the molecular level. Herein, we apply both approaches to evaluate the optical absorption properties of three experimentally reported Ti(iv) mononuclear MOFs with in silico metal substitutions with Zn(ii), Cd(ii), Fe(ii), Ru(ii) and Zr(iv) ions, thus covering d10, d6 and d0 electronic configurations of 1st and 2nd row TMCs in MOFs. Our analysis captures the main electronic features attributed to these systems while we discuss the main advantages and drawbacks of both approximations.
Collapse
Affiliation(s)
- Maria Fumanal
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, EPFL, CH-1015 Lausanne, Switzerland.
| | - Clémence Corminboeuf
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, EPFL, CH-1015 Lausanne, Switzerland.
| | - Berend Smit
- Laboratory of Molecular Simulation, Institut des Sciences et Ingénierie Chimiques, Valais, EPFL, Rue de l'Industrie 17, CH-1951, Sion, Switzerland
| | - Ivano Tavernelli
- IBM Research Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| |
Collapse
|
21
|
Pinter P, Soellner J, Strassner T. Sky-Blue Triplet Emitters with Cyclometalated Imidazopyrazine-Based NHC-Ligands and Aromatic Bulky Acetylacetonates. Chemistry 2019; 25:14495-14499. [PMID: 31596521 DOI: 10.1002/chem.201903074] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/01/2019] [Indexed: 01/27/2023]
Abstract
Platinum(II) complexes with an N-heterocyclic carbene and a cyclometalating phenyl ligand (C^C*) are excellent candidates as efficient blue triplet emitters for OLED applications. The electronic and photophysical properties of these complexes can be fine-tuned with the objective to increase the quantum yields and lower the phosphorescence decay times. We found that platinum complexes with an imidazopyrazine C^C* ligand and bulky acetylacetonates are sky-blue triplet emitters, characterised by an almost unitary quantum yield and short phosphorescence decay times.
Collapse
Affiliation(s)
- Piermaria Pinter
- Physikalische Organische Chemie, Technische Universität Dresden, 01069, Dresden, Germany
| | - Johannes Soellner
- Physikalische Organische Chemie, Technische Universität Dresden, 01069, Dresden, Germany
| | - Thomas Strassner
- Physikalische Organische Chemie, Technische Universität Dresden, 01069, Dresden, Germany
| |
Collapse
|
22
|
Computational Assessment of MLCT versus MC Stabilities in First‐to‐Third‐Row d
6
Pseudo‐Octahedral Transition Metal Complexes. J Comput Chem 2019; 40:2377-2390. [DOI: 10.1002/jcc.26014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 11/07/2022]
|
23
|
Francés‐Monerris A, Gros PC, Assfeld X, Monari A, Pastore M. Toward Luminescent Iron Complexes: Unravelling the Photophysics by Computing Potential Energy Surfaces. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900100] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Antonio Francés‐Monerris
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| | - Philippe C. Gros
- Laboratoire Lorrain de Chimie Moléculaire (L2CM)Université de Lorraine, CNRS 54000 Nancy France
| | - Xavier Assfeld
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| | - Antonio Monari
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| | - Mariachiara Pastore
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| |
Collapse
|
24
|
Affiliation(s)
- Daniel Escudero
- Department of ChemistryKU Leuven Celestijnenlaan 200F B-3001 Leuven Belgium
| |
Collapse
|
25
|
Yun BS, Kim JH, Kim SY, Son HJ, Cho DW, Kang SO. Photophysical properties of structural isomers of homoleptic Ir-complexes derived from xylenyl-substituted N-heterocyclic carbene ligands. Phys Chem Chem Phys 2019; 21:7155-7164. [DOI: 10.1039/c9cp00553f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The xylenyl substituent causes a structural distortion in the excited triplet state, which is the most influential deactivation pathway to reduce the emission intensity.
Collapse
Affiliation(s)
- Bo-Sun Yun
- Department of Advanced Materials Chemistry
- Korea University
- Sejong
- South Korea
| | - Jin-Hyoung Kim
- Department of Advanced Materials Chemistry
- Korea University
- Sejong
- South Korea
| | - So-Yoen Kim
- Department of Advanced Materials Chemistry
- Korea University
- Sejong
- South Korea
| | - Ho-Jin Son
- Department of Advanced Materials Chemistry
- Korea University
- Sejong
- South Korea
| | - Dae Won Cho
- Department of Advanced Materials Chemistry
- Korea University
- Sejong
- South Korea
- Center for Photovoltaic Materials
| | - Sang Ook Kang
- Department of Advanced Materials Chemistry
- Korea University
- Sejong
- South Korea
| |
Collapse
|