1
|
Jornet-Mollá V, Rodríguez-Tarrazó MI, Dolz-Lozano MJ, Giménez-Saiz C, Romero FM. Hydrogen-bonded assemblies of iron(II) spin crossover complexes. Dalton Trans 2024; 53:7848-7856. [PMID: 38625687 DOI: 10.1039/d4dt00579a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The paper reports on the synthesis, crystal structure, thermal and magnetic properties of spin crossover (SCO) salts containing the [Fe(bpp)2]2+ cation (bpp = 2,6-bis(pyrazol-3-yl)pyridine) and different rigid polycarboxylate anions, such as anthracene-9,10-dicarboxylate (ADC), benzene-1,3,5-tricarboxylate (BTC) and biphenyl-4,4'-dicarboxylate (BPDC). Compound [Fe(bpp)2](ADC)·9H2O (1) shows a porous hydrogen-bonded structure with water molecules sitting in the channels. It contains low-spin (LS) Fe2+ cations that undergo crossover to the high-spin (HS) state upon dehydration. Anhydrous 1 remains HS on cooling at low temperatures. A similar magnetic behaviour is obtained for the partially protonated BTC salt [Fe(bpp)2](HBTC)·5H2O (2), showing a spin change concomitant with dehydration to a HS phase that undergoes gradual and partial SCO on cooling, affecting 25% of the Fe2+ cations. Instead, the BPDC salt [Fe(bpp)2](BPDC)·5H2O (3) has a ground HS state in its fully hydrated form.
Collapse
Affiliation(s)
- Verónica Jornet-Mollá
- Departament de Química Inorgànica, Universitat de València, C/Dr. Moliner, 50, E-46100 Burjassot, Spain.
| | - Marina I Rodríguez-Tarrazó
- Departament de Química Inorgànica, Universitat de València, C/Dr. Moliner, 50, E-46100 Burjassot, Spain.
| | - Miquel J Dolz-Lozano
- Departament de Química Inorgànica, Universitat de València, C/Dr. Moliner, 50, E-46100 Burjassot, Spain.
| | - Carlos Giménez-Saiz
- Departament de Química Inorgànica, Universitat de València, C/Dr. Moliner, 50, E-46100 Burjassot, Spain.
| | - Francisco M Romero
- Departament de Química Inorgànica, Universitat de València, C/Dr. Moliner, 50, E-46100 Burjassot, Spain.
| |
Collapse
|
2
|
Kulmaczewski R, Armstrong IT, Catchpole P, Ratcliffe ESJ, Vasili HB, Warriner SL, Cespedes O, Halcrow MA. Di-Iron(II) [2+2] Helicates of Bis-(Dipyrazolylpyridine) Ligands: The Influence of the Ligand Linker Group on Spin State Properties. Chemistry 2023; 29:e202202578. [PMID: 36382594 PMCID: PMC10108139 DOI: 10.1002/chem.202202578] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022]
Abstract
Four bis[2-{pyrazol-1-yl}-6-{pyrazol-3-yl}pyridine] ligands have been synthesized, with butane-1,4-diyl (L1 ), pyrid-2,6-diyl (L2 ), benzene-1,2-dimethylenyl (L3 ) and propane-1,3-diyl (L4 ) linkers between the tridentate metal-binding domains. L1 and L2 form [Fe2 (μ-L)2 ]X4 (X- =BF4 - or ClO4 - ) helicate complexes when treated with the appropriate iron(II) precursor. Solvate crystals of [Fe2 (μ-L1 )2 ][BF4 ]4 exhibit three different helicate conformations, which differ in the torsions of their butanediyl linker groups. The solvates exhibit gradual thermal spin-crossover, with examples of stepwise switching and partial spin-crossover to a low-temperature mixed-spin form. Salts of [Fe2 (μ-L2 )2 ]4+ are high-spin, which reflects their highly twisted iron coordination geometry. The composition and dynamics of assembly structures formed by iron(II) with L1 -L3 vary with the ligand linker group, by mass spectrometry and 1 H NMR spectroscopy. Gas-phase DFT calculations imply the butanediyl linker conformation in [Fe2 (μ-L1 )2 ]4+ influences its spin state properties, but show anomalies attributed to intramolecular electrostatic repulsion between the iron atoms.
Collapse
Affiliation(s)
| | | | - Pip Catchpole
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
| | | | - Hari Babu Vasili
- School of Physics and Astronomy W. H. Bragg Building, University of LeedsLeedsLS2 9JTUK
| | | | - Oscar Cespedes
- School of Physics and Astronomy W. H. Bragg Building, University of LeedsLeedsLS2 9JTUK
| | | |
Collapse
|
3
|
Guo Z, You M, Deng YF, Liu Q, Meng YS, Pikramenou Z, Zhang YZ. An azido-bridged [FeII4] grid-like molecule showing spin crossover behaviour. Dalton Trans 2021; 50:14303-14308. [PMID: 34554167 DOI: 10.1039/d1dt01908b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The supramolecular self-assembly synthetic strategy provides a valid tool to obtain polynuclear Fe(II) complexes having effective communication between the metal centres and distinct spin crossover behaviour. Despite the great success in constructing various magnetic molecules, progress has not been made in SCO complexes based on azido bridges. In this article, the coordination-driven supramolecular assembly based on 3,6-substituted pyridazine and azide is presented to afford two Fe(II) grid-like complexes: [(L)4FeII4(N3)4][BPh4]4·sol (1, L = 3,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)pyridazine and 2, L = 3,6-di(pyridin-2-yl)pyridazine). The substitution of pyridinyl groups in 2 instead of pyrazolyl ones in 1 led to the only example exhibiting spin-crossover behaviour (T1/2 = 230 K) among the azido-bridged complexes. In addition, a temperature-dependent photoluminescence study of 2 demonstrates a visible synergetic effect between the SCO event and the luminescence.
Collapse
Affiliation(s)
- Zhilin Guo
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China. .,School of Chemistry, The University of Birmingham, Edgbaston B15 2TT, UK.
| | - Maolin You
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China. .,Department of Chemistry, National University of Singapore, Science Drive 3, Singapore 117543
| | - Yi-Fei Deng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
| | - Qiang Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd, Dalian 116024, P. R. China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd, Dalian 116024, P. R. China
| | - Zoe Pikramenou
- School of Chemistry, The University of Birmingham, Edgbaston B15 2TT, UK.
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
| |
Collapse
|
4
|
Shiga T, Tachibana M, Sagayama H, Kumai R, Newton GN, Oshio H, Nihei M. A ring of grids: a giant spin-crossover cluster. Chem Commun (Camb) 2021; 57:10162-10165. [PMID: 34516598 DOI: 10.1039/d1cc04346c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mononuclear and icosanuclear spin-crossover complexes, [FeII(HL)2](BF4)2 (1) and [FeII20(L)24](BF4)16 (2), were synthesized using an asymmetric multidentate ligand (HL). 1 has a bis-chelate structure with two protonated ligands, while 2 has a ring-shape structure comprising four [2 × 2] grid moieties and four mononuclear units.
Collapse
Affiliation(s)
- Takuya Shiga
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan.
| | - Minami Tachibana
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan.
| | - Hajime Sagayama
- Photon Factory and Condensed Matter Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan
| | - Reiji Kumai
- Photon Factory and Condensed Matter Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan
| | - Graham N Newton
- GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Nottingham, NG7 2TU, UK
| | - Hiroki Oshio
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan. .,State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., 116024 Dalian, China
| | - Masayuki Nihei
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan.
| |
Collapse
|
5
|
Hardy M, Tessarolo J, Holstein JJ, Struch N, Wagner N, Weisbarth R, Engeser M, Beck J, Horiuchi S, Clever GH, Lützen A. A Family of Heterobimetallic Cubes Shows Spin-Crossover Behaviour Near Room Temperature. Angew Chem Int Ed Engl 2021; 60:22562-22569. [PMID: 34382295 PMCID: PMC8519129 DOI: 10.1002/anie.202108792] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/04/2021] [Indexed: 11/08/2022]
Abstract
Using 4-(4'-pyridyl)aniline as a simple organic building block in combination with three different aldehyde components together with metal(II) salts gave three different Fe8 Pt6 -cubes and their corresponding Zn8 Pt6 analogues by employing the subcomponent self-assembly approach. Whereas the use of zinc(II) salts gave rise to diamagnetic cages, iron(II) salts yielded metallosupramolecular cages that show spin-crossover behaviour in solution. The spin-transition temperature T1/2 depends on the incorporated aldehyde component, giving a construction kit for the deliberate synthesis of spin-crossover compounds with tailored transition properties. Incorporation of 4-thiazolecarbaldehyde or N-methyl-2-imidazole-carbaldehyde yielded cages that undergo spin-crossover around room temperature whereas the cage obtained using 1H-4-imidazolecarbaldehyde shows a spin-transition at low temperatures. Three new structures were characterized by synchrotron X-ray diffraction and all structures were characterized by mass spectrometry, NMR and UV/Vis spectroscopy.
Collapse
Affiliation(s)
- Matthias Hardy
- Rheinische Friedrich-Wilhelms-Universität BonnKekulé-Institut für Organische Chemie und BiochemieGerhard-Domagk-Str. 153121BonnGermany
- Current address: BASF SESpeyerer Str. 267117LimburgerhofGermany
| | - Jacopo Tessarolo
- Technische Universität DortmundOtto-Hahn-Str. 644227DortmundGermany
| | | | - Niklas Struch
- Rheinische Friedrich-Wilhelms-Universität BonnKekulé-Institut für Organische Chemie und BiochemieGerhard-Domagk-Str. 153121BonnGermany
- Current address: Arlanxeo (Deutschland) GmbHAlte Heerstraße 241540DormagenGermany
| | - Norbert Wagner
- Rheinische Friedrich-Wilhelms-Universität BonnInstitut für Anorganische ChemieGerhard-Domagk-Str. 153121BonnGermany
| | - Ralf Weisbarth
- Rheinische Friedrich-Wilhelms-Universität BonnInstitut für Anorganische ChemieGerhard-Domagk-Str. 153121BonnGermany
| | - Marianne Engeser
- Rheinische Friedrich-Wilhelms-Universität BonnKekulé-Institut für Organische Chemie und BiochemieGerhard-Domagk-Str. 153121BonnGermany
| | - Johannes Beck
- Rheinische Friedrich-Wilhelms-Universität BonnInstitut für Anorganische ChemieGerhard-Domagk-Str. 153121BonnGermany
| | - Shinnosuke Horiuchi
- Technische Universität DortmundOtto-Hahn-Str. 644227DortmundGermany
- Division of Chemistry and Materials ScienceGraduate School of EngineeringNagasaki University, Bunkyo-machiNagasaki852-8521Japan
| | - Guido H. Clever
- Technische Universität DortmundOtto-Hahn-Str. 644227DortmundGermany
| | - Arne Lützen
- Rheinische Friedrich-Wilhelms-Universität BonnKekulé-Institut für Organische Chemie und BiochemieGerhard-Domagk-Str. 153121BonnGermany
| |
Collapse
|
6
|
Hardy M, Tessarolo J, Holstein JJ, Struch N, Wagner N, Weisbarth R, Engeser M, Beck J, Horiuchi S, Clever GH, Lützen A. Eine Familie von Heterobimetallischen Würfeln zeigt Spin‐Crossover‐Verhalten nahe Raumtemperatur. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Matthias Hardy
- Rheinische Friedrich-Wilhelms-Universität Bonn Kekulé-Institut für Organische Chemie und Biochemie Gerhard-Domagk-Str. 1 53121 Bonn Deutschland
- Derzeitige Adresse: BASF SE Speyerer Str. 2 67117 Limburgerhof Deutschland
| | - Jacopo Tessarolo
- Technische Universität Dortmund Otto-Hahn-Str. 6 44227 Dortmund Deutschland
| | - Julian J. Holstein
- Technische Universität Dortmund Otto-Hahn-Str. 6 44227 Dortmund Deutschland
| | - Niklas Struch
- Rheinische Friedrich-Wilhelms-Universität Bonn Kekulé-Institut für Organische Chemie und Biochemie Gerhard-Domagk-Str. 1 53121 Bonn Deutschland
- Derzeitige Adresse: Arlanxeo (Deutschland) GmbH Alte Heerstraße 2 41540 Dormagen Deutschland
| | - Norbert Wagner
- Rheinische Friedrich-Wilhelms-Universität Bonn Institut für Anorganische Chemie Gerhard-Domagk-Str. 1 53121 Bonn Deutschland
| | - Ralf Weisbarth
- Rheinische Friedrich-Wilhelms-Universität Bonn Institut für Anorganische Chemie Gerhard-Domagk-Str. 1 53121 Bonn Deutschland
| | - Marianne Engeser
- Rheinische Friedrich-Wilhelms-Universität Bonn Kekulé-Institut für Organische Chemie und Biochemie Gerhard-Domagk-Str. 1 53121 Bonn Deutschland
| | - Johannes Beck
- Rheinische Friedrich-Wilhelms-Universität Bonn Institut für Anorganische Chemie Gerhard-Domagk-Str. 1 53121 Bonn Deutschland
| | - Shinnosuke Horiuchi
- Technische Universität Dortmund Otto-Hahn-Str. 6 44227 Dortmund Deutschland
- Division of Chemistry and Materials Science Graduate School of Engineering Nagasaki University, Bunkyo-machi Nagasaki 852-8521 Japan
| | - Guido H. Clever
- Technische Universität Dortmund Otto-Hahn-Str. 6 44227 Dortmund Deutschland
| | - Arne Lützen
- Rheinische Friedrich-Wilhelms-Universität Bonn Kekulé-Institut für Organische Chemie und Biochemie Gerhard-Domagk-Str. 1 53121 Bonn Deutschland
| |
Collapse
|
7
|
Jornet-Mollá V, Giménez-Saiz C, Vieira BJC, Waerenborgh JC, Romero FM. Temperature dependence of desolvation effects in hydrogen-bonded spin crossover complexes. Dalton Trans 2021; 50:2536-2544. [PMID: 33522546 DOI: 10.1039/d0dt03986a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The synthesis, crystal structure and (photo)magnetic properties of the anhydrous spin crossover salt of formula [Fe(bpp)2](C6H8O4) (1) (bpp = 2,6-bis(pyrazol-3-yl)pyridine; C6H8O4 = adipate dianion), obtained by desolvation at 400 K of the original tetrahydrate in a single-crystal-to-single-crystal (SC-SC) transformation, are reported. This work offers a comparison between this compound and the previously reported hydrated material ([Fe(bpp)2](C6H8O4)·4H2O, 1·4H2O), highlighting the significance of the thermal conditions used in the dehydration-rehydration processes. In both compounds, a hydrogen-bonded network between iron(ii) complexes and adipate anions is observed. The original tetrahydrate (1·4H2O) is low-spin and desolvation at 450 K triggers a low-spin (LS) to high-spin (HS) transition to an amorphous phase that remains stable over the whole temperature range of study. Surprisingly, the dehydrated compound at 400 K (1) keeps the crystallinity, undergoes a partial spin crossover (T1/2 = 180 K) and a quantitative LS to HS photomagnetic conversion at low temperatures, with a T(LIESST) value of 61 K.
Collapse
Affiliation(s)
- Verónica Jornet-Mollá
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | | | | | | | | |
Collapse
|
8
|
Pan Y, Meng YS, Liu Q, Gao WQ, Liu CH, Liu T, Zhu YY. Construction of SCO-Active Fe(II) Mononuclear Complexes from the Thio-pybox Ligand. Inorg Chem 2020; 59:7398-7407. [PMID: 32401025 DOI: 10.1021/acs.inorgchem.9b03506] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of new spin-crossover complexes provides novel promising switching materials with significant potential at the molecular level. Ter-imine-type molecules represent one of the important classes of ligands in creating SCO-active complexes. Herein we report a family of mononuclear Fe(II) SCO-active compounds constructed from a new type of ter-imine ligand named the thio-pybox ligand (2,6-bis(4,4-dimethyl-4,5-dihydrothiazol-2-yl)pyridine, L1). Through the variation of counteranions, some cases display complete SCO and with T1/2 near ambient temperature. Among them, annealed [FeII(L1)2](ClO4)2 [1(ClO4)] shows T1/2↓ and T1/2↑ as 319 and 349 K, respectively. The wide thermal hysteresis of ΔT = 30 K originated from the weak interaction between complex cations and counteranions in the crystal lattice. Impressively, its high-spin population can be increased considerably by annealing at high temperature. The metastable high-spin phase is stable in the successive magnetic measurements and would gradually relax to its initial state with high population of low-spin configuration at ambient temperature. In acetonitrile-diluted solution, 1(ClO4) still maintains SCO with an estimated T1/2 at 240 K. Differential scanning calorimetry discloses the structural phase at around 355 K in the first heating process and the increase in the high-spin population concomitant with annealing was also corroborated by 57Fe Mössbauer measurements. Additionally, the influences on SCO by counteranion and ligand structure are investigated, which show that the fine tuning of complex structures can affect the behavior of the spin state significantly. Finally, magneto-structural correlation studies were performed on the structures of 1(ClO4) and its oxygen analogue at multiple temperatures. The analyses of some structural parameters, including terminal N···N donor separation, bite angle, patulous angle, and the root mean squared deviation indicate that the replacement of the oxygen atom with a sulfur atom can effectively improve the flexibility and release the steric strain and thus tune the SCO toward ambient temperature. Our research demonstrates the rational design of the ligand can lead to new SCO-active compounds with high performance.
Collapse
Affiliation(s)
- Yao Pan
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Qiang Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Wan-Qing Gao
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, China
| | - Chun-Hua Liu
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yuan-Yuan Zhu
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, China.,State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
9
|
Shiga T, Kumamaru R, Newton GN, Oshio H. Heteroleptic iron( ii) complexes with naphthoquinone-type ligands. Dalton Trans 2020; 49:1485-1491. [DOI: 10.1039/c9dt03946e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A series of heteroleptic mononuclear iron(ii) complexes with naphthoquinone-type ligands were synthesized, and their structures, magnetic behavior and spin states were investigated.
Collapse
Affiliation(s)
- Takuya Shiga
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba
- Japan
| | - Rina Kumamaru
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba
- Japan
| | - Graham N. Newton
- GSK Carbon Neutral Laboratories for Sustainable Chemistry
- The University of Nottingham
- Nottingham NG7 2GA
- UK
| | - Hiroki Oshio
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba
- Japan
- State Key Laboratory of Fine Chemicals
| |
Collapse
|
10
|
Mörtel M, Seller M, Heinemann FW, Khusniyarov MM. A valence tautomeric cobalt-dioxolene complex with an anchoring group for prospective chemical grafting to metal oxides. Dalton Trans 2020; 49:17532-17536. [PMID: 33300528 DOI: 10.1039/d0dt03771k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Here, we synthesized a valence tautomeric cobalt-dioxolene complex featuring a protected anchoring group. At room temperature, the complex reveals a nearly pure low-spin-Co(iii)-catecholate state in the solid state, but a nearly pure high-spin-Co(ii)-semiquinonate state in toluene solution. Thermal switchability of the complex in solution and in the solid state is investigated.
Collapse
Affiliation(s)
- Max Mörtel
- Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department of Chemistry and Pharmacy, Egerlandstr. 1, 91058, Erlangen, Germany.
| | | | | | | |
Collapse
|
11
|
Berdiell IC, Hochdörffer T, Desplanches C, Kulmaczewski R, Shahid N, Wolny JA, Warriner SL, Cespedes O, Schünemann V, Chastanet G, Halcrow MA. Supramolecular Iron Metallocubanes Exhibiting Site-Selective Thermal and Light-Induced Spin-Crossover. J Am Chem Soc 2019; 141:18759-18770. [DOI: 10.1021/jacs.9b08862] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Izar Capel Berdiell
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Tim Hochdörffer
- Department of Physics, Technical University of Kaiserslautern, Erwin Schrödinger Straße 46, D-67663 Kaiserslautern, Germany
| | | | - Rafal Kulmaczewski
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Namrah Shahid
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Juliusz A. Wolny
- Department of Physics, Technical University of Kaiserslautern, Erwin Schrödinger Straße 46, D-67663 Kaiserslautern, Germany
| | - Stuart L. Warriner
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Oscar Cespedes
- School of Physics and Astronomy, EC Stoner Building, University of Leeds, Leeds LS2 9JT, U.K
| | - Volker Schünemann
- Department of Physics, Technical University of Kaiserslautern, Erwin Schrödinger Straße 46, D-67663 Kaiserslautern, Germany
| | | | - Malcolm A. Halcrow
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| |
Collapse
|
12
|
Zheng C, Jia S, Dong Y, Xu J, Sui H, Wang F, Li D. Symmetry Breaking and Two-Step Spin-Crossover Behavior in Two Cyano-Bridged Mixed-Valence {FeIII2(μ-CN)4FeII2} Clusters. Inorg Chem 2019; 58:14316-14324. [DOI: 10.1021/acs.inorgchem.9b00544] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chunyang Zheng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Institute for Advanced Materials, Hubei Normal University, Huangshi 435002, P. R. China
| | - Shuwen Jia
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yubao Dong
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Juping Xu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Huanhuan Sui
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Feng Wang
- College of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, P. R. China
| | - Dongfeng Li
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
13
|
Dragulescu-Andrasi A, Hietsoi O, Üngör Ö, Dunk PW, Stubbs V, Arroyave A, Kovnir K, Shatruk M. Dicyanometalates as Building Blocks for Multinuclear Iron(II) Spin-Crossover Complexes. Inorg Chem 2019; 58:11920-11926. [PMID: 31136155 DOI: 10.1021/acs.inorgchem.9b01121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A synthetic strategy featuring dicyanometalates [M(CN)2]- (M = Ag, Au) as N-coordinating ditopic linkers connecting partially blocked FeII centers has been employed to produce heterometallic hexanuclear complexes, which exhibit spin-crossover (SCO) behavior at the FeII sites. The reaction between tris(2-pyridylmethyl)amine (tpma)-capped FeII ions and [Ag(CN)2]- proceeded with partial decomposition of the dicyanoargentate and led to the formation of {[Fe(tpma)]4(μ-CN)2[μ-Ag(CN)2]2}(ClO4)4·3H2O (1), in which both [Ag(CN)2]- and CN- act as bridging ligands, and the opposite [Ag(CN)2]- bridges are engaged in a pronounced argentophilic d10-d10 interaction. In an analogous synthesis, the more stable [Au(CN)2]- species remained intact and furnished the complex {[Fe(tpma)]2[μ-Au2(CN)4]2} (2), which features two FeII centers bridged by two [Au2(CN)4]2- dimers. The use of S,S'-bis(2-pyridylmethyl)-1,2-thioethane (bpte) as a mixed-donor, N2S2-coordinating capping ligand yielded {[Fe(bpte)]2[μ-Au2(CN)4]2} (3), with a structure analogous to that of 2. Variable-temperature magnetic susceptibility measurements revealed that complexes 1-3 exhibit an onset of SCO above 350 K. Measurements above 400 K further confirmed the occurrence of a gradual spin-state conversion for complex 2.
Collapse
Affiliation(s)
- Alina Dragulescu-Andrasi
- Department of Chemistry and Biochemistry , Florida State University , 95 Chieftan Way , Tallahassee , Florida 32306 , United States
| | - Oleksandr Hietsoi
- Department of Chemistry and Biochemistry , Florida State University , 95 Chieftan Way , Tallahassee , Florida 32306 , United States
| | - Ökten Üngör
- Department of Chemistry and Biochemistry , Florida State University , 95 Chieftan Way , Tallahassee , Florida 32306 , United States
| | - Paul W Dunk
- Department of Chemistry and Biochemistry , Florida State University , 95 Chieftan Way , Tallahassee , Florida 32306 , United States
| | - Victoria Stubbs
- Department of Chemistry and Biochemistry , Florida State University , 95 Chieftan Way , Tallahassee , Florida 32306 , United States
| | - Alejandra Arroyave
- Department of Chemistry and Biochemistry , Florida State University , 95 Chieftan Way , Tallahassee , Florida 32306 , United States
| | - Kirill Kovnir
- Department of Chemistry and Biochemistry , Florida State University , 95 Chieftan Way , Tallahassee , Florida 32306 , United States
| | - Michael Shatruk
- Department of Chemistry and Biochemistry , Florida State University , 95 Chieftan Way , Tallahassee , Florida 32306 , United States
| |
Collapse
|
14
|
Lada ZG, Andrikopoulos KS, Chrissanthopoulos A, Perlepes SP, Voyiatzis GA. A Known Iron(II) Complex in Different Nanosized Particles: Variable-Temperature Raman Study of Its Spin-Crossover Behavior. Inorg Chem 2019; 58:5183-5195. [PMID: 30916940 DOI: 10.1021/acs.inorgchem.9b00279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The spin-crossover (SCO) polymorph B (complex 1) of the known compound [FeII{N(CN)2}2(abpt)2], where abpt is 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole, has been prepared in three different particle sizes averaging ∼300 (sample 1a), ∼80 (sample 1b), and ∼20 nm (sample 1c). Two independent octahedral molecules possessing Fe1 and Fe2 were found to be present in the crystal of B. Magnetostructural relationships had established that at room temperature both FeII sites are in the high-spin state (HS-HS), whereas a decrease in the temperature to 90 K induces the complete high-spin to low-spin conversion of the Fe1 site, with Fe2 remaining in the high-spin state (LS-HS). The three samples have been characterized by elemental analyses, ATR spectra, solution UV/vis spectra (to exclude resonance Raman effects) and powder X-ray diffraction patterns, while their morphological characteristics have been examined by scanning electron microscopy (SEM). The SCO behavior of the originally prepared sample 1a has been monitored in detail by variable-temperature Raman studies in the 300-80 K range using mainly low-frequency ν(Fe-N) and δ(NFeN) modes and the ν(C≡N) mode of the axial dicyanamido groups as spin-sensitive vibrations. The new peaks that appear in the low-temperature Raman spectra of the LS-HS form of the complex are reproduced in the calculated spectrum of the LS state of [FeII{N(CN)2}2(abpt)2]. The influence of the average particle size on the SCO properties of 1 has also been studied by variable-temperature Raman spectra. The studies indicate that, during the HS-HS → LS-HS transition, the latter form of the complex appears at higher temperatures for the smaller particles; the T1/2 shift accomplished by manipulating the particle size within a range of roughly 1 order of magnitude (300-20 nm) may be as high as ∼30 K. The SCO features of 1, as deduced from the Raman study, are in excellent agreement with those derived from a traditional variable-temperature magnetic susceptibility study, indicating the utility of the former.
Collapse
Affiliation(s)
- Zoi G Lada
- Institute of Chemical Engineering Sciences (ICE-HT) , Foundation for Research and Technology-Hellas (FORTH) , Platani, P.O. Box 1414, 26504 Patras , Greece.,Department of Chemistry , University of Patras , 26504 Patras , Greece
| | - Konstantinos S Andrikopoulos
- Institute of Chemical Engineering Sciences (ICE-HT) , Foundation for Research and Technology-Hellas (FORTH) , Platani, P.O. Box 1414, 26504 Patras , Greece
| | - Athanassios Chrissanthopoulos
- Laboratory of Inorganic Chemistry, Department of Chemistry , National and Kapodistrian University of Athens , Panepistimiopolis, 15771 Zografou, Athens , Greece
| | - Spyros P Perlepes
- Department of Chemistry , University of Patras , 26504 Patras , Greece
| | - George A Voyiatzis
- Institute of Chemical Engineering Sciences (ICE-HT) , Foundation for Research and Technology-Hellas (FORTH) , Platani, P.O. Box 1414, 26504 Patras , Greece
| |
Collapse
|