1
|
Zhang H, Guo J, Cao Y. Continuous selective conversion of methane to methanol over a Cu-KFI zeolite catalyst using a water-O 2 mixture as the oxygen source. Chem Commun (Camb) 2023; 60:228-231. [PMID: 38051661 DOI: 10.1039/d3cc05379b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The continuous catalytic oxidation of methane to methanol on a Cu-KFI zeolite using water-O2 mixture as the oxidant is reported. A high methanol space-time yield of 880.3 mmol molCu-1 h-1 with 83% selectivity is achieved at 450 °C. Isotopic labelling experiments show that both H2O and O2 provide the oxygen source in this catalytic methane-to-methanol conversion reaction.
Collapse
Affiliation(s)
- Hailong Zhang
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610064, PR China
| | - Jiaxiu Guo
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610064, PR China
| | - Yi Cao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| |
Collapse
|
2
|
Oda A, Aono K, Murata N, Murata K, Yasumoto M, Tsunoji N, Sawabe K, Satsuma A. Rational design of ZSM-5 zeolite containing a high concentration of single Fe sites capable of catalyzing the partial oxidation of methane with high turnover frequency. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01987b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We successfully synthesized a Fe/ZSM-5 catalyst enabling conversion of methane to C1 oxygenates in record yields, and demonstrated that the fraction of the single Fe cation, as well as the Al distribution, are the powerful activity descriptors.
Collapse
Affiliation(s)
- Akira Oda
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan
| | - Koshiro Aono
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Naoya Murata
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Kazumasa Murata
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Masazumi Yasumoto
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
| | - Nao Tsunoji
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
| | - Kyoichi Sawabe
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan
| | - Atsushi Satsuma
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan
| |
Collapse
|
3
|
Itoh S, Shinke T, Itoh M, Wada T, Morimoto Y, Yanagisawa S, Sugimoto H, Kubo M. Revisiting Alkane Hydroxylation with m-CPBA (mChloroperbenzoic Acid) Catalyzed by Nickel(II) Complexes. Chemistry 2021; 27:14730-14737. [PMID: 34402568 DOI: 10.1002/chem.202102532] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 11/09/2022]
Abstract
Mechanistic studies are performed on the alkane hydroxylation with m -CPBA ( m -chloroperbenzoic acid) catalyzed by nickel(II) complexes, Ni II (L). In the oxidation of cycloalkanes, Ni II (TPA) acts as an efficient catalyst with a high yield and a high alcohol selectivity. In the oxidation of adamantane, the tertiary carbon is predominantly oxidized. The reaction rate shows first-order dependence on [substrate] and [Ni II (L)] but is independent on [ m CPBA]; v obs = k 2 [substrate][ Ni II (L)]. The reaction exhibited a relatively large kinetic deuterium isotope effect ( KIE ) of 6.7, demonstrating that the hydrogen atom abstraction is involved in the rate-limiting step of the catalytic cycle. Furthermore, Ni II (L) supported by related tetradentate ligands exhibit apparently different catalytic activity, suggesting contribution of the Ni II (L) in the catalytic cycle. Based on the kinetic analysis and the significant effects of O 2 and CCl 4 on the product distribution pattern, possible contributions of (L)Ni II -O• and the acyloxyl radical as the reactive oxidants are discussed.
Collapse
Affiliation(s)
- Shinobu Itoh
- Osaka University, Graduate School of Engineering, 2-1 Yamadaoka, 565-0871, Suita, JAPAN
| | - Tomoya Shinke
- Osaka University School of Engineering Graduate School of Engineering: Osaka Daigaku Kogakubu Daigakuin Kogaku Kenkyuka, Applied Chemistry, JAPAN
| | - Mayu Itoh
- Osaka University School of Engineering Graduate School of Engineering: Osaka Daigaku Kogakubu Daigakuin Kogaku Kenkyuka, Applied Chemistry, JAPAN
| | - Takuma Wada
- Osaka University School of Engineering Graduate School of Engineering: Osaka Daigaku Kogakubu Daigakuin Kogaku Kenkyuka, Applied Chemistry, JAPAN
| | - Yuma Morimoto
- Osaka University School of Engineering Graduate School of Engineering: Osaka Daigaku Kogakubu Daigakuin Kogaku Kenkyuka, Applied Chemistry, JAPAN
| | | | - Hideki Sugimoto
- Osaka University School of Engineering Graduate School of Engineering: Osaka Daigaku Kogakubu Daigakuin Kogaku Kenkyuka, Applied Chemistry, JAPAN
| | - Minoru Kubo
- Graduate School of Science, Life Science, JAPAN
| |
Collapse
|
4
|
Amtawong J, Skjelstad BB, Handford RC, Suslick BA, Balcells D, Tilley TD. C-H Activation by RuCo 3O 4 Oxo Cubanes: Effects of Oxyl Radical Character and Metal-Metal Cooperativity. J Am Chem Soc 2021; 143:12108-12119. [PMID: 34318666 DOI: 10.1021/jacs.1c04069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
High-valent multimetallic-oxo/oxyl species have been implicated as intermediates in oxidative catalysis involving proton-coupled electron transfer (PCET) reactions, but the reactive nature of these oxo species has hindered the development of an in-depth understanding of their mechanisms and multimetallic character. The mechanism of C-H oxidation by previously reported RuCo3O4 cubane complexes bearing a terminal RuV-oxo ligand, with significant oxyl radical character, was investigated. The rate-determining step involves H atom abstraction (HAA) from an organic substrate to generate a Ru-OH species and a carbon-centered radical. Radical intermediates are subsequently trapped by another equivalent of the terminal oxo to afford isolable radical-trapped cubane complexes. Density functional theory (DFT) reveals a barrierless radical combination step that is more favorable than an oxygen-rebound mechanism by 12.3 kcal mol-1. This HAA reactivity to generate organic products is influenced by steric congestion and the C-H bond dissociation energy of the substrate. Tuning the electronic properties of the cubane (i.e., spin density localized on terminal oxo, basicity, and redox potential) by varying the donor ability of ligands at the Co sites modulates C-H activations by the RuV-oxo fragment and enables construction of structure-activity relationships. These results reveal a mechanistic pathway for C-H activation by high-valent metal-oxo species with oxyl radical character and provide insights into cooperative effects of multimetallic centers in tuning PCET reactivity.
Collapse
Affiliation(s)
- Jaruwan Amtawong
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Bastian Bjerkem Skjelstad
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Rex C Handford
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
| | - Benjamin A Suslick
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - David Balcells
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - T Don Tilley
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
5
|
Oda A, Kumagai J, Ohkubo T, Kuroda Y. A low-temperature oxyl transfer to carbon monoxide from the Zn II–oxyl site in a zeolite catalyst. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01112f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrated that the ZnII–oxyl bond specifically formed by the zeolite lattice ligation has the capability of transferring the oxyl to CO even at 150 K with the generation of a single ZnI˙ species.
Collapse
Affiliation(s)
- Akira Oda
- Precursory Research for Embryonic Science and Technology
- Japan Science and Technology Agency
- Saitama 332-0012
- Japan
- Department of Chemistry
| | - Jun Kumagai
- Institute of Materials and System for Sustainability
- Nagoya University
- Nagoya 464-8601
- Japan
| | - Takahiro Ohkubo
- Department of Chemistry
- Graduate School of Natural Science and Technology
- Okayama University
- Okayama 700-8530
- Japan
| | - Yasushige Kuroda
- Department of Chemistry
- Graduate School of Natural Science and Technology
- Okayama University
- Okayama 700-8530
- Japan
| |
Collapse
|
6
|
Oda A, Tanaka T, Sawabe K, Satsuma A. How to Constrain Metal-Oxyl Bonds on a Solid Surface? Lesson from Isovalent Zn(II)-Oxyl and Ga(III)-Oxyl Bonds Isolated in Zeolite Matrix. J Phys Chem Lett 2020; 11:9426-9431. [PMID: 33107740 DOI: 10.1021/acs.jpclett.0c02980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Isolation of the atomic O radical anion bound to a metal ion (metal-oxyl) on solid surfaces is highly desirable for an understanding of how we should design the surface structure for using oxyl as the reactive site. Owing to the analytical difficulty of oxyl, however, even identification of oxyl remains scarce. Herein, we report isovalent ZnII-oxyl and GaIII-oxyl bonds isolated in the zeolite matrix. Close similarities in reactivity, spectroscopic property, and bonding nature were observed between them, but their site requirements were entirely different; the former is generated at the monovalent ion-exchangeable site, whereas the latter at the divalent ion-exchangeable site. This study strongly suggests that tuning the polarization of the metal-oxygen bond using the charge-controlled lattice oxygens is a useful way to constrain surface metal-oxyl bonds.
Collapse
Affiliation(s)
- Akira Oda
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan
| | - Tomoyasu Tanaka
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Kyoichi Sawabe
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Atsushi Satsuma
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan
| |
Collapse
|
7
|
Kvande K, Pappas DK, Borfecchia E, Lomachenko KA. Advanced X‐ray Absorption Spectroscopy Analysis to Determine Structure‐Activity Relationships for Cu‐Zeolites in the Direct Conversion of Methane to Methanol. ChemCatChem 2020. [DOI: 10.1002/cctc.201902371] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Karoline Kvande
- Centre for Materials Science and Nanotechnology Department of Chemistry University of Oslo Sem Sælands vei 26 0371 Oslo Norway
| | - Dimitrios K. Pappas
- Centre for Materials Science and Nanotechnology Department of Chemistry University of Oslo Sem Sælands vei 26 0371 Oslo Norway
| | - Elisa Borfecchia
- Department of Chemistry, NIS Center and INSTM Reference Center University of Turin Via P. Giuria 7 10125 Turin Italy
| | - Kirill A. Lomachenko
- European Synchrotron Radiation Facility 71 Avenue des Martyrs, CS 40220 Grenoble Cedex 9 38043 France
| |
Collapse
|
8
|
Tran TH, Tran QT, Tran VT. Mechanism of the reaction of VB5+ cluster with methane from density functional theory calculations. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Abstract
Metal-oxyl (Mn+-O•) complexes having an oxyl radical ligand, which are electronically equivalent to well-known metal-oxo (M(n+1)+═O) complexes, are surveyed as a new category of metal-based oxidants. Detection and characterization of Mn+-O• species have been made in some cases, although proposals and characterization of the species are mostly done on the basis of density functional theory (DFT) calculations. The reactivity of Mn+-O• complexes will provide a way to achieve potentially difficult oxidative conversion of substrates. This Viewpoint will provide state-of-the-art knowledge on the Mn+-O• species in terms of the formation, characterization, and DFT-based proposals to shed light on the characteristics of the intriguing oxidatively active species.
Collapse
Affiliation(s)
- Yoshihiro Shimoyama
- Department of Chemistry, Faculty of Pure and Applied Sciences , University of Tsukuba , Tsukuba , Ibaraki 305-8571 , Japan.,Interdisciplinary Research Center for Catalytic Chemistry , National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba , Ibaraki 305-8565 , Japan
| | - Takahiko Kojima
- Department of Chemistry, Faculty of Pure and Applied Sciences , University of Tsukuba , Tsukuba , Ibaraki 305-8571 , Japan
| |
Collapse
|
10
|
Maeno Z, Yasumura S, Liu C, Toyao T, Kon K, Nakayama A, Hasegawa JY, Shimizu KI. Experimental and theoretical study of multinuclear indium–oxo clusters in CHA zeolite for CH4 activation at room temperature. Phys Chem Chem Phys 2019; 21:13415-13427. [DOI: 10.1039/c9cp01873e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The local structure of CHA-zeolite supported indium–oxo clusters and CH4 activation at room temperature were experimentally and theoretically studied.
Collapse
Affiliation(s)
- Zen Maeno
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
| | | | - Chong Liu
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Takashi Toyao
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
- Elements Strategy Initiative for Catalysts and Batteries
| | - Kenichi Kon
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Akira Nakayama
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
- JST
| | - Jun-ya Hasegawa
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Ken-ichi Shimizu
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
- Elements Strategy Initiative for Catalysts and Batteries
| |
Collapse
|
11
|
Mahyuddin MH, Shiota Y, Yoshizawa K. Methane selective oxidation to methanol by metal-exchanged zeolites: a review of active sites and their reactivity. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02414f] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A review of the recent progress in revealing the structures, formation, and reactivity of the active sites in Fe-, Co-, Ni- and Cu-exchanged zeolites as well as outlooks on future research challenges and opportunities is presented.
Collapse
Affiliation(s)
- Muhammad Haris Mahyuddin
- Institute for Materials Chemistry and Engineering and IRCCS
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering and IRCCS
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering and IRCCS
- Kyushu University
- Fukuoka 819-0395
- Japan
| |
Collapse
|