1
|
Yao Y, Wang C, Na J, Hossain MSA, Yan X, Zhang H, Amin MA, Qi J, Yamauchi Y, Li J. Macroscopic MOF Architectures: Effective Strategies for Practical Application in Water Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104387. [PMID: 34716658 DOI: 10.1002/smll.202104387] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Metal-organic frameworks (MOFs) have potential applications in removing pollutants such as heavy metals, oils, and toxins from water. However, due to the intrinsic fragility of MOFs and their fine powder form, there are still technical barriers to their practical application such as blockage of pipes, difficulty in recovery, and potential environmental toxicity. Therefore, attention has focused on approaches to convert nanocrystalline MOFs into macroscopic materials to overcome these limitations. Recently, strategies for shaping MOFs into beads (0D), nanofibers (1D), membranes (2D), and gels/sponges (3D) with macrostructures are developed including direct mixing, in situ growth, or deposition of MOFs with polymers, cotton, foams or other porous substrates. In this review, successful strategies for the fabrication of macroscopic materials from MOFs and their applications in removing pollutants from water including adsorption, separation, and advanced oxidation processes, are discussed. The relationship between the macroscopic performance and the microstructure of materials, and how the range of 0D to 3D macroscopic materials can be used for water treatment are also outlined.
Collapse
Affiliation(s)
- Yiyuan Yao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Chaohai Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mohammed Shahriar A Hossain
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Mechanical and Mining Engineering, Faculty of Engineering Architecture and Information Technology (EAIT), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Xin Yan
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Hao Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Junwen Qi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials, Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|
3
|
Synthesis of a Half-Sandwich Hydroxidoiridium(III) Complex Bearing a Nonprotic N-Sulfonyldiamine Ligand and Its Transformations Triggered by the Brønsted Basicity. INORGANICS 2019. [DOI: 10.3390/inorganics7100125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Synthesis and reactivities of a new mononuclear hydroxidoiridium(III) complex with a pentamethylcyclopentadienyl (Cp*) ligand are reported. The hydroxido ligand was introduced into an iridium complex having a nonprotic amine chelate derived from N-mesyl-N’,N’-dimethylethylenediamine by substitution of the chloride ligand using KOH. The resulting hydroxidoiridium complex was characterized by NMR spectroscopy, elemental analysis, and X-ray crystallography. The hydroxido complex was able to deprotonate benzamide and acetonitrile, and showed an ability to accept a hydride from 2-propanol to generate the corresponding hydrido complex quantitatively. In the reaction with mandelonitrile, a cyanide anion was transferred to the iridium center in preference to the hydride transfer. The cyanidoiridium complex was also identified in the reaction with acetone cyanohydrin, and could serve as catalyst species in the transfer hydrocyanation of benzaldehyde.
Collapse
|