1
|
Yang X, Xu L, Fang D, Zhang A, Xiao C. Progress in phenanthroline-derived extractants for trivalent actinides and lanthanides separation: where to next? Chem Commun (Camb) 2024; 60:11415-11433. [PMID: 39235311 DOI: 10.1039/d4cc03810j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Spent nuclear fuel (SNF) released from reactors possesses significant radioactivity, heat release properties, and high-value radioactive nuclides. Therefore, using chemical methods for reprocessing can enhance economic efficiency and reduce the potential environmental risks of nuclear energy. Due to the presence of relatively diffuse f-electrons, the chemical properties of trivalent lanthanides (Ln(III)) and actinides (An(III)) in SNF solutions are quite similar. Separation methods have several limitations, including poor separation efficiency and the need for multiple stripping agents. The use of novel multi-dental phenanthroline-derived extractants with nitrogen donor atoms to effectively separate An(III) over Ln(III) has been widely accepted. This review first introduces the development history of phenanthroline-derived extractants for extraction and complexation with An(III) over Ln(III). Then, based on structural differences, these extractants are classified into four categories: nitrogen-coordinated, N,O-hybrid coordinated, highly preorganized structure, and unsymmetric structure. Each category's design principles, extraction, and separation performance as well as their advantages and disadvantages are discussed. Finally, we have summarized and compared the unique characteristics of the existing extractants and provided an outlook. This work may offer a reliable reference for the precise identification and selective separation between An(III) and Ln(III), and point the way for future development and exploration.
Collapse
Affiliation(s)
- Xiaofan Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Lei Xu
- Institute of Nuclear-Agricultural Science, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Dong Fang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Anyun Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| |
Collapse
|
2
|
Huang Q, Liang YT, Li AY. A Theoretical Study on the Influence of Five- and Six-Membered N-Heterocyclic Ring Side Chains of the N-Donor Extractants on Am(III)/Eu(III) Extraction and Separation. J Phys Chem A 2024; 128:6834-6846. [PMID: 39140223 DOI: 10.1021/acs.jpca.4c02777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
According to the green development requirements of carbon neutrality and carbon peaking, the effective separation of lanthanides and actinides is one of the key factors for nuclear energy to become a sustainable energy source. In recent years, o-phenanthroline-based ligands have been proven to be effective in the separation of lanthanides and actinides. In this work, based on 5,9b-dihydro-4aH-cyclopenta[1,2-b:5,4-b']dipyridines, we designed six N-heterocyclic ring ligands and theoretically studied their extraction capacity and separation selectivity for the Am(III) and Eu(III) ions. Various theoretical methods were used to analyze the properties of the ligands and study the bonding nature of the ligands with the metal ions. Thermodynamic parameters were calculated to measure the extraction ability of the ligands to the metal ions and to explore the separation capacity of the ligand for the Am(III) and Eu(III) ions. The calculated results show that the five- and six-membered N-heterocyclic ring side chains of the ligands and the distribution of the N atoms on the side chain rings have obvious effects on the bonding of the ligands to metal ions and on the extraction and separation properties of the ligands for the metal ions. It was found that the extractants with six-membered ring side chains possess an extraction ability slightly better than that of the ligands with five-membered ring side chains and that the ligands with a pair of adjacent N atoms on the side chains have a stronger separation selectivity for the Am(III)/Eu(III) ions. The theoretical research in this work will help to understand the details of binding and extraction properties of similar ligands and provide insights for the future design of five- and six-membered heterocyclic ligands.
Collapse
Affiliation(s)
- Qijie Huang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 P. R. China
| | - Yu Ting Liang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 P. R. China
| | - An Yong Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 P. R. China
| |
Collapse
|
3
|
Fang D, Yang X, Li J, Zhang Z, Gao Y, Xiao C. Preorganization Effects on Eu(III) Ion Coordination by Dipyridyl-Phenanthroline Ligands: A Combined Experimental and Theoretical Analysis. Inorg Chem 2024; 63:8171-8179. [PMID: 38655575 DOI: 10.1021/acs.inorgchem.4c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Although 1,10-phenanthroline has been proven to hold a strong complexing capacity for f-block elements and their derivatives have been applied in many fields, research on more highly or completely rigid phenanthroline ligands is still rare due to the challenging syntheses. Here, we reported three tetradentate ligands 2,9-di(pyridin-2-yl)-1,10-phenanthroline (L1), 12-(pyridin-2-yl)-5,6-dihydroquinolino[8,7b][1,10]phenanthroline (L2), and 5,6,11,12-tetrahydrobenzo[2,1-b:3,4-b']bis([1,10]phenanthroline) (L3) with increasing preorganization on the side chain; among which, L3 is fully preorganized. Their complexation reactions with Eu(III) were systematically investigated by electrospray ionization mass spectrometry (ESI-MS), UV-vis titrations, and single-crystal structures. It is found that all three ligands form only 1:1 M/L complexes with Eu(III). The single-crystal structures revealed that the three ligands hold similar coordination modes, while their stability constants determined by UV-vis titrations were L3 (4.80 ± 0.01) > L2 (4.38 ± 0.01) > L1 (3.88 ± 0.01). This trend is supported not only by the thermodynamic stability of rigid ligands compared to free ligands but also by the conclusion that rigid ligands exhibit faster reaction rates (lower energy barrier) than free ligands kinetically. This work is helpful in providing theoretical guidance for the subsequent development of highly preorganized chelating ligands with strong coordination ability and high selectivity for f-block elements.
Collapse
Affiliation(s)
- Dong Fang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Xiaofan Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jiarui Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Zhiyuan Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Yang Gao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| |
Collapse
|
4
|
Wu S, Li AY. Theoretical investigation on the ligands constructed from phenanthroline and five-membered N-heterocyclic rings for bonding and separation properties of Am(III) and Eu(III). Phys Chem Chem Phys 2024; 26:1190-1204. [PMID: 38099645 DOI: 10.1039/d3cp05101c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The ligands, derived from the combination of phenanthroline and various five-membered N-heterocyclic rings, were subject to a comprehensive investigation for their potential in the extraction and separation of actinides and lanthanides. This study employed DFT methods to thoroughly explore the properties of both phenanthroline (Ph) and the diverse five-membered N-heterocyclic rings (R1-R8). Additionally, tridentate ligands RlPh (l = 1-8) and tetradentate ligands RlPhRr (l, r = 1-8) were analyzed in detail, encompassing their electrostatic potential (ESP), protonation energy, coordination bonding with the metals Am(III) and Eu(III), and the thermodynamics of extraction separation for Am(III) and Eu(III). The findings highlight that the electrostatic potential (ESP) and binding capabilities of the five-membered N-heterocyclic ring units serve as effective predictors for the properties of intricate tridentate and tetradentate ligands, as well as their coordination bonding affinity with metals. The ligands' binding energy is closely associated with their ESP, and notably, the binding energy of tridentate and tetradentate ligands correlates well with the binding energies of their constituent structural units. The computational results reveal that the R2 unit, along with its corresponding tridentate ligand R2Ph and tetradentate ligands R2PhRr, exhibits the highest ESP, superior binding energies, and the strongest coordination bonding affinity with the metals. The theoretical calculations further identify several promising extractants for the effective separation of Am(III) and Eu(III). The tridentate ligands R1Ph, R7Ph, and R4Ph, and the tetradentate ligands R4PhR4, R6PhR6, R2PhR2, R1PhR5 and R3PhR6 were identified as having excellent separation performance for Am(III) and Eu(III). This study would provide insights for the design of extractants for the separation of Am(III) and Eu(III) by use of five-membered N-heterocyclic rings as structural units.
Collapse
Affiliation(s)
- Shouqiang Wu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China.
| | - An Yong Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China.
| |
Collapse
|
5
|
Wang J, Hou YC, Guo YR, Wang XY, Ding SD, Pan QJ. Tuning the Alkyl Chain of Nitrilotriacetamide for Selectively Extracting Trivalent Am over Eu Ions. Inorg Chem 2023. [PMID: 37377386 DOI: 10.1021/acs.inorgchem.3c01297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The successful management and safe disposal of high-level nuclear waste necessitate the efficient separation of actinides (An) from lanthanides (Ln), which has emerged as a crucial prerequisite. Mixed donor ligands incorporating both soft and hard donor atoms have garnered interest in the field of An/Ln separation and purification. One such example is nitrilotriacetamide (NTAamide) derivatives, which have demonstrated selectivity in extracting minor actinide Am(III) ions over Eu(III) ions. Nevertheless, the Am/Eu complexation behavior and selectivity remain underexplored. In the work, a comprehensive and systematic investigation has been conducted for [M(RL)(NO3)3] complexes (M = Am and Eu) utilizing relativistic density functional theory. The NTAamide ligand (RL) is substituted with various alkyl groups, namely, methyl, ethyl, propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, and n-octyl. Thermodynamic calculations show that the alkyl chain length in NTAamide is capable of tuning the separation selectivity of Am and Eu. Moreover, the differences in calculated free energies between Am and Eu complexes are more negative for R = Bu-Oct than Me-Pr. This indicates that elongation of the alkyl chain can increase the efficiency of selective separation of Am(III) from Eu(III). Based on the quantum theory of atoms in molecules and charge decomposition analyses, it has been observed that the strength of Am-RL bonds is higher than that of Eu-RL bonds. This disparity is attributed to a greater degree of covalency in Am-RL bonds and a higher level of charge transfer from ligands to Am within complexes containing these bonds. Energies of occupied orbitals with the central N character are recognized overall lower for [Am(OctL)(NO3)3] than for [Eu(OctL)(NO3)3], indicative of stronger complexation stability of the former. These results offer valuable insights into the separation mechanism of NTAamide ligands, which can help guide the development of more powerful agents for An/Ln separation in future applications.
Collapse
Affiliation(s)
- Juan Wang
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Yu-Chang Hou
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Yuan-Ru Guo
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Xue-Yu Wang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Song-Dong Ding
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Qing-Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
6
|
Zou Y, Lan JH, Yuan LY, Wang CZ, Wu QY, Chai ZF, Ren P, Shi WQ. Theoretical Insights into the Selectivity of Hydrophilic Sulfonated and Phosphorylated Ligands to Am(III) and Eu(III) Ions. Inorg Chem 2023; 62:4581-4589. [PMID: 36935646 DOI: 10.1021/acs.inorgchem.2c04476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
The separation of lanthanides and actinides has attracted great attention in spent nuclear fuel reprocessing up to date. In addition, liquid-liquid extraction is a feasible and useful way to separate An(III) from Ln(III) based on their relative solubilities in two different immiscible liquids. The hydrophilic bipyridine- and phenanthroline-based nitrogen-chelating ligands show excellent performance in separation of Am(III) and Eu(III) as reported previously. To profoundly explore the separation mechanism, herein, we first of all designed four hydrophilic sulfonated and phosphorylated ligands L1, L2, L3, and L4 based on the bipyridine and phenanthroline backbones. In addition, we studied the structures of these ligands and their neutral complexes [ML(NO3)3] (M = Am, Eu) as well as the thermodynamic properties of complexing reactions through the scalar relativistic density functional theory. According to the changes of the Gibbs free energy for the back-extraction reactions, the phenanthroline-based ligands L2 and L4 have stronger complexing capacity for both Am(III) and Eu(III) ions while the phosphorylated ligand L3 with the bipyridine framework has the highest Am(III)/Eu(III) selectivity. In addition, the charge decomposition analysis revealed a higher degree of charge transfer from the ligand to Am(III), suggesting stronger donor-acceptor interactions in the Am(III) complexes. This study can provide theoretical insights into the separation of actinide(III)/lanthanide(III) using hydrophilic sulfonated and phosphorylated N-donor ligands.
Collapse
Affiliation(s)
- Yao Zou
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, Jiangxi 330013, China.,Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Yong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Ren
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, Jiangxi 330013, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Carter C, Kratish Y, Marks TJ. Influence of Rare-Earth Ion Radius on Metal-Metal Charge Transfer in Trinuclear Mixed-Valent Complexes. Inorg Chem 2023; 62:4799-4813. [PMID: 36921086 DOI: 10.1021/acs.inorgchem.2c03973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
We report the synthesis and characterization of a highly conjugated bisferrocenyl pyrrolediimine ligand, Fc2PyrDIH (1), and its trinuclear complexes with rare earth ions─(Fc2PyrDI)M(N(TMS)2)2 (2-M, M = Sc, Y, Lu, La). Crystal structures, nuclear magnetic resonance (NMR) spectra, and ultraviolet/visible/near-infrared (UV/vis-NIR) data are presented. The latter are in good agreement with DFT calculations, illuminating the impact of the rare earth ionic radius on NIR charge transfer excitations. For [2-Sc]+, the charge transfer is at 11,500 cm-1, while for [2-Y]+, only a d-d transition at 8000 cm-1 is observed. Lu has an ionic radius in between Sc and Y, and the [2-Lu]+ complex exhibits both transitions. From time-dependent density functional theory (TDDFT) analysis, we assign the 11,500 cm-1 transition as a mixture of metal-to-ligand charge transfer (MLCT) and metal-to-metal charge transfer (MMCT), rather than pure metal-to-metal CT because it has significant ligand character. Typically, the ferrocenes moieties have high rotational freedom in bis-ferrocenyl mixed valent complexes. However, in the present (Fc2PyrDI)M(N(TMS)2)2 complexes, ligand-ligand repulsions lock the rotational freedom so that rare-earth ionic radius-dependent geometric differences increasingly influence orbital overlap as the ionic radius falls. The Marcus-Hush coupling constant HAB trends as [2-Sc]+ > [2-Lu]+ > [2-Y]+.
Collapse
Affiliation(s)
- Cole Carter
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Yosi Kratish
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Tobin J Marks
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
8
|
Wu S, Zhang Y, Li AY. Effects of Electron‐Withdrawing and ‐Donating Substituents in N‐Donor Scorpionate Ligands and the Metal 5
f
/4
f
Orbitals on Am(III)/Eu(III) Complexation and Separation. ChemistrySelect 2022. [DOI: 10.1002/slct.202203622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Shouqiang Wu
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P.R.China
| | - Yiying Zhang
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P.R.China
| | - An Yong Li
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P.R.China
| |
Collapse
|
9
|
Ebenezer C, Solomon RV. Complexation of N‐Heterocyclic Substituted 1,10‐Phenanthroline‐2,9‐diamide with Am
3+
/Eu
3+
Ions for Nuclear Waste Water Treatment. ChemistrySelect 2022. [DOI: 10.1002/slct.202203535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Cheriyan Ebenezer
- Department of Chemistry Madras Christian College (Autonomous) [Affiliated to the University of Madras Chennai 600 059 Tamil Nadu India
| | - Rajadurai Vijay Solomon
- Department of Chemistry Madras Christian College (Autonomous) [Affiliated to the University of Madras Chennai 600 059 Tamil Nadu India
| |
Collapse
|
10
|
Ebenezer C, Solomon RV. Uptake of Am(III) Ions and Eu(III) Ions Using Cyclic Substituted N, O‐hybrid 1,10‐Phenanthroline Derived Phosphine Oxide Ligands ‐ A DFT Exploration. ChemistrySelect 2022. [DOI: 10.1002/slct.202200446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Cheriyan Ebenezer
- Department of Chemistry Madras Christian College (Autonomous) University of Madras, East Tambaram Chennai 600 059 Tamil Nadu India
| | - Rajadurai Vijay Solomon
- Department of Chemistry Madras Christian College (Autonomous) University of Madras, East Tambaram Chennai 600 059 Tamil Nadu India
| |
Collapse
|
11
|
Ye ZR, Wu QY, Wang CZ, Lan JH, Chai ZF, Wang HQ, Shi WQ. Theoretical Insights into the Selective Separation of Am(III)/Eu(III) Using Hydrophilic Triazolyl-Based Ligands. Inorg Chem 2022; 61:6110-6119. [PMID: 35416038 DOI: 10.1021/acs.inorgchem.2c00232] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Designing ligands with efficient actinide (An(III))/lanthanide (Ln(III)) separation performance is still one of the key issues for the disposal of accumulated radioactive waste and the recovery of minor actinides. Recently, the hydrophilic ligands as promising extractants in the innovative Selective ActiNide Extraction (i-SANEX) process show excellent selectivity for Am(III) over Eu(III), such as hydroxylated-based ligands. In this work, we investigated the selective back-extraction toward Am(III) over Eu(III) with three hydrophilic hydroxylated triazolyl-based ligands (the skeleton of pyridine La, bipyridine Lb, and phenanthroline Lc) using scalar-relativistic density functional theory. The properties of three hydrophilic hydroxylated ligands and the coordination structures, bonding nature, and thermodynamic properties of the Am(III) and Eu(III) complexes with three ligands have been evaluated using multiple theoretical methods. The results of molecular orbitals (MOs), quantum theory of atoms in molecules (QTAIMs), and natural bond orbital (NBO) reveal that Am-N bonds possess more covalent character compared to Eu-N bonds. The thermodynamic results indicate that the complexing ability of Lb and Lc with metal ions is almost the same, which is stronger than that of La. However, La has the best Am(III)/Eu(III) selectivity among three ligands, which is attributed to the largest difference in covalency between Am-Ntrzl and Eu-Ntrzl bonds in MLa(NO3)3. This work provides an in-depth understanding of the preferential selectivity of the hydrophilic hydroxylated ligands with An(III) over Ln(III) and also provides theoretical support for designing potential hydrophilic ligands with excellent separation performance of Am(III)/Eu(III).
Collapse
Affiliation(s)
- Zi-Rong Ye
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.,Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Qing Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Liu L, Lu Y, Liao L, Xiao X, Nie C. Theoretical Unravelling the Complexation and Separation of Uranyl‐ligand Complexes towards Chiral R/S‐Profenofos. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Linfeng Liu
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes Hengyang China
| | - Yao Lu
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes Hengyang China
| | - Lifu Liao
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes Hengyang China
| | - Xilin Xiao
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes Hengyang China
| | - Changming Nie
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes Hengyang China
| |
Collapse
|
13
|
Influence of Electronic Modulation of Phenanthroline-Derived Ligands on Separation of Lanthanides and Actinides. Molecules 2022; 27:molecules27061786. [PMID: 35335150 PMCID: PMC8949807 DOI: 10.3390/molecules27061786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 11/17/2022] Open
Abstract
The solvent extraction, complexing ability, and basicity of tetradentate N-donor 2,9-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)-1,10-phenanthroline (CyMe4-BT- Phen) and its derivatives functionalized by Br, hydroxyphenyl, nitryl were discussed and compared. It was demonstrated that four BTPhen ligands are able to selectively extract Am(lll) over Eu(lll). It was notable that the distribution ratio of 5-nitryl-CyMe4-BTPhen for Eu(lll) was suppressed under 0.02, which was much lower compared to DEu(lll) = 1 by CyMe4-BTPhen. The analysis of the effect of the substituent on the affinity to lanthanides was conducted by UV/vis and fluorescence spectroscopic titration. The stability constants of various ligands with Eu(lll) were obtained by fitting titration curve. Additionally, the basicity of various ligands was determined to be 3.1 ± 0.1, 2.3 ± 0.2, 0.9 ± 0.2, 0.5 ± 0.1 by NMR in the media of CD3OD with the addition of DClO4. The basicity of ligands follows the order of L1 > L2 > L3 > L4, indicating the tendency of protonation decreases with the electron-withdrawing ability increase.
Collapse
|
14
|
Zanella BS, Jones SB, Lee HS, Hancock RD. Evidence for Participation of 4f and 5d Orbitals in Lanthanide Metal-Ligand Bonding and That Y(III) Has Less of This Complex-Stabilizing Ability. A Thermodynamic, Spectroscopic, and DFT Study of Their Complexation by the Nitrogen Donor Ligand TPEN. Inorg Chem 2022; 61:4627-4638. [PMID: 35244393 DOI: 10.1021/acs.inorgchem.1c03443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The formation constants (log K1) of lanthanide(III) (Ln) ions [except for Pm(III)] and the Y(III) cation have been measured with the ligand TPEN (N,N,N',N'-tetra-2-picolylethylenediamine). These log K1 values show a typical variation with ionic radius, with a local maximum at Sm(III) and a local minimum at Gd(III), with an overall increase in log K1 from La(III) to Lu(III) as the ionic radius decreases. The log K1 for the Y(III)/TPEN complex is much lower than expected from its ionic radius, while the literature log K1 for Am(III) is much higher. The latter effect is thought to be due to greater covalence in the M-L (metal-ligand) bond than for Ln(III) ions: the low log K1 for Y(III) is interpreted as being due to lower covalence. The f → f transitions in the Nd(III) and Pr(III) complexes were examined for effects that might indicate the participation of f orbitals in M-L bonding. The intensity of the f → f transitions in the Nd(III)/TPEN complex was greatly increased compared to that of the Nd3+ aqua ion, which appeared to be due to additional sharp peaks, possibly parity forbidden transitions where parity rules were broken by covalence in the M-L bond. The Pr(III)/TPEN complex showed that all of the f → f transitions shifted to longer wavelengths by some 5 nm, with modest increases in intensity. The effects seen in the f → f transitions of Nd(III) and Pr(III) with TPEN with its six nitrogen donors were present to a much smaller extent in the EDTA and other complexes with fewer nitrogen donors. The changes in the f → f transitions of the TPEN complexes of Er(III) and Ho(III) were small, suggesting a smaller contribution of f orbitals to M-L bonding in these heavier Ln(III) ions. The intense Laporte allowed f → d transitions in Ce(III) complexes show large shifts to longer wavelengths as complexes of, for example, EDTA with increasing numbers of nitrogen donors, suggesting the participation of both f and d orbitals, or either, in M-L bonding. The nature of M-L bonding in M(III)/TPEN complexes was further investigated via density functional theory calculations.
Collapse
Affiliation(s)
- Brady S Zanella
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28407, United States
| | - S Bart Jones
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28407, United States
| | - Hee-Seung Lee
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28407, United States
| | - Robert D Hancock
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28407, United States
| |
Collapse
|
15
|
Lemport PS, Evsiunina MV, Matveev PI, Petrov VS, Pozdeev AS, Khult EK, Nelyubina YV, Isakovskaya KL, Roznyatovsky VA, Gloriozov IP, Tarasevich BN, Aldoshin AS, Petrov VG, Kalmykov SN, Ustynyuk YA, Nenajdenko VG. 2-Methylpyrrolidine derived 1,10-phenanthroline-2,9-diamides: promising extractants for Am( iii)/Ln( iii) separation. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00803c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work we report on new examples of phenanthrolindiamides containing asymmetric centers in amide substituents.
Collapse
Affiliation(s)
- P. S. Lemport
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - M. V. Evsiunina
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - P. I. Matveev
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - V. S. Petrov
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - A. S. Pozdeev
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - E. K. Khult
- Department of Materials Science, Lomonosov Moscow State University, Leninskie gory 1 bld. 73, Moscow 119991, Russia
| | - Yu. V. Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Russia
| | - K. L. Isakovskaya
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Russia
- D.I. Mendeleev University of Chemical Technology of Russia, Russia
| | - V. A. Roznyatovsky
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - I. P. Gloriozov
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - B. N. Tarasevich
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - A. S. Aldoshin
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - V. G. Petrov
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - S. N. Kalmykov
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Yu. A. Ustynyuk
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - V. G. Nenajdenko
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| |
Collapse
|
16
|
Ebenezer C, Vijay Solomon R. Preorganization of N, O-hybrid phosphine oxide chelators for effective extraction of trivalent Am/Eu ions - A computational study. NEW J CHEM 2022. [DOI: 10.1039/d1nj06029e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N, O-hybrid phosphine oxide ligands with N-heterocyclic cores are the advanced extractants for extracting actinides over lanthanides. Yet, the challenging task in designing an efficient hybrid ligand is tracing the...
Collapse
|
17
|
Lei XP, Wu QY, Wang CZ, Lan JH, Chai ZF, Nie CM, Shi WQ. Theoretical insights into the separation of Am( iii)/Eu( iii): designing ligands based on a preorganization strategy. Dalton Trans 2022; 51:16659-16667. [DOI: 10.1039/d2dt02474h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The extraction behaviors of Am(iii) and Eu(iii) were investigated using phenanthroline and bipyridine ligands based on a preorganization strategy.
Collapse
Affiliation(s)
- Xia-Ping Lei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Chang-Ming Nie
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
18
|
Bulmer R, Spencer TB, Wilden A, Modolo G, Vu TH, Simonin JP, Lewis FW. New Route to Amide-Functionalized N-Donor Ligands Enables Improved Selective Solvent Extraction of Trivalent Actinides. Chem Commun (Camb) 2022; 58:10667-10670. [DOI: 10.1039/d2cc03876e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new general synthetic route to selective actinide extracting ligands for spent nuclear fuel reprocessing has been established. The amide-functionalized ligands separate Am(III) and Cm(III) from the lanthanides with high...
Collapse
|
19
|
Wang S, Wang C, Yang XF, Yu JP, Tao WQ, Yang SL, Ren P, Yuan LY, Chai ZF, Shi WQ. Selective Separation of Am(III)/Eu(III) by the QL-DAPhen Ligand under High Acidity: Extraction, Spectroscopy, and Theoretical Calculations. Inorg Chem 2021; 60:19110-19119. [PMID: 34860506 DOI: 10.1021/acs.inorgchem.1c02916] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although 1,10-phenanthroline-based ligands have recently shown vast opportunities for the separation of trivalent actinides (Ans(III)) from lanthanides (Lns(III)), the optimization and design of the extractant structure based on the phenanthroline framework remain hotspots for further improving the separation. Following the strategy of hard and soft donor atom combination, for the first time, the quinoline group was attached to the 1,10-phenanthroline skeleton, giving a lipophilic ligand, 2,9-diacyl-bis((3,4-dihydroquinoline-1((2H)-yl)-1),10-phenanthroline (QL-DAPhen)), for Am(III)/Eu(III) separation. In the presence of sodium nitrate, the ligand can effectively extract Am(III) over Eu(III) in HNO3 solution, with the separation factor (SFAm/Eu) ranging from 29 to 44. The coordination chemistry of Eu(III) with QL-DAPhen was investigated by slope analysis, NMR titration, UV-vis titration, Fourier transform infrared spectroscopy, electrospray ionization-mass spectrometry, and theoretical calculations. The experimental results unanimously confirm that the ligand forms both 1:1 and 1:2 complexes with Eu(III), and the stability constants (log β) of each of the two complexes were obtained. Density functional theory calculations show that the Am-N bonds have more covalent characteristics than the Eu-N bonds in the complexes, which reveals the reason why the ligand preferentially bonds with Am(III). Meanwhile, the thermodynamic analysis reveals that the 1:1 complex is more thermodynamically stable than the 1:2 complex. The findings of this work have laid a solid theoretical foundation for the application of phenanthroline-based ligands in the separation of An(III) from practical systems.
Collapse
Affiliation(s)
- Shuai Wang
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, P.R. China.,Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Cui Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xiao-Fan Yang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China.,Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, P.R. China
| | - Ji-Pan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Wu-Qing Tao
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, P.R. China
| | - Su-Liang Yang
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, P.R. China
| | - Peng Ren
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Li-Yong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhi-Fang Chai
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, P.R. China.,Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China.,Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P.R. China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
20
|
Does the length of the alkyl chain affect the complexation and selectivity of phenanthroline-derived phosphonate ligands? – Answers from DFT calculations. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Impact of Coordination Modes of N‐Donor Ligands on Am(III)/Eu(III) Separation in Nuclear Waste Water Treatment – A DFT Study. ChemistrySelect 2021. [DOI: 10.1002/slct.202102543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Ye ZR, Wu QY, Wang CZ, Lan JH, Chai ZF, Wang HQ, Shi WQ. Theoretical Insights into the Separation of Am(III)/Eu(III) by Hydrophilic Sulfonated Ligands. Inorg Chem 2021; 60:16409-16419. [PMID: 34632757 DOI: 10.1021/acs.inorgchem.1c02256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, we focused on the separation of Am(III)/Eu(III) with four hydrophilic sulfonated ligands (L) based on the framework of phenanthroline and bipyridine through scalar relativistic density functional theory. We studied the electronic structures of [ML(NO3)3] (M = Am, Eu) complexes and the bonding nature between metal and ligands as well as evaluated the separation selectivity of Am(III)/Eu(III). The tetrasulfonated ligand L2 with a bipyridine framework has the strongest complexing ability for metal ions probably because of the better solubility and flexible skeleton. The disulfonated ligand L1 has the highest Am(III)/Eu(III) selectivity, which is attributed to the covalent difference between the Am-N and Eu-N bonds based on the quantum theory of atoms in the molecule analysis. Thermodynamic analysis shows that the four hydrophilic sulfonated ligands are more selective toward Am(III) over Eu(III). In addition, these hydrophilic sulfonated ligands show better complexing ability and Am(III)/Eu(III) selectivity compared to the corresponding hydrophobic nonsulfonated ones. This work provides theoretical support for the separation of Am(III)/Eu(III) using hydrophilic sulfonated ligands.
Collapse
Affiliation(s)
- Zi-Rong Ye
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Engineering Laboratory of Nuclear Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Hong-Qing Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Niu K, Yang F, Gaudin T, Ma H, Fang W. Theoretical Study of Effects of Solvents, Ligands, and Anions on Separation of Trivalent Lanthanides and Actinides. Inorg Chem 2021; 60:9552-9562. [PMID: 34161729 DOI: 10.1021/acs.inorgchem.1c00657] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Due to its associated low CO2 emissions, nuclear energy production is rapidly growing. In this context, the treatment of high-level liquid waste (HLLW) of nuclear plants is of high concern to both scientific and industrial communities. Specifically, the separation of An(III) and Ln(III) cations when processing nuclear fuel is a vitally important, yet challenging, step within HLLW because An(III) and Ln(III) have similar chemical properties in solution. To guide the choice of relevant ligands, anions, and solvents for this separation step, in this work, we calculate and compare the free energy of formation of different Am(III) and Eu(III) complexes (which are typical and important An(III) and Ln(III) cation examples), involving two different ligands and three different counter ions in four different solvents. Based on our calculations, we predict that the chosen solvent is a key factor in the extraction of Am(III) and Eu(III) in treatment of HLLW. This study supports a systematic, computation-assisted screening of solvents and extractive ligands with counter anions as a proficient method to optimize the separation of Ln(III) and An(III).
Collapse
Affiliation(s)
- Ke Niu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Feng Yang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Théophile Gaudin
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haibo Ma
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Weihai Fang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Department of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
24
|
Yang R, Xiao Y, Tao X, Ma M, Wu Z, Liao L, Xiao X, Nie C. Insights into complexation and enantioselectivity of uranyl‐2‐(2‐hydroxy‐3‐methoxyphenyl)‐9‐(2‐hydroxyphenyl)thiopyrano[3,2‐
h
]thiochromene‐4,7‐dione with
R
/
S
‐organophosphorus pesticides. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Rong Yang
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes University of South China Hengyang China
| | - Yang Xiao
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes University of South China Hengyang China
| | - Xue‐bing Tao
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes University of South China Hengyang China
| | - Ming‐jie Ma
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes University of South China Hengyang China
| | - Zhi‐lin Wu
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes University of South China Hengyang China
| | - Li‐fu Liao
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes University of South China Hengyang China
| | - Xi‐lin Xiao
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes University of South China Hengyang China
| | - Chang‐ming Nie
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes University of South China Hengyang China
| |
Collapse
|
25
|
Bhattacharyya A, Mohapatra PK. Ligand Structure and Topology Effects in Complexation Selectivity of Am
3+
and Eu
3+
with ′O′, ′N′ and ′S′ Heterocyclic Diamides: A DFT Study. ChemistrySelect 2021. [DOI: 10.1002/slct.202101289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Theoretical insights into chiral PMAADs coordinated with Am(III)/Eu(III) and separation selectivity enhanced by chiral-at Am(III)/Eu(III) complexes. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07653-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Hou X, Tang SF. Speciation of Ionic Uranyl-Containing Complexes in in Situ Formed Dicyanonitrosomethanide-Based Ionic Liquids. Inorg Chem 2021; 60:1869-1876. [PMID: 33471501 DOI: 10.1021/acs.inorgchem.0c03316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A series of ionic uranyl-containing complexes, namely [C2mim]2[UO2(ccnm)4] (1), [C4mim]2[UO2(ccnm)4] (2), [N1111]2[UO2(ccnm)4][H2O]2 (3), and [P2444]2[UO2(dcnm)2(ccnm)2] (4) [(ccnm)- = carbamoylcyanonitrosomethanide; dcnm = dicyanonitrosomethanide; (C2mim)+ = 1-ethyl-3-methylimidazolium; (C4mim)+ = 1-butyl-3-methylimidazolium; (N1111)+ = tetramethylammonium; (P2444)+ = tributyl(ethyl)phosphonium)], were isolated from in situ formed dcnm-based ionic liquids and characterized systematically. It was found that the dcnm anions transformed into ccnm anions during the reactions. These anions coordinate with the uranyl cations in chelate or terminal monodentate coordination mode, affording negative divalent complex anions which can combine with different organic cations and form ionic uranyl-containing complexes. Plenty of C-H···O, N-H···O, C-H···N, N-H···N, and H···H weak interactions are formed in the crystal structures. The transformation of cyano to amide groups contributes to the crystallinity and leads to higher melting points as well as the luminescence quenching of these compounds.
Collapse
Affiliation(s)
- Xiaomin Hou
- Shandong Province Key Laboratory of Applied Mycology, College of Life Science, Changcheng Road 700, Chengyang District, Qingdao 266109, China
| | - Si-Fu Tang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Road 700, Chengyang District, Qingdao 266109, China
| |
Collapse
|
28
|
Sharma S, Dumpalan RMR, Rawat N. Experimental and DFT studies on complexation of uranyl with N-(2-Hydroxyethyl)iminodiacetic acid in aqueous medium. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119653] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Liang LL, Zhang RL, Zhao JS. Counterion-Controlled Formation of Layered Honeycomb and Polythreading Uranyl Networks and the Highly Sensitive and Selective Detection of Fe3+ in Aqueous Media. Inorg Chem 2020; 59:7980-7990. [DOI: 10.1021/acs.inorgchem.9b03576] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ling-ling Liang
- College of Pharmacy, Xi’an Medical University, Xi’an 710021, China
- College of Chemistry and Materials, Northwest University, Xi’an 710069, China
| | - Rong-lan Zhang
- College of Chemistry and Materials, Northwest University, Xi’an 710069, China
| | - Jian-she Zhao
- College of Chemistry and Materials, Northwest University, Xi’an 710069, China
| |
Collapse
|
30
|
Two uranium coordination polymers constructed by a polycarboxylic acid: Structural variation, photoluminescent and photocatalysis properties. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2019.121085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
31
|
Coordination behavior of uranyl with PDAM derivatives in solution: Combined study with ESI-MS and DFT. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Wang C, Wu QY, Wang CZ, Lan JH, Nie CM, Chai ZF, Shi WQ. Theoretical insights into selective separation of trivalent actinide and lanthanide by ester and amide ligands based on phenanthroline skeleton. Dalton Trans 2020; 49:4093-4099. [PMID: 32141457 DOI: 10.1039/d0dt00218f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phenanthroline based ligands have shown potential performance for partitioning trivalent actinides from lanthanides. In this work, we have explored four ester and amide ligands based on the phenanthroline skeleton and elucidated the separation mechanism between Am(iii) and Eu(iii) ions. The molecular geometries and extraction reactions of the metal-ligand complexes were modeled by using scalar-relativistic density functional theory. The results show that the amide based ligands have stronger coordination ability with the metal ions than the corresponding ester based ligands. According to the thermodynamic results, ligands N,N'-diethyl-N,N'-ditolyl-2,9-diamide-1,10-phenanthroline (L2) and N,N'-(1,10-phenanthroline-2,9-diyl)bis(N-ethyl-P-methyl-N-(p-tolyl)phosphinic amide) (L4) appear to have the strongest complexing ability, which is supported by the result of electrostatic potential (ESP) and the M-OL bond orders. Moreover, ligand L2 has excellent selectivity for Am(iii)/Eu(iii) among the four ligands. Additionally, the bonding properties between the metal ions and the ligands reveal that the Am(iii)/Eu(iii) selectivity stems from the Am-N bonds with more covalent character, which is supported by the analysis of the hardness of the ligands and the bond orders. This work provides useful information for understanding the Am(iii)/Eu(iii) selectivity of phenanthroline derived ligands bearing ester and amide groups.
Collapse
Affiliation(s)
- Cui Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China. and Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| | - Chang-Ming Nie
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China.
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China. and Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
33
|
Zaytsev AV, Bulmer R, Kozhevnikov VN, Sims M, Modolo G, Wilden A, Waddell PG, Geist A, Panak PJ, Wessling P, Lewis FW. Exploring the Subtle Effect of Aliphatic Ring Size on Minor Actinide-Extraction Properties and Metal Ion Speciation in Bis-1,2,4-Triazine Ligands. Chemistry 2019; 26:428-437. [PMID: 31489718 PMCID: PMC7027750 DOI: 10.1002/chem.201903685] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Indexed: 11/06/2022]
Abstract
The synthesis and evaluation of three novel bis-1,2,4-triazine ligands containing five-membered aliphatic rings are reported. Compared to the more hydrophobic ligands 1-3 containing six-membered aliphatic rings, the distribution ratios for relevant f-block metal ions were approximately one order of magnitude lower in each case. Ligand 10 showed an efficient, selective and rapid separation of AmIII and CmIII from nitric acid. The speciation of the ligands with trivalent f-block metal ions was probed using NMR titrations and competition experiments, time-resolved laser fluorescence spectroscopy and X-ray crystallography. While the tetradentate ligands 8 and 10 formed LnIII complexes of the same stoichiometry as their more hydrophobic analogues 2 and 3, significant differences in speciation were observed between the two classes of ligand, with a lower percentage of the extracted 1:2 complexes being formed for ligands 8 and 10. The structures of the solid state 1:1 and 1:2 complexes formed by 8 and 10 with YIII , LuIII and PrIII are very similar to those formed by 2 and 3 with LnIII . Ligand 10 forms CmIII and EuIII 1:2 complexes that are thermodynamically less stable than those formed by ligand 3, suggesting that less hydrophobic ligands form less stable AnIII complexes. Thus, it has been shown for the first time how tuning the cyclic aliphatic part of these ligands leads to subtle changes in their metal ion speciation, complex stability and metal extraction affinity.
Collapse
Affiliation(s)
- Andrey V Zaytsev
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Rachel Bulmer
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Valery N Kozhevnikov
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Mark Sims
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Giuseppe Modolo
- Forschungszentrum Jülich GmbH, Institut für Energie und Klimaforschung-Nukleare Entsorgung und Reaktorsicherheit (IEK-6), 52428, Jülich, Germany
| | - Andreas Wilden
- Forschungszentrum Jülich GmbH, Institut für Energie und Klimaforschung-Nukleare Entsorgung und Reaktorsicherheit (IEK-6), 52428, Jülich, Germany
| | - Paul G Waddell
- School of Natural and Environmental Sciences, Newcastle University, Kings Road, Newcastle upon Tyne, NE1 7RU, UK
| | - Andreas Geist
- Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany
| | - Petra J Panak
- Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany.,Ruprecht-Karls-Universität Heidelberg, Physikalisch-Chemisches Institut, Im Neuenheimer Feld 234, 69120, Heidelberg, Germany
| | - Patrik Wessling
- Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany.,Ruprecht-Karls-Universität Heidelberg, Physikalisch-Chemisches Institut, Im Neuenheimer Feld 234, 69120, Heidelberg, Germany
| | - Frank W Lewis
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| |
Collapse
|
34
|
Abstract
Abstract
During previous radioanalytical studies at Paul Scherrer Institute ca. 30 L of acidic waste containing spent nuclear fuel was produced, and now they need to be disposed A flow sheet for conditioning of these waste was designed and the extraction chromatography technique is evaluated. Suitable sorbents, such as AMP_PAN, TBP impregnated resin and DGA resin, were selected for the task of Cs-removal, extraction of U and Pu, and extraction of minor actinides and lanthanides, respectively. A pilot device will be built for preliminary tests with simulated solutions, and the facility will be built and evaluated with the real spent fuel solutions.
Collapse
|
35
|
Wang C, Wu QY, Kong XH, Wang CZ, Lan JH, Nie CM, Chai ZF, Shi WQ. Theoretical Insights into the Selective Extraction of Americium(III) over Europium(III) with Dithioamide-Based Ligands. Inorg Chem 2019; 58:10047-10056. [DOI: 10.1021/acs.inorgchem.9b01200] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cui Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-He Kong
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Chang-Ming Nie
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
36
|
Chandrasekar A, Ghanty TK, Brahmmananda Rao CVS, Sundararajan M, Sivaraman N. Strong influence of weak hydrogen bonding on actinide-phosphonate complexation: accurate predictions from DFT followed by experimental validation. Phys Chem Chem Phys 2019; 21:5566-5577. [PMID: 30785454 DOI: 10.1039/c9cp00479c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Among the varied classes of weak hydrogen bond, the CHO type is one of immense interest as it governs the finer structures of biological and chemical molecules, hence determining their functionalities. In the present work, this weak hydrogen bond has been shown to strongly influence the complexation behaviour of uranyl nitrate [UO2(NO3)2] with diamyl-H-phosphonate (DAHP) and its branched isomer disecamyl-H-phosphonate (DsAHP). The structures of the bare ligands and complexes have been optimized by density functional theory (DFT) calculations. Surprisingly, despite having the same chemical composition the branched UO2(NO3)2·2DsAHP complex shows a remarkably higher stability (by ∼14 kcal mol-1) compared to the UO2(NO3)2·2DAHP complex. Careful inspection of the optimized structures reveals the existence of multiple CHO hydrogen-bonding interactions between the nitrate oxygens or U[double bond, length as m-dash]O oxygens and the α-hydrogens in the alkyl chains of the ligands. Comparatively stronger such bonds are found in the UO2(NO3)2·2DsAHP complex. The binding free energies associated with the complexes are computed and favoured superior binding energetics for the more stable UO2(NO3)2·2DsAHP complex. Calculations involving diisoamyl-H-phosphonate (DiAHP) and its complexes have also been performed. Theoretical predictions are experimentally tested by carrying out the extraction of U(vi) from nitric acid media using these ligands. DAHP, DsAHP and DiAHP are synthesised, characterised by NMR and evaluated for their physicochemical properties viz. viscosity, density and aqueous solubility. It was experimentally discovered that indeed DsAHP complexation with uranyl nitrate is more favoured. H-phosphonates are generically classified as acidic extractants owing to the formation of an enol tautomer at lower acidities, hence complexing the metal ion by proton exchange. Our experiments interestingly reveal a neutral ligand characteristic for DsAHP alone which is generically an acidic extractant. Furthermore, the enol tautomer of H-phosphonates that governs their extraction profiles at low acidities is also explored by DFT and the anomalous pH dependent complexation trend of DsAHP could be successfully explained. The extractions of Pu(iv) and Th(iv) have also been carried out in addition to U(vi). Solvent extraction behaviour of Am(iii) was also studied with all three ligands; the positive binding energies computed for the Am(iii) complexation corroborate with our experimental results on the poor extraction of Am(iii).
Collapse
Affiliation(s)
- Aditi Chandrasekar
- Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu 603102, India.
| | | | | | | | | |
Collapse
|
37
|
Kong XH, Hu KQ, Wu QY, Mei L, Yu JP, Chai ZF, Nie CM, Shi WQ. In situ nitroso formation induced structural diversity of uranyl coordination polymers. Inorg Chem Front 2019. [DOI: 10.1039/c8qi01394b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This work presents three possible pathways that could exist in the in situ reaction system. Structural analysis of these compounds revealed that the introduction of nitroso group exerted significant influences on the conformations of ligands, skeletons and 3D structures.
Collapse
Affiliation(s)
- Xiang-He Kong
- School of Resource and Environment and Safety Engineering
- University of South China
- Hengyang
- China
- Laboratory of Nuclear Energy Chemistry
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Ji-Pan Yu
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Chang-Ming Nie
- School of Resource and Environment and Safety Engineering
- University of South China
- Hengyang
- China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| |
Collapse
|
38
|
Xu L, Zhang A, Pu N, Lu Y, Yang H, Liu Z, Ji Y. Unusual complexation behaviors of R-BTPs with water molecule and Pd(ii) caused by electronic modulation of substituents on BTP backbone: new insights into palladium separation under the framework of minor actinides’ partitioning. NEW J CHEM 2019. [DOI: 10.1039/c9nj00343f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 1 : 1 solid palladium complex with any tridentate bis-triazine ligand has been isolated and structurally characterized for the first time.
Collapse
Affiliation(s)
- Lei Xu
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Anyun Zhang
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Ning Pu
- Collaborative Innovation Center of Advanced Nuclear Energy Technology
- Institute of Nuclear and New Energy Technology
- Tsinghua University
- Beijing 100084
- China
| | - Yanchao Lu
- College of Materials Science and Engineering
- China Jiliang University
- Hangzhou 310018
- China
| | - Hua Yang
- College of Materials Science and Engineering
- China Jiliang University
- Hangzhou 310018
- China
| | - Ziyang Liu
- College of Materials Science and Engineering
- China Jiliang University
- Hangzhou 310018
- China
| | - Yanqin Ji
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency
- National Institute for Radiological Protection
- Chinese Center for Disease Control and Prevention
- Beijing 100088
- P. R. China
| |
Collapse
|