1
|
Okazawa A, Sanada N, Takahashi S, Sato H, Hiraoka S. Pathway selection in the self-assembly of Rh 4L 4 coordination squares under kinetic control. Commun Chem 2023; 6:248. [PMID: 37968322 PMCID: PMC10651846 DOI: 10.1038/s42004-023-01053-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023] Open
Abstract
Pathway selection principles in reversible reaction networks such as molecular self-assembly have not been established yet, because achieving kinetic control in reversible reaction networks is more complicated than in irreversible ones. In this study, we discovered that coordination squares consisting of cis-protected dinuclear rhodium(II) corner complexes and linear ditopic ligands are assembled under kinetic control, perfectly preventing the corresponding triangles, by modulating their energy landscapes with a weak monotopic carboxylate ligand (2,6-dichlorobenzoate: dcb-) as the leaving ligand. Experimental and numerical approaches revealed the self-assembly pathway where the cyclization step to form the triangular complex is blocked by dcb-. It was also found that one of the molecular squares assembled into a dimeric structure owing to the solvophobic effect, which was characterized by nuclear magnetic resonance spectroscopy and single-crystal X-ray analysis.
Collapse
Affiliation(s)
- Atsushi Okazawa
- Department of Electrical Engineering and Bioscience, Waseda University, Tokyo, 169-8555, Japan
| | - Naoki Sanada
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Satoshi Takahashi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Kyoto University, Kyoto, 615-8510, Japan
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto, 606-8103, Japan
| | - Shuichi Hiraoka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan.
| |
Collapse
|
2
|
Sakata Y, Nakamura R, Hibi T, Akine S. Speed Tuning of the Formation/Dissociation of a Metallorotaxane. Angew Chem Int Ed Engl 2023; 62:e202217048. [PMID: 36628483 DOI: 10.1002/anie.202217048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/12/2023]
Abstract
Switching between the formation/dissociation of rotaxanes is important to control the function of various types of rotaxane-based materials. We have developed a convenient and simple strategy, the so-called "accelerator addition", to make a static rotaxane dynamic without apparently affecting the chemical structure. As an interlocked molecule that enables tuning of the formation/dissociation speed, a metallorotaxane was quantitatively generated by the complexation of a triptycene-based dumbbell-shaped mononuclear complex, [PdL2 ]2+ (L=2,3-diaminotriptycene), with 27C9. As a result of the inertness of the Pd2+ -based coordination structure, the metallorotaxane was slowly formed (the static state). This rotaxane formation was accelerated 27 times simply by adding Br- as an accelerator (the dynamic state). A similar drastic acceleration was also demonstrated during the dissociation process when Cs+ was added to the metallorotaxane to form the free axle [PdL2 ]2+ and the 27C9-Cs+ complex.
Collapse
Affiliation(s)
- Yoko Sakata
- Graduate School of Natural Science and Technology, Kanazawa University Kakuma-machi, Kanazawa, 920-1192, Japan.,Nano Life Science Institute (WPI-NanoLSI), Kanazawa University Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Ryosuke Nakamura
- Graduate School of Natural Science and Technology, Kanazawa University Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Toshihiro Hibi
- Graduate School of Natural Science and Technology, Kanazawa University Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology, Kanazawa University Kakuma-machi, Kanazawa, 920-1192, Japan.,Nano Life Science Institute (WPI-NanoLSI), Kanazawa University Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
3
|
Cui M, Murase R, Shen Y, Sato T, Koyama S, Uchida K, Tanabe T, Takaishi S, Yamashita M, Iguchi H. An electrically conductive metallocycle: densely packed molecular hexagons with π-stacked radicals. Chem Sci 2022; 13:4902-4908. [PMID: 35655871 PMCID: PMC9067574 DOI: 10.1039/d2sc00447j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
Electrical conduction among metallocycles has been unexplored because of the difficulty in creating electronic transport pathways. In this work, we present an electrocrystallization strategy for synthesizing an intrinsically electron-conductive metallocycle, [Ni6(NDI-Hpz)6(dma)12(NO3)6]·5DMA·nH2O (PMC-hexagon) (NDI-Hpz = N,N'-di(1H-pyrazol-4-yl)-1,4,5,8-naphthalenetetracarboxdiimide). The hexagonal metallocycle units are assembled into a densely packed ABCABC… sequence (like the fcc geometry) to construct one-dimensional (1D) helical π-stacked columns and 1D pore channels, which were maintained under the liberation of H2O molecules. The NDI cores were partially reduced to form radicals as charge carriers, resulting in a room-temperature conductivity of (1.2-2.1) × 10-4 S cm-1 (pressed pellet), which is superior to that of most NDI-based conductors including metal-organic frameworks and organic crystals. These findings open up the use of metallocycles as building blocks for fabricating conductive porous molecular materials.
Collapse
Affiliation(s)
- Mengxing Cui
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Aza-Aoba, Aramaki Sendai 980-8578 Japan
| | - Ryuichi Murase
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Aza-Aoba, Aramaki Sendai 980-8578 Japan
| | - Yongbing Shen
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Aza-Aoba, Aramaki Sendai 980-8578 Japan
| | - Tetsu Sato
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Aza-Aoba, Aramaki Sendai 980-8578 Japan
| | - Shohei Koyama
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Aza-Aoba, Aramaki Sendai 980-8578 Japan
| | - Kaiji Uchida
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Aza-Aoba, Aramaki Sendai 980-8578 Japan
| | - Tappei Tanabe
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Aza-Aoba, Aramaki Sendai 980-8578 Japan
| | - Shinya Takaishi
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Aza-Aoba, Aramaki Sendai 980-8578 Japan
| | - Masahiro Yamashita
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Aza-Aoba, Aramaki Sendai 980-8578 Japan
- School of Materials Science and Engineering, Nankai University Tianjin 300350 P. R. China
| | - Hiroaki Iguchi
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Aza-Aoba, Aramaki Sendai 980-8578 Japan
| |
Collapse
|
4
|
Kato M, Fukui T, Sato H, Shoji Y, Fukushima T. Capturing the Trajectory of Metal-Ion-Cluster Formation: Stepwise Accumulation of Zn(II) Ions in a Robust Coordination Space Formed by a Rigid Tridentate Carboxylate Ligand. Inorg Chem 2022; 61:3649-3654. [PMID: 35148475 DOI: 10.1021/acs.inorgchem.1c03758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Organic ligand-directed synthesis of metal-ion clusters with a well-defined number and arrangement of metal ions is an important subject toward the development of functional inorganic-organic nanohybrids. Here we report the synthesis of multinuclear Zn-oxo clusters using a triptycene-based rigid ligand (H3L) featuring three metal-coordination sites arranged in a triangular shape. Upon complexation of H3L with zinc acetate dihydrate, a decanuclear Zn-oxo cluster and multinuclear Zn-oxo clusters with a smaller number of Zn(II) ions were formed as the final product and its intermediates, respectively. A comparison of the X-ray structure of the final product with those of the intermediates revealed the cluster-formation process, where four triptycene ligands preorganize to form a robust coordination space to which Zn(II) ions accumulate in a stepwise manner. This stepwise metal-ion accumulation, along with the formation of a large tetrahedral decanuclear Zn-oxo cluster, highlights the potential of ligand design using 1,8,13-substituted triptycenes for the development of various metal-ion clusters.
Collapse
Affiliation(s)
- Mikiya Kato
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Tomoya Fukui
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Hiroyasu Sato
- Application Laboratory, Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima-shi, Tokyo 196-8666, Japan
| | - Yoshiaki Shoji
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
5
|
Sakata Y, Tsuyuki R, Sugimoto S, Akine S. Metal-dependent selective formation of calix[4]arene assemblies based on dynamic covalent chemistry. Chem Commun (Camb) 2021; 57:13510-13513. [PMID: 34817475 DOI: 10.1039/d1cc05553d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The reaction of calix[4]arene derivatives 1a and 1b bearing four salicylaldehyde moieties with 1,3-propanediamine gave macrocyclic trimers 5a and 5b, respectively, which have intramolecular bridges formed via the flattened cone conformation. In contrast, a capsular-shaped dimeric cage [7a·2Na]2+ was selectively formed when the conformation of the calix[4]arene moiety of 1a was fixed in the spread cone conformation by complexation with Na+ at the lower-rim amide groups.
Collapse
Affiliation(s)
- Yoko Sakata
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan. .,Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Ryo Tsuyuki
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Shingo Sugimoto
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan. .,Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
6
|
Zhang H, Liu Z, Xin F, Zhao Y. Metal-ligated pillararene materials: From chemosensors to multidimensional self-assembled architectures. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213425] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Functionalized metallonanobelt derivatives having quinoxaline scaffold prepared from a common precursor. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.06.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Campbell JP, Sharafi M, Murphy KE, Bocanegra JL, Schneebeli ST. Precise molecular shape control of linear and branched strips with chirality-assisted synthesis. Supramol Chem 2019. [DOI: 10.1080/10610278.2019.1638922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | - Mona Sharafi
- Department of Chemistry, The University of Vermont, Burlington, VT, USA
| | - Kyle E. Murphy
- Department of Chemistry, The University of Vermont, Burlington, VT, USA
| | | | | |
Collapse
|
9
|
Lavendomme R, Ronson TK, Nitschke JR. Metal and Organic Templates Together Control the Size of Covalent Macrocycles and Cages. J Am Chem Soc 2019; 141:12147-12158. [PMID: 31287669 PMCID: PMC6756589 DOI: 10.1021/jacs.9b06182] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
![]()
Covalent
macrocycles and three-dimensional cages were prepared by the self-assembly
of di- or tritopic anilines and 2,6-diformylpyridine subcomponents
around palladium(II) templates. The resulting 2,6-bis(imino)pyridyl-PdII motif contains a tridentate ligand, leaving a free coordination
site on the PdII centers, which points inward. The binding
of ligands to the free coordination sites in these assemblies was
found to alter the product stability, and multitopic ligands could
be used to control product size. Multitopic ligands also bridged metallomacrocycles
to form higher-order supramolecular assemblies, which were characterized
via NMR spectroscopy, mass spectrometry, and X-ray crystallography.
An efficient method was developed to reduce the imine bonds to secondary
amines, leading to fully organic covalent macrocycles and cages that
were inaccessible through other means.
Collapse
Affiliation(s)
- Roy Lavendomme
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Tanya K Ronson
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Jonathan R Nitschke
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| |
Collapse
|
10
|
Bardhan D, Chand DK. Palladium(II)-Based Self-Assembled Heteroleptic Coordination Architectures: A Growing Family. Chemistry 2019; 25:12241-12269. [PMID: 31158303 DOI: 10.1002/chem.201900831] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/29/2019] [Indexed: 01/10/2023]
Abstract
Metal-driven self-assembly is one of the most effective approaches to lucidly design a large range of discrete 2D and 3D coordination architectures/complexes. Palladium(II)-based self-assembled coordination architectures are usually prepared by using suitable metal components, in either a partially protected form (PdL') or typical form (Pd; charges are not shown), and designed ligand components. The self-assembled molecules prepared by using a metal component and only one type of bi- or polydentate ligand (L) can be classified in the homoleptic series of complexes. On the other hand, the less explored heteroleptic series of complexes are obtained by using a metal component and at least two different types of non-chelating bi- or polydentate ligands (such as La and Lb ). Methods that allow the controlled generation of single, discrete heteroleptic complexes are less understood. A survey of palladium(II)-based self-assembled coordination cages that are heteroleptic has been made. This review article illustrates a systematic collection of such architectures and credible justification of their formation, along with reported functional aspects of the complexes. The collected heteroleptic assemblies are classified here into three sections: 1) [(PdL')m (La )x (Lb )y ]-type complexes, in which the denticity of La and Lb is equal; 2) [(PdL')m (La )x (Lb )y ]-type complexes, in which the denticity of La and Lb is different; and 3) [Pdm (La )x (Lb )y ]-type complexes, in which the denticity of La and Lb is equal. Representative examples of some important homoleptic architectures are also provided, wherever possible, to set a background for a better understanding of the related heteroleptic versions. The purpose of this review is to pave the way for the construction of several unique heteroleptic coordination assemblies that might exhibit emergent supramolecular functions.
Collapse
Affiliation(s)
- Devjanee Bardhan
- Department of Chemistry, Indian Institute of Technology Madras, Chennnai, 600036, India
| | - Dillip Kumar Chand
- Department of Chemistry, Indian Institute of Technology Madras, Chennnai, 600036, India
| |
Collapse
|
11
|
Kieffer M, Garcia AM, Haynes CJE, Kralj S, Iglesias D, Nitschke JR, Marchesan S. Embedding and Positioning of Two Fe II4 L 4 Cages in Supramolecular Tripeptide Gels for Selective Chemical Segregation. Angew Chem Int Ed Engl 2019; 58:7982-7986. [PMID: 30921499 PMCID: PMC6563161 DOI: 10.1002/anie.201900429] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Indexed: 12/27/2022]
Abstract
An unreported d,l-tripeptide self-assembled into gels that embedded FeII4 L4 metal-organic cages to form materials that were characterized by TEM, EDX, Raman spectroscopy, rheometry, UV/Vis and NMR spectroscopy, and circular dichroism. The cage type and concentration modulated gel viscoelasticity, and thus the diffusion rate of molecular guests through the nanostructured matrix, as gauged by 19 F and 1 H NMR spectroscopy. When two different cages were added to spatially separated gel layers, the gel-cage composite material enabled the spatial segregation of a mixture of guests that diffused into the gel. Each cage selectively encapsulated its preferred guest during diffusion. We thus present a new strategy for using nested supramolecular interactions to enable the separation of small molecules.
Collapse
Affiliation(s)
- Marion Kieffer
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Ana M. Garcia
- Department of Chemical and Pharmaceutical SciencesUniversity of TriesteVia L. Giorgieri 134127TriesteItaly
| | - Cally J. E. Haynes
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Slavko Kralj
- Department of Chemical and Pharmaceutical SciencesUniversity of TriesteVia L. Giorgieri 134127TriesteItaly
- Materials Synthesis DepartmentJožef Stefan InstituteJamova 391000LjubljanaSlovenia
| | - Daniel Iglesias
- Department of Chemical and Pharmaceutical SciencesUniversity of TriesteVia L. Giorgieri 134127TriesteItaly
| | | | - Silvia Marchesan
- Department of Chemical and Pharmaceutical SciencesUniversity of TriesteVia L. Giorgieri 134127TriesteItaly
| |
Collapse
|
12
|
Kieffer M, Garcia AM, Haynes CJE, Kralj S, Iglesias D, Nitschke JR, Marchesan S. Embedding and Positioning of Two Fe
II
4
L
4
Cages in Supramolecular Tripeptide Gels for Selective Chemical Segregation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Marion Kieffer
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Ana M. Garcia
- Department of Chemical and Pharmaceutical Sciences University of Trieste Via L. Giorgieri 1 34127 Trieste Italy
| | - Cally J. E. Haynes
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Slavko Kralj
- Department of Chemical and Pharmaceutical Sciences University of Trieste Via L. Giorgieri 1 34127 Trieste Italy
- Materials Synthesis Department Jožef Stefan Institute Jamova 39 1000 Ljubljana Slovenia
| | - Daniel Iglesias
- Department of Chemical and Pharmaceutical Sciences University of Trieste Via L. Giorgieri 1 34127 Trieste Italy
| | - Jonathan R. Nitschke
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences University of Trieste Via L. Giorgieri 1 34127 Trieste Italy
| |
Collapse
|