1
|
Hunter NH, Thomas CM. Polarized metal-metal multiple bonding and reactivity of phosphinoamide-bridged heterobimetallic group IV/cobalt compounds. Dalton Trans 2024; 53:15764-15781. [PMID: 39224084 DOI: 10.1039/d4dt02064b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Heterobimetallic complexes are studied for their ability to mimic biological systems as well as active sites in heterogeneous catalysts. While specific interest in early/late heterobimetallic systems has fluctuated, they serve as important models to fundamentally understand metal-metal bonding. Specifically, the polarized metal-metal multiple bonds formed in highly reduced early/late heterobimetallic complexes exemplify how each metal modulates the electronic environment and reactivity of the complex as a whole. In this Perspective, we chronicle the development of phosphinoamide-supported group IV/cobalt heterobimetallic complexes. This combination of metals allows access to a low valent Co-I center, which performs a rich variety of bond activation reactions when coupled with the pendent Lewis acidic metal center. Conversely, the low valent late transition metal is also observed to act as an electron reservoir, allowing for redox processes to occur at the d0 group IV metal site. Most of the bond activation reactions carried out by phosphinoamide-bridged M/Co-I (M = Ti, Zr, Hf) complexes are facilitated by cleavage of metal-metal multiple bonds, which serve as readily accessible electron reservoirs. Comparative studies in which both the number of buttressing ligands as well as the identity of the early metal were varied to give a library of heterobimetallic complexes are summarized, providing a thorough understanding of the reactivity of M/Co-I heterobimetallic systems.
Collapse
Affiliation(s)
- Nathanael H Hunter
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W, 18th Ave, Columbus, OH 43210, USA.
| | - Christine M Thomas
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W, 18th Ave, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
Spielvogel KD, Campbell EJ, Chowdhury SR, Benner F, Demir S, Hatzis GP, Petras HR, Sembukuttiarachchige D, Shepherd JJ, Thomas CM, Vlaisavljevich B, Daly SR. Modulation of Fe-Fe distance and spin in diiron complexes using tetradentate ligands with different flanking donors. Chem Commun (Camb) 2024; 60:8399-8402. [PMID: 39028006 DOI: 10.1039/d4cc02522a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Here we report the synthesis and characterization of diiron complexes containing triaryl N4 and N2S2 ligands derived from o-phenylenediamine. The complexes display significant differences in Fe-Fe distances and magnetic properties that depend on the identity of the flanking NMe2 and SMe donor groups.
Collapse
Affiliation(s)
- Kyle D Spielvogel
- The University of Iowa, Department of Chemistry, E331 Chemistry Building, Iowa City, IA 52242, USA.
| | - Emily J Campbell
- The University of Iowa, Department of Chemistry, E331 Chemistry Building, Iowa City, IA 52242, USA.
| | - Sabyasachi Roy Chowdhury
- The University of South Dakota, Department of Chemistry, 414 E Clark St., Vermillion SD, 57069, USA
| | - Florian Benner
- Michigan State University, Department of Chemistry, 578 South Shaw Lane, East Lansing, Michigan 48824, USA
| | - Selvan Demir
- Michigan State University, Department of Chemistry, 578 South Shaw Lane, East Lansing, Michigan 48824, USA
| | - Gillian P Hatzis
- The Ohio State University, Department of Chemistry and Biochemistry, 100 West 18th Ave, Columbus, OH 43210, USA
| | - Hayley R Petras
- The University of Iowa, Department of Chemistry, E331 Chemistry Building, Iowa City, IA 52242, USA.
| | | | - James J Shepherd
- The University of Iowa, Department of Chemistry, E331 Chemistry Building, Iowa City, IA 52242, USA.
| | - Christine M Thomas
- The Ohio State University, Department of Chemistry and Biochemistry, 100 West 18th Ave, Columbus, OH 43210, USA
| | - Bess Vlaisavljevich
- The University of Iowa, Department of Chemistry, E331 Chemistry Building, Iowa City, IA 52242, USA.
- The University of South Dakota, Department of Chemistry, 414 E Clark St., Vermillion SD, 57069, USA
| | - Scott R Daly
- The University of Iowa, Department of Chemistry, E331 Chemistry Building, Iowa City, IA 52242, USA.
| |
Collapse
|
3
|
Palmese M, Pérez-Torrente JJ, Passarelli V. Reactivity of Ir(I)-aminophosphane platforms towards oxidants. Dalton Trans 2023; 52:13689-13703. [PMID: 37706349 DOI: 10.1039/d3dt02361c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The iridium(I)-aminophosphane complex [Ir{κ3C,P,P'-(SiNP-H)}(cod)] has been prepared by reaction of [IrCl(cod)(SiNP)] with KCH3COO. DFT calculations show that this reaction takes place through an unexpected outer sphere mechanism (SiNP = SiMe2{N(4-C6H4Me)PPh2}2; SiNP-H = CH2SiMe{N(4-C6H4Me)PPh2}2). The reaction of [IrCl(cod)(SiNP)] or [Ir{κ3C,P,P'-(SiNP-H)}(cod)] with diverse oxidants has been explored, yielding a range of iridium(III) derivatives. On one hand, [IrCl(cod)(SiNP)] reacts with allyl chloride rendering the octahedral iridium(III) derivative [IrCl2(η3-C3H5)(SiNP)], which, in turn, reacts with tert-butyl isocyanide yielding the substitution product [IrCl(η3-C3H5)(CNtBu)(SiNP)]Cl via the observed intermediate [IrCl2(η1-C3H5)(CNtBu)(SiNP)]. On the other hand, the reaction of [Ir{κ3C,P,P'-(SiNP-H)}(cod)] with [FeCp2]X (X = PF6, CF3SO3), I2 or CF3SO3CH3 results in the metal-centered two-electron oxidation rendering a varied assortment of iridium(III) compounds. [Ir{κ3C,P,P'-(SiNP-H)}(cod)] reacts with [FeCp2]+ (1 : 2) in acetonitrile affording [Ir{κ3C,P,P'-(SiNP-H)}(CH3CN)3]2+ isolated as both the triflato and the hexafluorophosphato derivatives. Also, the reaction of [Ir{κ3C,P,P'-(SiNP-H)}(cod)] with I2 (1 : 1) yields a mixture of iridium(III) derivatives, namely the mononuclear compound [IrI(κ2P,P'-SiNP)(η2,η3-C8H11)]I, containing the η2,η3-cycloocta-2,6-dien-1-yl ligand, and two isomers of the dinuclear derivative [Ir2{κ3C,P,P'-(SiNP-H)}2(μ-I)3]I, the first species being isolated in low yield. DFT calculations indicate that [IrI(κ2P,P'-SiNP)(η2,η3-C8H11)]I forms as the result of a bielectronic oxidation of iridium(I) followed by the deprotonation of the cod ligand by iodide and the protonation of the methylene moiety of the [Ir{κ3C,P,P'-(SiNP-H)}] platform by the newly formed HI. Finally, the oxidation of [Ir{κ3C,P,P'-(SiNP-H)}(cod)] by methyl triflate proceeds via a hydride abstraction from the cod ligand, with the elimination of methane and the formation of the η2,η3-cycloocta-2,6-dien-1-yl ligand with the concomitant two-electron oxidation of the iridium centre. The crystal structures of selected compounds have been determined.
Collapse
Affiliation(s)
- Marco Palmese
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC, C/Pedro Cerbuna 12, ES-50009 Zaragoza, Spain.
| | - Jesús J Pérez-Torrente
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC, C/Pedro Cerbuna 12, ES-50009 Zaragoza, Spain.
| | - Vincenzo Passarelli
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC, C/Pedro Cerbuna 12, ES-50009 Zaragoza, Spain.
| |
Collapse
|
4
|
McClain KR, Kwon H, Chakarawet K, Nabi R, Kragskow JGC, Chilton NF, Britt RD, Long JR, Harvey BG. A Trinuclear Gadolinium Cluster with a Three-Center One-Electron Bond and an S = 11 Ground State. J Am Chem Soc 2023; 145:8996-9002. [PMID: 37068040 PMCID: PMC10141408 DOI: 10.1021/jacs.3c00182] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The recent discovery of metal-metal bonding and valence delocalization in the dilanthanide complexes (CpiPr5)2Ln2I3 (CpiPr5 = pentaisopropylcyclopentadienyl; Ln = Y, Gd, Tb, Dy) opened up the prospect of harnessing the 4fn5dz21 electron configurations of non-traditional divalent lanthanide ions to access molecules with novel bonding motifs and magnetism. Here, we report the trinuclear mixed-valence clusters (CpiPr5)3Ln3H3I2 (1-Ln, Ln = Y, Gd), which were synthesized via potassium graphite reduction of the trivalent clusters (CpiPr5)3Ln3H3I3. Structural, computational, and spectroscopic analyses support valence delocalization in 1-Ln resulting from a three-center, one-electron σ bond formed from the 4dz2 and 5dz2 orbitals on Y and Gd, respectively. Dc magnetic susceptibility data obtained for 1-Gd reveal that valence delocalization engenders strong parallel alignment of the σ-bonding electron and the 4f electrons of each gadolinium center to afford a high-spin ground state of S = 11. Notably, this represents the first clear instance of metal-metal bonding in a molecular trilanthanide complex, and the large spin-spin exchange constant of J = 168(1) cm-1 determined for 1-Gd is only the second largest coupling constant characterized to date for a molecular lanthanide compound.
Collapse
Affiliation(s)
- K Randall McClain
- Naval Air Warfare Center, Weapons Division, Research Department, Chemistry Division, US Navy, China Lake, California 93555, United States
| | - Hyunchul Kwon
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Khetpakorn Chakarawet
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Rizwan Nabi
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Jon G C Kragskow
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Nicholas F Chilton
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - R David Britt
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Jeffrey R Long
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Benjamin G Harvey
- Naval Air Warfare Center, Weapons Division, Research Department, Chemistry Division, US Navy, China Lake, California 93555, United States
| |
Collapse
|
5
|
Mamta P, Chaudhary A. Synthesis, Spectroscopic elucidation, In vitro Antimicrobial, Cytotoxic and CT-DNA binding Evaluation of Heterobimetallic Complexes of Ni(II) with Main Group/Transition Metal dichlorides. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
Wheaton A, Chipman JA, Roy MD, Berry JF. Metal-Metal Bond Umpolung in Heterometallic Extended Metal Atom Chains. Inorg Chem 2022; 61:15058-15069. [PMID: 36094078 PMCID: PMC9632685 DOI: 10.1021/acs.inorgchem.2c02118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 11/28/2022]
Abstract
Understanding the fundamental properties governing metal-metal interactions is crucial to understanding the electronic structure and thereby applications of multimetallic systems in catalysis, material science, and magnetism. One such property that is relatively underexplored within multimetallic systems is metal-metal bond polarity, parameterized by the electronegativities (χ) of the metal atoms involved in the bond. In heterobimetallic systems, metal-metal bond polarity is a function of the donor-acceptor (Δχ) interactions of the two bonded metal atoms, with electropositive early transition metals acting as electron acceptors and electronegative late transition metals acting as electron donors. We show in this work, through the preparation and systematic study of a series of Mo2M(dpa)4(OTf)2 (M = Cr, Mn, Fe, Co, and Ni; dpa = 2,2'-dipyridylamide; OTf = trifluoromethanesulfonate) heterometallic extended metal atom chain (HEMAC) complexes that this expected trend in χ can be reversed. Physical characterization via single-crystal X-ray diffraction, magnetometry, and spectroscopic methods as well as electronic structure calculations supports the presence of a σ symmetry 3c/3e- bond that is delocalized across the entire metal-atom chain and forms the basis of the heterometallic Mo2-M interaction. The delocalized 3c/3e- interaction is discussed within the context of the analogous 3c/3e- π bonding in the vinoxy radical, CH2CHO. The vinoxy comparison establishes three predictions for the σ symmetry 3c/3e- bond in HEMACS: (1) an umpolung effect that causes the Mo-M interactions to become more covalent as Δχ increases, (2) distortion of the σ bonding and non-bonding orbitals to emphasize Mo-M bonding and de-emphasize Mo-Mo bonding, and (3) an increase in Mo spin population with increasing Mo-M covalency. In agreement with these predictions, we find that the Mo2···M covalency increases with increasing Δχ of the Mo and M atoms (ΔχMo-M increases as M = Cr < Mn < Fe < Co < Ni), an umpolung of the trend predicted in the absence of σ delocalization. We attribute the observed trend in covalency to the decreased energic differential (ΔE) between the heterometal d z 2 orbital and the σ bonding molecular orbital of the Mo2 quadruple bond, which serves as an energetically stable, "ligand"-like electron-pair donor to the heterometal ion acceptor. As M is changed from Cr to Ni, the σ bonding and nonbonding orbitals do indeed distort as anticipated, and the spin population of the outer Mo group is increased by at least a factor of 2. These findings provide a predictive framework for multimetallic compounds and advance the current understanding of the electronic structures of molecular heteromultimetallic systems, which can be extrapolated to applications in the context of mixed-metal surface catalysis and multimetallic proteins.
Collapse
Affiliation(s)
- Amelia
M. Wheaton
- Department of Chemistry, University
of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jill A. Chipman
- Department of Chemistry, University
of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Michael D. Roy
- Department of Chemistry, University
of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - John. F. Berry
- Department of Chemistry, University
of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
7
|
Palmese M, Pérez-Torrente JJ, Passarelli V. Cyclometalated iridium complexes based on monodentate aminophosphanes. Dalton Trans 2022; 51:12334-12351. [PMID: 35904083 DOI: 10.1039/d2dt02081e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monodentate aminophosphanes HNP [NH(4-tolyl)PPh2] and SiMe3NP [SiMe3N(4-tolyl)PPh2] react with [Ir(μ-Cl)(cod)]2 affording tetra- or pentacoordinate complexes of formula [IrCl(L)n(cod)] (L = HNP, n = 1, 2; L = SiMe3NP, n = 1). The reaction of [IrCl(SiMe3NP)(cod)] with carbon monoxide smoothly renders [Ir(CO)3(SiMe3NP)2][IrCl2(CO)2]. The reaction of HNP or SiMe3NP with [Ir(CH3CN)2(cod)][PF6] yields the cyclometalated iridium(III)-hydride derivatives [IrH{κ2C,P-NR(4-C6H3CH3)PPh2}(cod)(CH3CN)][PF6] (R = H, SiMe3) as a result of the intramolecular oxidative addition of the tolyl C2-H bond to iridium. The straighforward formation of [IrH{κ2C,P-SiMe3N(4-C6H3CH3)PPh2}(cod)(CH3CN)]+ was observed when the reaction was monitored by NMR spectroscopy at 233 K, whereas a more complex reaction sequence was observed in the formation of [IrH{κ2C,P-NH(4-C6H3CH3)PPh2}(cod)(CH3CN)]+, including the formation of [IrH{κ2C,P-NH(4-C6H3CH3)PPh2}(HNP)(cod)]+ and [Ir(cod)(HNP)2]+. The "mixed" complex [IrH{κ2C,P-SiMe3N(4-C6H3CH3)PPh2}(HNP)(cod)]+ was obtained upon reaction of [IrH{κ2C,P-NH(4-C6H3CH3)PPh2}(cod)(CH3CN)][PF6] with SiMe3NP at 233 K. Finally, the reaction of [Ir(CH3CN)2(coe)2][PF6] with SiMe3NP or HNP resulted in the formation of [Ir(CH3CN)2(SiMe3NP)2][PF6] and [IrH{κ2C,P-NH(4-C6H3CH3)PPh2}(HNP)2(CH3CN)][PF6], respectively. Both the OC-6-35 and the OC-6-52 isomers of [IrH{κ2C,P-NH(4-C6H3CH3)PPh2}(HNP)2(CH3CN)]+ - featuring facial and meridional dispositions of the phosphorus atoms, respectively - were isolated depending on the reaction solvent. Several compounds described herein catalyse the dehydrogenation of formic acid in DMF, [IrCl(HNP)2(cod)] being the most active, with TOF1 min of about 2300 h-1 (5 mol% catalyst, 50 mol% sodium formate, DMF, 80 °C).
Collapse
Affiliation(s)
- Marco Palmese
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC, C/Pedro Cerbuna 12, ES-50009 Zaragoza, Spain.
| | - Jesús J Pérez-Torrente
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC, C/Pedro Cerbuna 12, ES-50009 Zaragoza, Spain.
| | - Vincenzo Passarelli
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC, C/Pedro Cerbuna 12, ES-50009 Zaragoza, Spain.
| |
Collapse
|
8
|
Palmese M, Pérez-Torrente JJ, Passarelli V. Synthesis and reactivity of an iridium complex based on a tridentate aminophosphano ligand. Dalton Trans 2022; 51:7142-7153. [PMID: 35466986 DOI: 10.1039/d2dt00794k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The iridium(III) hydride compound [IrH{κ3C,P,P'-(SiNP-H)}(CNtBu)2][PF6] (1PF6) was obtained by reaction of [Ir(SiNP)(cod)][PF6] with CNtBu as the result of the intramolecular oxidative addition of the SiCH2-H bond to iridium(I) [SiNP = Si(CH3)2{N(4-tolyl)PPh2}2, SiNP-H = CH2Si(CH3){N(4-tolyl)PPh2}2]. The mechanism of the reaction was investigated by NMR spectroscopy and DFT calculations showing that the pentacoordinated intermediate [Ir(SiNP)(cod)(CNtBu)][PF6] (2PF6) forms in the first place and that further reacts with CNtBu, affording the square planar intermediate [Ir(SiNP)(CNtBu)2][PF6] (3PF6) that finally undergoes the intramolecular oxidative addition of the SiCH2-H bond. The reactivity of 1PF6 was investigated. On one hand, the reaction of 1PF6 with N-chlorosuccinimide or N-bromosuccinimide provides the haloderivatives [IrX{κ3C,P,P'-(SiNP-H)}(CNtBu)2][PF6] (X = Cl, 4PF6; Br, 5PF6), and the reaction of 5PF6 with AgPF6 in the presence of acetonitrile affords the solvato species [Ir{κ3C,P,P'-(SiNP-H)}(CH3CN)(CNtBu)2]2+ (62+) isolated as the hexafluorophosphate salt. On the other hand, the reaction of 1PF6 with HBF4 gives the iridium(III) compound [IrH(CH2SiF2CH3)(HNP)2(CNtBu)2][BF4] (7BF4) as the result of the formal addition of hydrogen fluoride to the Si-N bonds of 1+ [HNP = HN(4-tolyl)PPh2]. A similar outcome was observed in the reaction of 1PF6 with CF3COOH rendering 7PO2F2. In this case the intermediate [IrH{κ2C,P-CH2SiMeFN(4-tolyl)PPh2}(HNP)(CNtBu)2]+ (8+) was observed and characterised in situ by NMR spectroscopy. DFT calculations suggests that the reaction goes through the sequential protonation of the nitrogen atom of the Si-N-P moiety followed by the formal addition of fluoride ion to silicon. Also, the crystal structures of SiNP, 1PF6, 4PF6 and 7BF4 have been determined by X-ray diffraction measurements.
Collapse
Affiliation(s)
- Marco Palmese
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catalisis Homogenea (ISQCH), Universidad de Zaragoza-CSIC, C/Pedro Cerbuna 12, ES-50007 Zaragoza, Spain.
| | - Jesús J Pérez-Torrente
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catalisis Homogenea (ISQCH), Universidad de Zaragoza-CSIC, C/Pedro Cerbuna 12, ES-50007 Zaragoza, Spain.
| | - Vincenzo Passarelli
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catalisis Homogenea (ISQCH), Universidad de Zaragoza-CSIC, C/Pedro Cerbuna 12, ES-50007 Zaragoza, Spain.
| |
Collapse
|
9
|
Taylor MG, Nandy A, Lu CC, Kulik HJ. Deciphering Cryptic Behavior in Bimetallic Transition-Metal Complexes with Machine Learning. J Phys Chem Lett 2021; 12:9812-9820. [PMID: 34597514 DOI: 10.1021/acs.jpclett.1c02852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We demonstrate an alternative, data-driven approach to uncovering structure-property relationships for the rational design of heterobimetallic transition-metal complexes that exhibit metal-metal bonding. We tailor graph-based representations of the metal-local environment for these complexes for use in multiple linear regression and kernel ridge regression (KRR) models. We curate a set of 28 experimentally characterized complexes to develop a multiple linear regression model for oxidation potentials. We achieve good accuracy (mean absolute error of 0.25 V) and preserve transferability to unseen experimental data with a new ligand structure. We also train a KRR model on a subset of 330 structurally characterized heterobimetallics to predict the degree of metal-metal bonding. This KRR model predicts relative metal-metal bond lengths in the test set to within 5%, and analysis of key features reveals the fundamental atomic contributions (e.g., the valence electron configuration) that most strongly influence the behavior of these complexes. Our work provides guidance for rational bimetallic design, suggesting that properties, including the formal shortness ratio, should be transferable from one period to another.
Collapse
Affiliation(s)
- Michael G Taylor
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Connie C Lu
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Charles RM, Brewster TP. H 2 and carbon-heteroatom bond activation mediated by polarized heterobimetallic complexes. Coord Chem Rev 2021; 433:213765. [PMID: 35418712 PMCID: PMC9004596 DOI: 10.1016/j.ccr.2020.213765] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The field of heterobimetallic chemistry has rapidly expanded over the last decade. In addition to their interesting structural features, heterobimetallic structures have been found to facilitate a range of stoichiometric bond activations and catalytic processes. The accompanying review summarizes advances in this area since January of 2010. The review encompasses well-characterized heterobimetallic complexes, with a particular focus on mechanistic details surrounding their reactivity applications.
Collapse
Affiliation(s)
- R Malcolm Charles
- Department of Chemistry, The University of Memphis, 3744 Walker Ave., Smith Chemistry Building, Memphis, TN 38152, United States
| | - Timothy P Brewster
- Department of Chemistry, The University of Memphis, 3744 Walker Ave., Smith Chemistry Building, Memphis, TN 38152, United States
| |
Collapse
|
11
|
Mears KL, Stennett CR, Taskinen EK, Knapp CE, Carmalt CJ, Tuononen HM, Power PP. Molecular Complexes Featuring Unsupported Dispersion-Enhanced Aluminum-Copper and Gallium-Copper Bonds. J Am Chem Soc 2020; 142:19874-19878. [PMID: 33170691 DOI: 10.1021/jacs.0c10099] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The reaction of the copper(I) β-diketiminate copper complex {(Cu(BDIMes))2(μ-C6H6)} (BDIMes = N,N'-bis(2,4,6-trimethylphenyl)pentane-2,4-diiminate) with the low-valent group 13 metal β-diketiminates M(BDIDip) (M = Al or Ga; BDIDip = N,N'-bis(2,6-diisopropylphenyl)pentane-2,4-diiminate) in toluene afforded the complexes {(BDIMes)CuAl(BDIDip)} and {(BDIMes)CuGa(BDIDip)}. These feature unsupported copper-aluminum or copper-gallium bonds with short metal-metal distances, Cu-Al = 2.3010(6) Å and Cu-Ga = 2.2916(5) Å. Density functional theory (DFT) calculations showed that approximately half of the calculated association enthalpies can be attributed to London dispersion forces.
Collapse
Affiliation(s)
- Kristian L Mears
- Materials Chemistry Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Cary R Stennett
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Elina K Taskinen
- Department of Chemistry, NanoScience Centre, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Caroline E Knapp
- Materials Chemistry Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Claire J Carmalt
- Materials Chemistry Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Heikki M Tuononen
- Department of Chemistry, NanoScience Centre, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Philip P Power
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
12
|
Dunn PL, Beaumier EP, Tonks IA. Synthesis and Characterization of Tantalum-Based Early-Late Heterobimetallic Complexes Supported by 2-(diphenylphosphino)pyrrolide Ligands. Polyhedron 2020; 181. [PMID: 32292224 DOI: 10.1016/j.poly.2020.114471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The synthesis of the metalloligand Ta(κ2-NP)3Cl2 (NP = 2-diphenylphosphinopyrrolide) and its coordination chemistry with group 9 and 10 metals is reported. Treatment of Ta(κ2-NP)3Cl2 with group 9 and 10 metals resulted in clean formation of the heterobimetallic complexes Cl2Ta(μ2-NP)3M (M = Ni (2), Pd (3)) or Cl2Ta(μ2-NP)3MCl (M = Rh (4), Ir (5)). Each pair of complexes is isostructural and contains three phosphinopyrrolide ligands that bridge the metal centers. The d10 or d8 complexes are all diamagnetic and X-ray crystallographic analysis reveals similarly short metal-metal distances, ranging from 2.2979(5) Å to 2.4366(2) Å. Despite the similar bonding metrics in 2-5, treatment with an L type donor (2,6-dimethylphenylisocyanide (CNXylyl)) reveals 3 different coordination geometries in TaNi(CNXylyl) (6), TaPd(CNXylyl) (7), and TaIr(CNXylyl) (8). While complexes 6, 7, and 8 all bind the isocyanide at the late metal, ligand rearrangements are observed in the first row complex 6. Complex 7 binds the isocyanide in the axial position while equatorial binding is observed in 8. All isocyanide adducts maintain close metal-metal contacts in the solid state.
Collapse
Affiliation(s)
- Peter L Dunn
- Department of Chemistry, University of Minnesota - Twin Cities, 207 Pleasant St SE, Minneapolis MN 55455
| | - Evan P Beaumier
- Department of Chemistry, University of Minnesota - Twin Cities, 207 Pleasant St SE, Minneapolis MN 55455
| | - Ian A Tonks
- Department of Chemistry, University of Minnesota - Twin Cities, 207 Pleasant St SE, Minneapolis MN 55455
| |
Collapse
|
13
|
Abstract
Significant progress has been made in the past 10-15 years on the design, synthesis, and properties of multimetallic coordination complexes with heterometallic metal-metal bonds that are paramagnetic. Several general classes have been explored including heterobimetallic compounds, heterotrimetallic compounds of either linear or triangular geometry, discrete molecular compounds containing a linear array of more than three metal atoms, and coordination polymers with a heterometallic metal-metal bonded backbone. We focus in this Review on the synthetic methods employed to access these compounds, their structural features, magnetic properties, and electronic structure. Regarding the metal-metal bond distances, we make use of the formal shortness ratio (FSR) for comparison of bond distances between a broad range of metal atoms of different sizes. The magnetic properties of these compounds can be described using an extension of the Goodenough-Kanamori rules to cases where two magnetic ions interact via a third metal atom. In describing the electronic structure, we focus on the ability (or not) of electrons to be delocalized across heterometallic bonds, allowing for rationalizations and predictions of single-molecule conductance measurements in paramagnetic heterometallic molecular wires.
Collapse
Affiliation(s)
- Jill A Chipman
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison Wisconsin 53706, United States
| | - John F Berry
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison Wisconsin 53706, United States
| |
Collapse
|
14
|
Dunn PL, Chatterjee S, MacMillan SN, Pearce AJ, Lancaster KM, Tonks IA. The 4-Electron Cleavage of a N═N Double Bond by a Trimetallic TiNi2 Complex. Inorg Chem 2019; 58:11762-11772. [DOI: 10.1021/acs.inorgchem.9b01805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Peter L. Dunn
- Department of Chemistry, University of Minnesota—Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Sudipta Chatterjee
- Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Samantha N. MacMillan
- Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Adam J. Pearce
- Department of Chemistry, University of Minnesota—Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Kyle M. Lancaster
- Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ian A. Tonks
- Department of Chemistry, University of Minnesota—Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|