1
|
Zhang Y, Wang P, Xue S, Woods T, Guo Y, Zampella G, Rauchfuss TB, Arrigoni F. Synthesis, Spectroscopy, and Structure of [FeRu(μ-dithiolate)(CN) 2(CO) 4] 2. Inorg Chem 2023; 62:16842-16853. [PMID: 37788376 DOI: 10.1021/acs.inorgchem.3c02289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The salt [K(18-crown-6)]2[Ru(CN)2(CO)3] ([K(18-crown-6)]2[1]) was generated by the reaction of Ru(C2H4)(CO)4 with [K(18-crown-6)]CN. An initial thermal reaction gives [Ru(CN)(CO)4]-, which, upon ultraviolet (UV) irradiation, reacts with a second equiv of CN-. Protonation of [1]2- gave [HRu(CN)2(CO)3]- ([H1]-), which was isolated as a single isomer with mutually trans cyanide ligands. The complex cis,cis,cis-[Ru(pdt)(CN)2(CO)2]2- ([2]2-) was prepared by the UV-induced reaction of [1]2- with propanedithiol (pdtH2). The corresponding iron complex cis,cis,cis-[Fe(pdt)(CN)2(CO)2]2- ([3]2-) was prepared similarly. The pdt complexes [2]2- and [3]2- were treated with Fe(benzylideneacetone)(CO)3 to give, respectively, [RuFe (μ-pdt)(CN)2(CO)4]2- ([5]2-) and [Fe2(μ-pdt)(CN)2(CO)4]2- ([4]2-). The pathway from [3]2- to Fe2 complex [4]2- implicates intermetallic migration of CN-. In contrast, the formation of [5]2- leaves the Ru(CN)2(CO) center intact, as confirmed by X-ray crystallography. The structure of [5]2- features a "rotated" square-pyramidal Fe(CO)2(μ-CO) site. NMR measurements indicate that the octahedral Ru site is stereochemically rigid, whereas the Fe site dynamically undergoes turnstile rotation. 57Fe Mössbauer spectral parameters are very similar for rotated [5]2- and unrotated Fe2 complex [4]2-, indicating the insensitivity of that technique to both the geometry and the oxidation state of the Fe site. According to cyclic voltammetry, [5]2- oxidizes at E1/2 ∼ -0.8 V vs Fc+/0. Electron paramagnetic resonance (EPR) measurements show that 1e- oxidation of [5]2- gives an S = 1/2 rhombic species, consistent with the formulation Ru(II)Fe(I), related to the Hox state of the [FeFe] hydrogenases. Density functional theory (DFT) studies reproduce the structure, 1H NMR shifts, and infrared (IR) spectra observed for [5]2-. Related homometallic complexes with both cyanides on a single metal are predicted to not adopt rotated structures. These data suggest that [5]2- is best described as Ru(II)Fe(0). This conclusion raises the possibility that for some reduced states of the [FeFe]-hydrogenases, the [2Fe]H site may be better described as Fe(II)Fe(0) than Fe(I)Fe(I).
Collapse
Affiliation(s)
- Yu Zhang
- School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Ping Wang
- School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Shan Xue
- Department of Chemistry, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Toby Woods
- School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 20126 Milan, Italy
| | - Thomas B Rauchfuss
- School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 20126 Milan, Italy
| |
Collapse
|
2
|
Zhang F, Woods TJ, Rauchfuss TB. Hybrids of [FeFe]- and [NiFe]-H 2ase Active Site Models. Organometallics 2023; 42:1607-1614. [PMID: 37928214 PMCID: PMC10624399 DOI: 10.1021/acs.organomet.3c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Complexes of the type (diphosphine)Ni(μ-SR)2Fe(CO)3 are investigated with azadithiolate (adt, HN(CH2S-)2) as the dithiolate. The resulting complexes are hybrid models for the active sites of the [NiFe]- and [FeFe]-hydrogenases. The key complex (dppv)Ni(μ-adt)Fe(CO)3 (3) was prepared from the complex Ni[(SCH2)2NCbz](dppv), which contains a Cbz-protected adt ligand (Cbz = C(O)OCH2Ph, dppv = cis-1,2-(Ph2P)2C2H2). This complex combines with Fe2(CO)9 to give (dppv)Ni[(μ-SCH2)2NCbz]Fe(CO)3, which is readily deprotected to give 3. Complex 3 undergoes protonation at both Fe and N to give successively [(dppv)Ni(μ-adt)FeH(CO)3]+ ([H3]+) and [(dppv)Ni(μ-adtH)FeH(CO)3]2+ ([H3H]2+). The redox properties and dynamics of these complexes resemble previously reported analogues with propanedithiolate. Solutions of [H3]+ readily degrade to [(dppv)Ni[(μ-SCH2)2NCH2]Fe(CO)3]+ ([4]+), which features a methylene group linking N and Fe. Complex [4]+ can be made in high yield by reaction of [H3]+ with CH2O, and this conversion was also demonstrated with 13CH2O. Complex [4]+ undergoes hydrogenolysis by photochemical reaction with H2 to give [(dppv)Ni[(μ-SCH2)2NMe]FeH(CO)3]+, the N-methylated analogue of [H3]+. Upon treatment ith Me3O+, [4]+ undergoes quaternization, giving [(dppv)Ni[(μ-SCH2)2N(Me)CH2]Fe(CO)3]2+. In contrast with the lability of [H3]+, the phosphine-substituted derivative [(dppv)Ni(μ-adt)FeH(CO)2(PPh3)]+ did not degrade. Most complexes were characterized by X-ray crystallography.
Collapse
Affiliation(s)
- Fanjun Zhang
- School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, United States; Present Address: School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China (F.Z.)
| | - Toby J Woods
- School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Thomas B Rauchfuss
- School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Wojnar M, Ziller JW, Heyduk AF. Two-Electron Mixed Valency in a Heterotrimetallic Nickel-Vanadium-Nickel Complex. Inorg Chem 2023; 62:1405-1413. [PMID: 36633592 PMCID: PMC9890480 DOI: 10.1021/acs.inorgchem.2c03381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mixed-valence complexes represent an enticing class of coordination compounds to interrogate electron transfer confined within a molecular framework. The diamagnetic heterotrimetallic anion, [V(SNS)2{Ni(dppe)}2]-, was prepared by reducing (dppe)NiCl2 in the presence of the chelating metalloligand [V(SNS)2]- [dppe = bis(diphenylphosphino)ethane; (SNS)3- = bis(2-thiolato-4-methylphenyl)amide]. Vanadium-nickel bonds span the heterotrimetallic core in the structure of [V(SNS)2{Ni(dppe)}2]-, with V-Ni bond lengths of 2.78 and 2.79 Å. One-electron oxidation of monoanionic [V(SNS)2{Ni(dppe)}2]- yielded neutral, paramagnetic V(SNS)2{Ni(dppe)}2. The solid-state structure of V(SNS)2{Ni(dppe)}2 revealed that the two nickel ions occupy unique coordination environments: one nickel is in a square-planar S2P2 coordination environment (τ4 = 0.19), with a long Ni···V distance of 3.45 Å; the other nickel is in a tetrahedral S2P2 coordination environment (τ4 = 0.84) with a short Ni-V distance of 2.60 Å, consistent with a formal metal-metal bond. Continuous-wave X-band electron paramagnetic resonance spectroscopy, electrochemical investigations, and density functional theory computations indicated that the unpaired electron in the neutral V(SNS)2{Ni(dppe)}2 cluster is localized on the bridging [V(SNS)2] metalloligand, and as a result, V(SNS)2{Ni(dppe)}2 is best described as a two-electron mixed-valence complex. These results demonstrate the important role that metal-metal interactions and flexible coordination geometries play in enabling multiple, reversible electron transfer processes in small cluster complexes.
Collapse
|
4
|
Overriding the inherent alkalinity to dual phosphinito bimetallic catalyst for C(sp2)-C(sp3) formation: A combined computational and experimental study. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Mele A, Arrigoni F, Elleouet C, Pétillon FY, Schollhammer P, Zampella G. Insights into Triazolylidene Ligands Behaviour at a Di-Iron Site Related to [FeFe]-Hydrogenases. Molecules 2022; 27:molecules27154700. [PMID: 35897863 PMCID: PMC9369626 DOI: 10.3390/molecules27154700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/05/2023] Open
Abstract
The behaviour of triazolylidene ligands coordinated at a {Fe2(CO)5(µ-dithiolate)} core related to the active site of [FeFe]-hydrogenases have been considered to determine whether such carbenes may act as redox electron-reservoirs, with innocent or non-innocent properties. A novel complex featuring a mesoionic carbene (MIC) [Fe2(CO)5(Pmpt)(µ-pdt)] (1; Pmpt = 1-phenyl-3-methyl-4-phenyl-1,2,3-triazol-5-ylidene; pdt = propanedithiolate) was synthesized and characterized by IR, 1H, 13C{1H} NMR spectroscopies, elemental analyses, X-ray diffraction, and cyclic voltammetry. Comparison with the spectroscopic characteristics of its analogue [Fe2(CO)5(Pmbt)(µ-pdt)] (2; Pmbt = 1-phenyl-3-methyl-4-butyl-1,2,3-triazol-5-ylidene) showed the effect of the replacement of a n-butyl by a phenyl group in the 1,2,3-triazole heterocycle. A DFT study was performed to rationalize the electronic behaviour of 1, 2 upon the transfer of two electrons and showed that such carbenes do not behave as redox ligands. With highly perfluorinated carbenes, electronic communication between the di-iron site and the triazole cycle is still limited, suggesting low redox properties of MIC ligands used in this study. Finally, although the catalytic performances of 2 towards proton reduction are weak, the protonation process after a two-electron reduction of 2 was examined by DFT and revealed that the protonation process is favoured by S-protonation but the stabilized diprotonated intermediate featuring a {Fe-H⋯H-S} interaction does not facilitate the release of H2 and may explain low efficiency towards HER (Hydrogen Evolution Reaction).
Collapse
Affiliation(s)
- Andrea Mele
- Laboratoire de Chimie, Electrochimie Moléculaire et Chimie Analytique, UMR 6521 CNRS-Université de Bretagne Occidentale, CS 93837—6 Avenue Le Gorgeu, CEDEX 3, 29238 Brest, France; (A.M.); (F.Y.P.)
| | - Federica Arrigoni
- Department of Biotechnology and Bioscience, University of Milano-Bicocca Piazza della Scienza 2, 20126 Milan, Italy
- Correspondence: (F.A.); (C.E.); (P.S.); (G.Z.)
| | - Catherine Elleouet
- Laboratoire de Chimie, Electrochimie Moléculaire et Chimie Analytique, UMR 6521 CNRS-Université de Bretagne Occidentale, CS 93837—6 Avenue Le Gorgeu, CEDEX 3, 29238 Brest, France; (A.M.); (F.Y.P.)
- Correspondence: (F.A.); (C.E.); (P.S.); (G.Z.)
| | - François Y. Pétillon
- Laboratoire de Chimie, Electrochimie Moléculaire et Chimie Analytique, UMR 6521 CNRS-Université de Bretagne Occidentale, CS 93837—6 Avenue Le Gorgeu, CEDEX 3, 29238 Brest, France; (A.M.); (F.Y.P.)
| | - Philippe Schollhammer
- Laboratoire de Chimie, Electrochimie Moléculaire et Chimie Analytique, UMR 6521 CNRS-Université de Bretagne Occidentale, CS 93837—6 Avenue Le Gorgeu, CEDEX 3, 29238 Brest, France; (A.M.); (F.Y.P.)
- Correspondence: (F.A.); (C.E.); (P.S.); (G.Z.)
| | - Giuseppe Zampella
- Department of Biotechnology and Bioscience, University of Milano-Bicocca Piazza della Scienza 2, 20126 Milan, Italy
- Correspondence: (F.A.); (C.E.); (P.S.); (G.Z.)
| |
Collapse
|
6
|
Chen L, Xie B, Li T, Lai C, Cao J, Ji R, Liu M, Li W, Zhang D, He J. Heteroleptic nickel complexes bearing O‐methyldithiophosphate and aminodiphosphine monosulfide ligands as robust molecular electrocatalysts for hydrogen evolution. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Luo Chen
- School of Materials Science and Engineering, College of Chemistry and Environmental Engineering, Key Laboratory of Materials Corrosion and Protection of Sichuan Province Sichuan University of Science and Engineering Zigong China
| | - Bin Xie
- School of Materials Science and Engineering, College of Chemistry and Environmental Engineering, Key Laboratory of Materials Corrosion and Protection of Sichuan Province Sichuan University of Science and Engineering Zigong China
| | - Tao Li
- School of Materials Science and Engineering, College of Chemistry and Environmental Engineering, Key Laboratory of Materials Corrosion and Protection of Sichuan Province Sichuan University of Science and Engineering Zigong China
| | - Chuan Lai
- School of Chemistry and Chemical Engineering Sichuan University of Arts and Science Dazhou China
| | - Jia‐Xi Cao
- School of Materials Science and Engineering, College of Chemistry and Environmental Engineering, Key Laboratory of Materials Corrosion and Protection of Sichuan Province Sichuan University of Science and Engineering Zigong China
| | - Ren‐Wu Ji
- School of Materials Science and Engineering, College of Chemistry and Environmental Engineering, Key Laboratory of Materials Corrosion and Protection of Sichuan Province Sichuan University of Science and Engineering Zigong China
| | - Meng‐Nan Liu
- School of Materials Science and Engineering, College of Chemistry and Environmental Engineering, Key Laboratory of Materials Corrosion and Protection of Sichuan Province Sichuan University of Science and Engineering Zigong China
| | - Wei Li
- School of Materials Science and Engineering, College of Chemistry and Environmental Engineering, Key Laboratory of Materials Corrosion and Protection of Sichuan Province Sichuan University of Science and Engineering Zigong China
| | - Dong‐Liang Zhang
- School of Materials Science and Engineering, College of Chemistry and Environmental Engineering, Key Laboratory of Materials Corrosion and Protection of Sichuan Province Sichuan University of Science and Engineering Zigong China
| | - Jia‐Yu He
- School of Materials Science and Engineering, College of Chemistry and Environmental Engineering, Key Laboratory of Materials Corrosion and Protection of Sichuan Province Sichuan University of Science and Engineering Zigong China
| |
Collapse
|
7
|
Pal N, Naskar T, Majumdar A. Synthesis, structural diversity and redox reactions in 1, 2- Bis(diphenylphopshinoethane)Nickel(II)-Thiolate complexes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Reactivity of hemilabile 2-pyridylselenolate ligand towards [NiCl2(dppe)]: Combined experimental and theoretical study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Basu D, Gray DL, Woods TJ, Rauchfuss TB, Arrigoni F, Zampella G. Challenges in the Synthesis of Active Site Mimics for [NiFe]-Hydrogenases. Organometallics 2021; 40:3306-3312. [PMID: 37933322 PMCID: PMC10627515 DOI: 10.1021/acs.organomet.1c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the more active areas in bioorganometallic chemistry is the preparation and reactivity studies of active site mimics of the [NiFe]-hydrogenases. One area of particular recent progress involves reactions that interconvert Ni(μ-X)Fe centers for X = OH, H, CO, as described by Song et al. Such reactions illustrate new ways to access intermediates related to the Ni-R and Ni-SI states of the enzyme. Most models are derivatives of the type (diphosphine)Ni(SR)2Fe(CO)3-n(PR'3)n. In recent work, the methodology has been generalized to include FeII(diphosphine) derivatives of Ni(N2S2), where N2S22- is the tetradentate diamine-dithiolate (CH2N(CH3)CH2CH2S-)2. Indeed, models based on Ni(N2S2) have proven valuable, but these studies also highlight challenges in working with heterobimetallic complexes, specifically the tendency of some such Ni-Fe complexes to convert to homometalliic Ni-Ni derivatives. This kind of problem is not readily detected by X-ray crystallography. With this caution in mind, we argue that one series of complexes recently described in this journal are almost certainly misassigned.
Collapse
Affiliation(s)
- Debashis Basu
- School of Chemical Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Danielle L Gray
- School of Chemical Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Toby J Woods
- School of Chemical Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Thomas B Rauchfuss
- School of Chemical Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United State
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| |
Collapse
|
10
|
An interesting heterometallic complex [{Ni2(κ2-SeC5H4N)2(µ-OCH3)CdCl}2] as single source molecular precursor for NiSe/CdSe heterostructure: Consequence of similar Ni-Se and Cd-Se bond distances. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Arrigoni F, Zampella G, Zhang F, Kagalwala HN, Li QL, Woods TJ, Rauchfuss TB. Computational and Experimental Investigations of the Fe 2(μ-S 2)/Fe 2(μ-S) 2 Equilibrium. Inorg Chem 2021; 60:3917-3926. [PMID: 33650855 PMCID: PMC8100967 DOI: 10.1021/acs.inorgchem.0c03709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Density functional theory (DFT) calculations on Fe2S2(CO)6-2n(PMe3)2n for n = 0, 1, and 2 reveal that the most electron-rich derivatives (n = 2) exist as diferrous disulfides lacking an S-S bond. The thermal interconversion of the FeII2(S)2 and FeI2(S2) valence isomers is symmetry-forbidden. Related electron-rich diiron complexes [Fe2S2(CN)2(CO)4]2- of an uncertain structure are implicated in the biosynthesis of [FeFe]-hydrogenases. Several efforts to synthesize electron-rich derivatives of Fe2(μ-S2)(CO)6 (1) are described. First, salts of iron persulfido cyanides [Fe2(μ-S2)(CO)5(CN)]- and [Fe2(μ-S2)(CN)(CO)4(PPh3)]- were prepared by the reactions of NaN(tms)2 with 1 and Fe2(μ-S2)(CO)5(PPh3), respectively. Alternative approaches to electron-rich diiron disulfides targeted Fe2(μ-S2)(CO)4(diphosphine). Whereas the preparation of Fe2(μ-S2)(CO)4(dppbz) was straightforward, that of Fe2(μ-S2)(CO)4(dppv) required an indirect route involving the oxidation of Fe2(μ-SH)2(CO)4(dppv) (dppbz = C6H4-1,2-(PPh2)2, dppv = cis-C2H2(PPh2)2). DFT calculations indicate that the oxidation of Fe2(μ-SH)2(CO)4(dppv) produces singlet diferrous disulfide Fe2(μ-S)2(CO)4(dppv), which is sufficiently long-lived as to be trapped by ethylene. The reaction of 1 and dppv mainly afforded Fe2(μ-SCH=CHPPh2)(μ-SPPh2)(CO)5, implicating a S-centered reaction.
Collapse
Affiliation(s)
- Federica Arrigoni
- Department of Biotechnology and Biosciences University of Milano-Bicocca Piazza della Scienza 2 20126-Milan, Italy
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences University of Milano-Bicocca Piazza della Scienza 2 20126-Milan, Italy
| | - Fanjun Zhang
- School of Chemical Sciences University of Illinois Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Husain N Kagalwala
- School of Chemical Sciences University of Illinois Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Qian-Li Li
- School of Chemical Sciences University of Illinois Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Toby J Woods
- School of Chemical Sciences University of Illinois Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Thomas B Rauchfuss
- School of Chemical Sciences University of Illinois Urbana-Champaign, Champaign, Illinois 61801, United States
| |
Collapse
|
12
|
Hobballah A, Arrigoni F, Elleouet C, Greco C, Laurans M, Pétillon FY, Schollhammer P. Triiron clusters derived from dinuclear complexes related to the active site of [Fe–Fe] hydrogenases: steric effect of the dithiolate bridge on redox properties, a DFT analysis. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00006c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CV and DFT calculations reveal that electrochemical behaviours of triiron clusters [Fe3(CO)5(κ2-dppe)(μ-pdtR2)(μ-pdt)] depend on the nature of the dithiolate bridge.
Collapse
Affiliation(s)
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences
- University of Milan-Bicocca
- 20126 Milan
- Italy
| | | | - Claudio Greco
- Department of Earth and Environmental Sciences University of Milan-Bicocca
- Italy
| | - Maxime Laurans
- UMR CNRS 6521
- Université de Bretagne Occidentale
- Brest
- France
| | | | | |
Collapse
|
13
|
Chauhan RS. Reactivity of hemi-labile pyridyl and pyrimidyl derived chalcogen ligands towards group 10 metal phosphine precursors. NEW J CHEM 2020. [DOI: 10.1039/c9nj04993b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The reactivity of N-heterocyclic dichalcogenides and their sodium salts towards group 10 metal phosphine precursors has been investigated.
Collapse
Affiliation(s)
- Rohit Singh Chauhan
- Department of Chemistry
- K. J. Somaiya College of Science and Commerce
- Mumbai-400077
- India
| |
Collapse
|
14
|
Pieri C, Bhattacharjee A, Barrozo A, Faure B, Giorgi M, Fize J, Réglier M, Field M, Orio M, Artero V, Hardré R. Hydrogen evolution reaction mediated by an all-sulfur trinuclear nickel complex. Chem Commun (Camb) 2020; 56:11106-11109. [DOI: 10.1039/d0cc04174b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A trinuclear nickel complex with S-based ligands is reported as a bio-inspired model of the [NiFe] hydrogenases' active site. DFT calculations indicate that thiolate and thioether functions are involved as proton relays in the H2 evolution mechanism.
Collapse
Affiliation(s)
- Cyril Pieri
- Aix Marseille Univ
- CNRS
- Centrale Marseille
- iSm2
- Marseille
| | | | | | - Bruno Faure
- Aix Marseille Univ
- CNRS
- Centrale Marseille
- iSm2
- Marseille
| | - Michel Giorgi
- Aix Marseille Univ
- CNRS
- Centrale Marseille
- Marseille
- France
| | - Jennifer Fize
- Univ. Grenoble Alpes
- CNRS
- CEA
- IRIG
- Laboratoire de Chimie et Biologie des Métaux
| | | | - Martin Field
- Univ. Grenoble Alpes
- CNRS
- CEA
- IRIG
- Laboratoire de Chimie et Biologie des Métaux
| | - Maylis Orio
- Aix Marseille Univ
- CNRS
- Centrale Marseille
- iSm2
- Marseille
| | - Vincent Artero
- Univ. Grenoble Alpes
- CNRS
- CEA
- IRIG
- Laboratoire de Chimie et Biologie des Métaux
| | - Renaud Hardré
- Aix Marseille Univ
- CNRS
- Centrale Marseille
- iSm2
- Marseille
| |
Collapse
|