1
|
Zhou W, Guo SP. Rational Design of Novel Promising Infrared Nonlinear Optical Materials: Structural Chemistry and Balanced Performances. Acc Chem Res 2024. [PMID: 38301117 DOI: 10.1021/acs.accounts.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
ConspectusSecond-order nonlinear optical (NLO) materials are currently a hot topic in modern solid-state chemistry and optics because they can produce coherent light by frequency conversion. Noncentrosymmetric (NCS) structure is not only the prerequisite for NLO materials but also a challengeable issue because materials tend to be centrosymmetric (CS) in terms of thermodynamical stability. Among NLO materials, an excellent infrared (IR) candidate should simultaneously meet several strict key conditions including a large NLO coefficient, high laser-induced damage threshold (LIDT), phase-matchable (PM) behavior, and so on. Achieving a balance between the large NLO effect and high LIDT is difficult, as they have contradictory requirements for chemical bonds. Considering the urgent need of the high-power IR laser market and the drawbacks of the available ones, exploring new high-performance IR NLO crystals is necessary while challenging. In this Account, we first briefly introduce the status and advancement of IR NLO crystals and emphasize the criteria of an excellent candidate. Then, we will introduce five simple methods developed by us to discover practical NLO candidates through understanding of the chemical composition-structure-NLO performance relationship. (1) A rarely investigated system with simple chemical compositions as new-type NLO crystals, namely, adducts containing S8 molecules, are developed. Combining a chairlike S8 unit with other units through van der Waals forces has successfully obtained several high-performance NLO adducts. (2) The main trend in exploring new NLO crystals is that the chemical composition is more and more diversified and the structure is more and more complex, and expensive and chemically active alkaline and alkaline earth metals are usually introduced as counter cations. In contrast, the research on systems with simple chemical compositions, simple structures, and low costs has been continuously ignored. The binary M2Q3 (M = Ga, In; Q = S, Se) family with rich acentric modifications has been systematically investigated, and they all exhibit strong SHG effects and high LIDTs. (3) We first proposed the concept of inducing CS structures transformed to NCS ones by partial cation substitution to design novel NLO crystals. Considering the huge number of CS structures in the database compared to the number of NCS structures, it is an attractive method to apply CS structures as the parents to obtain potential NLO materials via partial-substitution-induced symmetry breaking. A series of chalcogenides with high NLO performances have been successfully obtained by us in this way. (4) We investigated the first NLO-active rare earth (RE) chalcophosphates and developed this family systematically, and they demonstrate wonderful comprehensive NLO properties. (5) We created a novel mixed-anion system for NLO applications, namely, chalcogenide borates. Usually, mixed-anion compounds can engender a synergistic effect to obtain desired IR NLO properties. Our recent progress on this system suggests that chalcogenide borates are potential candidates for IR NLO applications, although the study is still in its infancy. Finally, we state the current problems of IR NLO materials and give some perspectives for their future development.
Collapse
Affiliation(s)
- Wenfeng Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Sheng-Ping Guo
- Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| |
Collapse
|
2
|
Jiao Z, Quah J, Syed TH, Wei W, Zhang B, Wang F, Wang J. Synthesis, crystal and electronic structures, linear and nonlinear optical properties, and photocurrent response of oxyhalides CeHaVIO 4 (Ha = Cl, Br; VI = Mo, W). Dalton Trans 2024; 53:2029-2038. [PMID: 38179796 DOI: 10.1039/d3dt03640e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Four heteroanionic oxyhalides, CeClMoO4, CeBrMoO4, CeClWO4, and CeBrWO4, have been studied as multifunctional materials, which show a combination of good second harmonic generation (SHG) response and photocurrent signals. Millimeter-sized CeHaVIO4 (Ha = Cl, Br; VI = Mo, W) crystals were grown by halide salt flux. The crystal structure of CeHaVIO4 crystals was accurately determined by single-crystal X-ray diffraction. CeClMoO4, CeBrMoO4, and CeBrWO4 are isostructural to each other, and crystallize in the acentric LaBrMoO4 structure type. CeClWO4 crystallizes in a new structure type with unit cell parameters of a = 19.6059(2) Å, b = 5.89450(10) Å, c = 7.80090(10) Å, and β = 101.4746(8)°. The bandgaps of CeHaVIO4 fall into the range of 2.8(1)-3.1(1) eV, which are much smaller than those of isotypic LaHaVIO4 (Ha = Cl, Br; VI = Mo, W) in the range of 3.9(1)-4.3(1) eV. The narrowing of bandgaps in CeHaVIO4 originates from the presence of partially filled 4f orbitals of cerium atoms, which was confirmed by density functional theory (DFT) calculations. The moderate bandgaps make CeHaVIO4 suitable for infrared nonlinear optical (IR NLO) applications. CeBrMoO4 and CeBrWO4 exhibit moderate SHG responses of 0.58× AGS and 0.46× AGS, respectively, and are both type-I phase-matching materials. Moderate SHG response, easy growth of crystals, high ambient stability, and type-I phase-matching behavior make CeBrMoO4 and CeBrWO4 great materials for IR NLO applications. CeHaVIO4 films also exhibited good photocurrent response upon light radiation. This work demonstrates the rich structural chemistry of the REHaVIO4 (RE = Y, La-Lu; Ha = Cl, Br; VI = Mo, W) family and the potential presence of more multifunctional materials.
Collapse
Affiliation(s)
- Zixian Jiao
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, USA.
| | - Jasmine Quah
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, USA.
| | - Tajamul Hussain Syed
- Department of Mechanical Engineering, Wichita State University, Wichita, Kansas 67260, USA
| | - Wei Wei
- Department of Mechanical Engineering, Wichita State University, Wichita, Kansas 67260, USA
| | - Bingbing Zhang
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China
| | - Fei Wang
- Department of Chemistry and Biochemistry, Missouri State University, Springfield, Missouri, 65897, USA.
| | - Jian Wang
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, USA.
| |
Collapse
|
3
|
Zhao CY, Chen ZX, Yao WD, Zhou W, Liu W, Guo SP. NaREP 2Se 6 (RE = Y, Sm, Gd-Dy): Quaternary Rare-Earth Selenophosphates with Unique 3D {[REP 2Se 6] -} ∞ Framework Built by RESe 8 and P 2Se 6 Motifs and Multiple Properties. Inorg Chem 2023. [PMID: 38032849 DOI: 10.1021/acs.inorgchem.3c03695] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Rare-earth (RE) chalcophosphates have been widely studied because of their abundant structures. Here, five new RE selenophosphates, NaREP2Se6 (RE = Y, Sm, Gd-Dy), were synthesized by a facile RE oxide-boron-selenium solid-state route. They crystallize in the triclinic P1̅ space group, featuring three-dimensional (3D) structures constructed by RESe8 and P2Se6 motifs, different from common 2D RE chalcophosphates A-RE-P2-Q6 (A = alkali metal; Q = S, Se) system. Their structural chemistry and relationship with related phases are analyzed. Both the size of A and the coordination geometry of RE have important influences on the system's structures. Their optical band gaps are tunable from 1.79 to 2.50 eV, and they exhibit diverse magnetic behaviors, including Van-Vleck-type paramagnetism, antiferromagnetism, and ferromagnetism. Their photocurrent responses and thermal stabilities are analyzed as well. Calculation results suggest that the RESe8 and P2Se6 units make a great contribution to the optical properties. This work enriches the chemistry and multifunctional properties of RE chalcophosphates.
Collapse
Affiliation(s)
- Chen-Yi Zhao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China
| | - Zi-Xia Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China
| | - Wen-Dong Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China
| | - Wenfeng Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China
| | - Wenlong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China
| | - Sheng-Ping Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China
| |
Collapse
|
4
|
Zhang N, Han SS, Xie Y, Chen DL, Yao WD, Huang X, Liu W, Guo SP. Mixed Rare-Earth Chalcogenide Borate Eu 9-xRE xMgS 2B 20O 41 (RE = Sm, Gd) Featuring a 3D {[B 20O 41] 22-} ∞ Framework Connected by [B 6O 9(O 0.5) 6] 6- and [B 7O 13(O 0.5) 3] 8- Clusters. Inorg Chem 2023; 62:7681-7688. [PMID: 37148562 DOI: 10.1021/acs.inorgchem.2c04272] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Rare-earth (RE) chalcogenide borates are very rarely discovered in view of the difficulties in synthesis though they have demonstrated attractive physical performances. Here, the first mixed RE chalcogenide borates Eu5.4Sm3.6MgS2B20O41 (1) and Eu3Gd6MgS2B20O41 (2) are synthesized by combining RE, sulfur, and borate ions into one structure. They crystallize in the centrosymmetric hexagonal space group P63/m, and their 3D honeycomb-like {[B20O41]22-}∞ open frameworks are built by [B6O9(O0.5)6]6- and [B7O13(O0.5)3]8- polyanionic clusters and consolidated by Mg2+ ions; both of which are formed by BO4 tetrahedra and BO3 planar triangles. The coordination modes of RE ions are rare REO6S2 bicapped trigonal prisms and REO8S irregular polyhedra, and their band gaps are determined to be 2.25 and 2.22 eV, respectively. They exhibit antiferromagnetic interactions and distinct photocurrent responses. The corresponding theoretical calculations are also performed. The study of 1 and 2 perhaps stimulates interest in exploring new functional RE chalcogenide borates.
Collapse
Affiliation(s)
- Nan Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P.R. China
| | - Shan-Shan Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P.R. China
| | - Yun Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P.R. China
| | - Da-Li Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P.R. China
| | - Wen-Dong Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P.R. China
| | - Xiao Huang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P.R. China
| | - Wenlong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P.R. China
| | - Sheng-Ping Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P.R. China
| |
Collapse
|
5
|
Chen ZX, Liu W, Guo SP. A review of structures and physical properties of rare earth chalcophosphates. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Two New Gallium(III)-Thioantimonates TM(tren)GaSbS4 (TM = Mn, Fe): Syntheses, Crystal Structure and Properties. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Syntheses, crystal structures, photocatalysis, and photoelectric responses of quaternary sulfides ACuZnS2 (A = K, Rb, Cs). INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Li N, Teri G, Shele M, Sagala, Namila, Baiyin M. The Solvothermal Synthesis and Properties of Thioantimonates Rb(1,4-DABH)Sb4S7 and Cs2ZnSb2S5: 1D Anion Chains and 2D Anion Layer. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02355-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Huang X, Yang SH, Liu W, Guo SP. Ba 3HgGa 2S 7: A Zero-Dimensional Quaternary Sulfide Featuring a Unique [Hg 2Ga 4S 14] 12- String and Exhibiting a High Photocurrent Response. Inorg Chem 2022; 61:12954-12958. [PMID: 35947431 DOI: 10.1021/acs.inorgchem.2c01678] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The discovery of new types of metal sulfides is attractive because of their rich structures and diverse physical properties. Here, a novel quaternary sulfide, Ba3HgGa2S7 (BHGS), is obtained by a solid-state reaction at 1123 K. It crystallizes in the monoclinic space group P21/c, and its zero-dimensional structure features two seesaw-like HgS2 units and four GaS4 tetrahedra, constructing a unique [Hg2Ga4S14]12- string. BHGS has a wide band gap of 3.64 eV and a large birefringence of 0.09 at 2100 nm. Specifically, BHGS exhibits a remarkable photocurrent response. This work may be extended to a new family of AE3MIIMIII2Q7 (AE = Mg, Ca, Sr, Ba; MII = Zn, Cd, Hg; MIII = Al, Ga, In; Q = S, Se) chalcogenides.
Collapse
Affiliation(s)
- Xiao Huang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Si-Han Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Wenlong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Sheng-Ping Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| |
Collapse
|
10
|
Huang X, Yang SH, Li XH, Liu W, Guo SP. Eu 2 P 2 S 6 : The First Rare-Earth Chalcogenophosphate Exhibiting Large Second-Harmonic Generation Response and High Laser-Induced Damage Threshold. Angew Chem Int Ed Engl 2022; 61:e202206791. [PMID: 35675321 DOI: 10.1002/anie.202206791] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 11/09/2022]
Abstract
Metal chalcogenophosphates are receiving increasing interest, specifically as promising infrared nonlinear optical (NLO) candidates. Here, a rare-earth chalcogenophosphate Eu2 P2 S6 crystallizing in the monoclinic noncentrosymmetric space group Pn was synthesized using a high-temperature solid-state method. Its structure features isolated [P2 S6 ]4- dimer, and two types of EuS8 bicapped triangular prisms. Eu2 P2 S6 exhibits a phase-matchable second-harmonic generation (SHG) response ≈0.9×AgGaS2 @2.1 μm, and high laser-induced damage threshold of 3.4×AgGaS2 , representing the first rare-earth NLO chalcogenophosphate. The theoretical calculation result suggests that the SHG response is ascribed to the synergetic contribution of [P2 S6 ]4- dimers and EuS8 bicapped triangular prisms. This work provides not only a promising high-performance infrared NLO material, but also opens the avenue for exploring rare-earth chalcogenophosphates as potential IR NLO materials.
Collapse
Affiliation(s)
- Xiao Huang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, 250002, China
| | - Si-Han Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, 250002, China
| | - Xiao-Hui Li
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, 250002, China
| | - Wenlong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, 250002, China
| | - Sheng-Ping Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, 250002, China
| |
Collapse
|
11
|
Huang X, Yang S, Li X, Liu W, Guo S. Eu
2
P
2
S
6
: The First Rare‐Earth Chalcogenophosphate Exhibiting Large Second‐Harmonic Generation Response and High Laser‐Induced Damage Threshold. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiao Huang
- School of Chemistry and Chemical Engineering Yangzhou University 180 Siwangting Road Yangzhou 250002 China
| | - Si‐Han Yang
- School of Chemistry and Chemical Engineering Yangzhou University 180 Siwangting Road Yangzhou 250002 China
| | - Xiao‐Hui Li
- School of Chemistry and Chemical Engineering Yangzhou University 180 Siwangting Road Yangzhou 250002 China
| | - Wenlong Liu
- School of Chemistry and Chemical Engineering Yangzhou University 180 Siwangting Road Yangzhou 250002 China
| | - Sheng‐Ping Guo
- School of Chemistry and Chemical Engineering Yangzhou University 180 Siwangting Road Yangzhou 250002 China
| |
Collapse
|
12
|
Ti0.85Eu3SiS7: The rare-earth/Ti based quaternary sulfide containing two variable valence elements. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Yang SH, Li XH, Yao WD, Xu QT, Guo SP. Crystal chemistry, second-order nonlinear optical, and magnetic properties of Eu8Sn4Se20. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Yan M, Sun ZD, Yao WD, Zhou W, Liu W, Guo SP. A highly distorted HgS4 tetrahedron-induced moderate second-harmonic generation response of EuHgGeS4. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00266f] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first Eu,Hg-based chalcogenide EuHgGeS4 exhibits phase-matchable SHG activity with an intensity ∼0.9 times that of AgGaS2.
Collapse
Affiliation(s)
- Mei Yan
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- P. R. China
| | - Zong-Dong Sun
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- P. R. China
| | - Wen-Dong Yao
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- P. R. China
| | - Wenfeng Zhou
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- P. R. China
| | - Wenlong Liu
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- P. R. China
| | - Sheng-ping Guo
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- P. R. China
| |
Collapse
|