1
|
Yuan L, Yao H, Shen Y, Zhang Y. A cyclometalated Pt(II)-Pt(II) clamshell dimer with a triplet emission at 887 nm. Dalton Trans 2024; 53:5125-5132. [PMID: 38379520 DOI: 10.1039/d3dt04335e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Here, a cyclometalated Pt(II) clamshell dimer (complex 2) has been synthesized with the primary ligand of dibenzo(f,h)quinoxaline and an ancillary ligand of N,N'-diphenylformamidine. In addition, a mononuclear Pt(II) complex 1a and a binuclear Pt(II) complex 1b were also prepared. Complex 1a was coordinated by one cyclometalated ligand of dibenzo(f,h)quinoxaline, one chloride ion, and one N,N'-diphenylformamidine. Complex 1b was coordinated by one cyclometalated ligand of dibenzo(f,h)quinoxaline, two chloride ions, and two N,N'-diphenylformamidines. All of these three complexes were characterized by nuclear magnetic resonance (NMR) spectroscopy, high-resolution mass spectrometry (HRMS), elemental analyses, and single-crystal X-ray diffraction (XRD). The Pt-Pt distance in complex 2 was 2.8439(2) Å. It also exhibited a near-infrared (near-IR) emission at 887 nm in the pure solid state. On the other hand, complexes 1a and 1b exhibited triplet emission at 589 and 660 nm, respectively, in the pure solid state. Furthermore, in 2 wt% poly(Me methacrylate) (PMMA) films, complex 1a showed a triplet emission at 548 nm (with Φ = 84% and τ = 5.53 μs) and complex 1b showed an emission at 627 nm (with Φ = 79% and τ = 4.07 μs). Due to its great photophysical properties, complex 1b was deposited onto quartz plates for the detection of organic solvent vapors and it showed unique emission quenching for the vapor of tetrahydrofuran.
Collapse
Affiliation(s)
- Lequn Yuan
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, Guangxi, China.
| | - Haibo Yao
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, Guangxi, China.
- Engineering Research Center for Industrial Wastewater Treatment and Reuse of Shandong Province, School of Chemical Engineering and Safety, Binzhou University, Binzhou 256603, Shandong, China
| | - Yunjun Shen
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, Guangxi, China.
| | - Yuzhen Zhang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, Guangxi, China.
| |
Collapse
|
2
|
Zhang H, Liu C, Zhang J, Du CX, Zhang B. Highly Emissive Platinum(II) Complexes Bearing Bulky Phenyltriazolate Ligands: Synthesis, Structure, and Photophysics. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Han Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Chunmei Liu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jian Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Chen-xia Du
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Bin Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
3
|
Zhang H, Liu C, Du C, Zhang B. Efficiently red emitting cycloplatinated(II) complexes supported by N^O and N^P benzimidazole ancillary ligands. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
4
|
Zhang H, Liu C, Yin G, Du C, Zhang B. Efficiently luminescent heteroleptic neutral platinum(II) complexes based on N^O and N^P benzimidazole ligands. Dalton Trans 2021; 50:17319-17327. [PMID: 34787606 DOI: 10.1039/d1dt02720d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A series of new luminescent cycloplatinated(II) complexes (5a-8a and 5b-8b) with formulas Pt(bt)(N^O) and Pt(bt)(N^P) have been synthesized [bt = phenylbenzothiazole, N^O = (2-(1H-benzimidazole)-phenyl)diphenylphosphine oxide derivatives for 1a-4a and N^P = (2-(1H-benzimidazole)-phenyl)diphenylphosphine derivatives for 1b-4b]. The crystal structures of the complexes show distorted square planar geometries around the platinum centers. There are no obvious π-π and Pt-Pt intermolecular interactions in the crystal lattice due to the presence of sterically bulky ancillary ligands. Consequently, these complexes exhibit structured monomeric emissions in the range of 527-540 nm in CH2Cl2 solution. The photoluminescent quantum yields of Pt(bt)(N^O) (5a-8a) in CH2Cl2 solution at room temperature are higher than those of Pt(bt)(N^P) (5b-8b). The above result is well consistent with the crystal structural characteristics of the complexes. The structured emission with microsecond radiative lifetimes and the result of TD-DFT calculations indicate that the emissions of these complexes are mainly attributed to a mixed 3LC-MLCT state.
Collapse
Affiliation(s)
- Han Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Chunmei Liu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Guojie Yin
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, PR China
| | - Chenxia Du
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Bin Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
6
|
Zi X, Liu C, Lu W, Huang J, Zhang J, Zhang B, Du C. Luminescent mono‐and dinuclear copper(I) complexes based on bulky bisphosphino‐substituted benzimidazole derivatives. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Xiaorui Zi
- College of Chemistry Zhengzhou University Zhengzhou 450001 PR China
| | - Chunmei Liu
- College of Chemistry Zhengzhou University Zhengzhou 450001 PR China
| | - Wen Lu
- College of Chemistry Zhengzhou University Zhengzhou 450001 PR China
| | - Juan Huang
- College of Chemistry Zhengzhou University Zhengzhou 450001 PR China
| | - Jiayuan Zhang
- College of Chemistry Zhengzhou University Zhengzhou 450001 PR China
| | - Bin Zhang
- College of Chemistry Zhengzhou University Zhengzhou 450001 PR China
| | - Chenxia Du
- College of Chemistry Zhengzhou University Zhengzhou 450001 PR China
| |
Collapse
|
7
|
Gong ZL, Tang K, Zhong YW. A Carbazole-Bridged Biscyclometalated Diplatinum Complex: Synthesis, Characterization, and Dual-Mode Aggregation-Enhanced Phosphorescence. Inorg Chem 2021; 60:6607-6615. [PMID: 33861581 DOI: 10.1021/acs.inorgchem.1c00403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A cationic carbazole-bridged biscyclometalated diplatinum complex 4 has been synthesized and characterized. Single-crystal X-ray analysis demonstrates that complex 4 displays a dimeric structure with noncovalent π-π stacking and unique double Pt-Pt interactions. In aerated dilute CH3CN, complex 4 is characterized by a very weak monomeric yellow emission (λemi = 547 nm; Φ = 0.51%), which is attributed to the triplet intraligand (3LC) excited state mixing with some charge transfer characters. In contrast, under aerated conditions, the dispersion of 4 in a mixed solvent of CH3CN/Et2O (1/9, v/v) or CH3CN/H2O (1/9, v/v) displays intense yellow (λemi = 550 nm; Φ = 35.5%; τ = 11.10 μs) and red emission (λemi = 635 nm; Φ = 14.1%; τ = 7.00 μs), respectively. These aggregation-induced phosphorescent emission enhancements are considered being caused by the oxygen-shielding effect and the molecular rigidification-induced decrease of nonradiative decays in the aggregate state. The morphology and size of the aggregates under these two conditions are examined by scanning electron microscope and dynamic light scattering analysis. The absorption and emission properties of 4 are further rationalized by time-dependent density functional theory calculations on a model compound.
Collapse
Affiliation(s)
- Zhong-Liang Gong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Kun Tang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
He XY. Nickel-catalyzed C–P cross-coupling of (het)aryl tosylates with secondary phosphine oxides. JOURNAL OF CHEMICAL RESEARCH 2021. [DOI: 10.1177/1747519821994533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel and convenient approach to the synthesis of various tertiary phosphine oxides via nickel-catalyzed cross-coupling of (het)aromatic tosylates with secondary phosphine oxides is developed. The reaction employs cheap nickel as the catalyst, 1-(2-(di-tert-butylphosphanyl)phenyl)-4-methoxypiperidine (L3) as the ligand, and pyridine as the base. This reaction produces the corresponding (het)aromatic phosphorus compounds in good to high yields. Moreover, four new tertiary phosphine oxides are reported in this process.
Collapse
Affiliation(s)
- Xiao-Yun He
- Department of Chemistry and Environmental Engineering, Hebei Chemical and Pharmaceutical College, Shijiazhuang, P.R. China
| |
Collapse
|